Advertisement

Towards a Full Accounting of the Greenhouse Gas Balance of European Grasslands

  • Jean-François Soussana
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Pastures and livestock production systems are extremely diverse. They occur in a large range of climate and soil conditions and range from very extensive pastoral systems, where domestic herbivores graze and browse rangelands, to intensive systems based on forage and grain crops, where animals are mostly kept indoors. On a global scale, livestock use 3.4 billion ha of grazing land, in addition to animal feed produced on about a quarter of the land under crops (Delgado 2005). Grasslands and pastures contribute to the livelihoods of over 800 million people including many poor smallholders (Reynolds et al. 2005). By 2020, this agricultural sub-sector will produce about 30% of the value of global agricultural output (Delgado 2005).

Pastures include both grasslands and rangelands. Grasslands are the natural climax vegetation in areas (e.g. the Steppes of central Asia and the prairies of North America) where the rainfall is low enough to prevent the growth of forests. In other areas, where rainfall is normally higher, grasslands do not form the climax vegetation (e.g. north-western and central Europe) and are more productive. Rangelands are characterised by low stature vegetation, due to temperature and moisture restrictions, and found on every continent. Worldwide the soil organic C sequestration potential is estimated to be 0.01–0.3 GtC year−1 on 3.7 billion ha of permanent pasture (Lal 2004). Thus, soil organic C sequestration by the world’s permanent pastures could potentially offset up to 4% of the global greenhouse gas (GHG) emissions.

According to remote sensing data (CORINE LandCover and PELCOM; CORINE 1995, 2000), grasslands cover 20% of the area of the European continent and distribute about equally between western Europe (80 Mha) and eastern Europe (60 Mha). Within the area managed by agricultural practices on the European continent, 37% is devoted to grasslands (EEA 2005). Following the new membership of twelve countries, the EU 27 has an enlarged area of grassland of about 20 million ha (Carlier et al. 2004).

Keywords

Gross Primary Production Methane Emission Global Warming Potential Nitrous Oxide Emission Grassland Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeschlimann, U., Nösberger, J., Edwards, P.J., Schneider, M.K., Richter, M., and Blum, H. 2005. Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 enrich-ment, N fertilization and plant species. Plant, Cell and Environment 28:823-833.CrossRefGoogle Scholar
  2. Allard, V., Soussana, J.F., Falcimagne, R., Berbigier, P., Bonnefond, J.M., Ceschia, E., et al. 2007. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture, Ecosystems and Environment 121:47-58.CrossRefGoogle Scholar
  3. Baldocchi, D., and Meyers, T. 1998. On using eco-physiological, micrometeorological and bioge-ochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective. Agriculture and Forest Meteorology 90:1-25.CrossRefGoogle Scholar
  4. Baldocchi, D., Valentini, R., Running, S., Oechel, W., and Dahlman, R. 1996. Strategies for meas-uring and modelling carbon dioxide and water vapor fluxes over terrestrial ecosystems. Global Change Biology 2:159-168.CrossRefGoogle Scholar
  5. Balesdent, J., and Balabane, M. 1996. Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biology and Biochemistry 28:1261-1263.CrossRefGoogle Scholar
  6. Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., and Kirk, G.J.D. 2005. Carbon losses from all soils across England and Wales 1978-2003. Nature 437:245-248.CrossRefGoogle Scholar
  7. Bird, S.B., Herrick, J.E., Wander, M.M., and Wright, S.F. 2002. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environmental Pollution 116:445-455.CrossRefGoogle Scholar
  8. Blaxter, K.L., and Clapperton, J.L. 1965. Prediction of the amount of methane produced by rumi-nants. British Journal of Nutrition 19:511-522.CrossRefGoogle Scholar
  9. Boeckx, P., and Van Cleemput, O. 2001. Estimates of N2O and CH4 fluxes from agricultural land in various regions of Europe. Nutrient Cycling in Agroecosystems 60:35-47.CrossRefGoogle Scholar
  10. Bouwman, A.F. 1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems 46:53-70.CrossRefGoogle Scholar
  11. Cannell, M.G.R., Milne, R., et al. 1999. National inventories of terrestrial carbon sources and sinks, the UK experience. Climate Change 42.Google Scholar
  12. CarboEurope IP 2003. Assessment of the European Terrestrial Carbon Balance. Integrated Project. Sixth Framework Programme. Priority 1.1.6.3 Global Change and Ecosystems.Google Scholar
  13. Carlier, L., De Vliegher, A., van Cleemput, O., and Boeckx, P. 2004. Importance and functions of European grasslands. Proceedings of the COST Action 627 “Carbon storage in European Grasslands”, Ghent, 3-6 June 2004, pp. 7-16.Google Scholar
  14. Casella, E., and Soussana, J.F. 1997. Long-term effect of CO2 enrichment and temperature increase on the carbon balance of a temperate grass sward. Journal of Experimental Botany 48:1309-1321.CrossRefGoogle Scholar
  15. Cernusca, A. (Project co-ordinator) 2004. Official project web site: CARBOMONT: http://botany.uibk.ac.at/forschung/forschungsprojekte/carbomont_ordner/carbomont/
  16. Chapin, F.S. III, Matson, P.A., and Mooney, H.A. 2002. Principles of Terrestrial Ecosystem Ecology. Springer, New York.Google Scholar
  17. Chevallier, T., Voltz, M., Blanchart, E., Chotte, J.L., Eschenbrenner, V., Mahieu, M., and Albrecht, A. 2000. Spatial and temporal changes of soil C after establishment of a pasture on a long-term cultivated vertisol (Martinique). Geoderma 94:43-58.CrossRefGoogle Scholar
  18. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529-533.CrossRefGoogle Scholar
  19. Clayton, H., McTaggart, I.P., Parker, J., Swan, L., and Smith, K.A. 1997. Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and environmental conditions. Biology and Fertility of Soils 25:252-260.CrossRefGoogle Scholar
  20. Conant, R.T., Paustian, K., and Elliott, E.T. 2001. Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications 11:343-355.CrossRefGoogle Scholar
  21. CORINE 1995. CORINE land cover-Part 1: Methodology. EEA technical report.Google Scholar
  22. CORINE 2000. Addendum to the land cover technical guide. EEA technical report.Google Scholar
  23. Delgado, C.L. 2005. Rising demand for meat and milk production in developing countries: Implications for grasslands-based livestock production. In: McGilloway (Ed.), Grassland: A Global Resource, pp. 29-41. Wageningen Acad. Publisher. ISBN907699871X.Google Scholar
  24. De Mazancourt, C., Loreau, M., and Abbadie, L. 1998. Grazing optimization and nutrient cycling: When do herbivores enhance plant production? Ecology 79:2242-2252.Google Scholar
  25. Dueck, T.A., de Visser, R., Poorter, H., Persijn, S., Gorissen, A., de Visser, W., et al. 2007. No evidence for substantial aerobic methane emission by terrestrial plants: A 13C-labelling approach. New Phytologist, doi: 10.1111/j.1469-8137.2007.02103.x.Google Scholar
  26. Hendriks, D.M.D., van Huissteden, J., Dolman, A.J., and van der Molen, M.K. 2007. The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4:411-424.CrossRefGoogle Scholar
  27. European Environment Agency (EEA) 2005. The European Environment: State and outlook 2005. Part A. Integrated assessment 245 pp. EEA.Google Scholar
  28. Food and Agricultural Organisation (FAO) 2004. FAOSTAT data, FAO.Google Scholar
  29. Flechard, C.R., Neftel, A., Jocher, M., Ammann, C., and Fuhrer, J. 2005. Bi-directional soil/ atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Global Change Biology 11:2114-2127.CrossRefGoogle Scholar
  30. Flechard, C.R., Ambus, P., Skiba, U., Rees, R.M., Hensen, A., van den Pol, A., Soussana, J.-F., et al. 2007. Effects of climate and management intensity on nitrous oxide emissions in grass-land systems across Europe. Agriculture Ecosystems and Environment 121:135-152.CrossRefGoogle Scholar
  31. Follett, R.F. 2001. Organic carbon pools in grazing land soils. In: Follett, R.F., Kimble, J.M., and Lal, R. (Eds.), Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect, pp. 65-86. Lewis Publishers Inc., Boca Raton.Google Scholar
  32. Freibauer, A., Rounsevell, M.D.A., Smith, P., and Verhagen, J. 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1-23.CrossRefGoogle Scholar
  33. Giger-Reverdin, S., Sauvant, D., Vermorel, M., and Jouany, J.P. 2000. Modélisation empirique des facteurs de variation des rejets de méthane par les ruminants. Rencontre Recherche Ruminants 7:187-190.Google Scholar
  34. Gilmanov, T.G., Tieszen, L.L., Wylie, B.K.,Flanagan, L.B., Frank, A.B., Haferkamp, M.R., Meyers, T.P., and Morgan, J.A. 2005. Integration of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: Potential for quantitative spatial extrapolation. Global Ecology and Biogeography 14:271-292.CrossRefGoogle Scholar
  35. Gilmanov, T., Soussana, J.F., Aires, L., Allard, V., Ammann, C., Balzarolo, M., Barcza, Z., Bernhofer, C., Campbell, C.L., Cernusca, A., et al. 2007. Partitioning of the tower-based net CO2 exchange in European grasslands into gross primary productivity and ecosystem respira-tion components using light response functions analysis 2007. Agriculture, Ecosystems and Environment 121:93-120.CrossRefGoogle Scholar
  36. INRA 2002. In: Arrouays, D., Balesdent, J., Germon, J.C., Jayet, P.A., Soussana, J.F., and Stengel, P. (Eds.), Contribution à la lutte contre l’effet de serre. Stocker du carbone dans les sols agricoles de France? Institut National de la Recherche Agronomique (INRA), 147 rue de l’Université, Paris. ISBN 2-7380-1054-7.Google Scholar
  37. IPCC 1996a. Revised guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change, IPCC, Cambridge University Press.Google Scholar
  38. IPCC 1996b. Climate change 1995. The science of climate change. Contribution of working group I to the 2nd assessment report of the IPCC. Intergovernmental Panel on Climate Change, Cambridge University Press.Google Scholar
  39. IPCC 2001a. Climate change 2001: The scientific basis (contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change). Intergovernmental Panel on Climate Change, Cambridge University Press.Google Scholar
  40. IPCC 2001b. Good practice guidance and uncertainty management in national greenhouse gas inventories. Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies, Tokyo, Japan.Google Scholar
  41. IPCC 2004. Good practice guidance on land use change and forestry in national greenhouse gas inventories. Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies, Tokyo, Japan.Google Scholar
  42. Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R.W.A., Ceulemans, R., Schulze, E.-D., Valentini, R., and Dolman, A.J., 2003. Europe’s biosphere absorbs 7-12% of anthrogogenic carbon emissions. Science 300:1538-1542.CrossRefGoogle Scholar
  43. Johnson, K., Huyler, M., Westberg, H., Lamb, B., and Zimmerman, P. 1994. Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environmental Science and Technology 28:359-362.CrossRefGoogle Scholar
  44. Jones, M.B., and Donnelly, A. 2004. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist 164:423-439.CrossRefGoogle Scholar
  45. Keppler, F., Hamilton, J.T.G., Brass, M., and Rockmann, T. 2006. Methane emissions from terres-trial plants under aerobic conditions. Nature 439:187-191.CrossRefGoogle Scholar
  46. Körner, C. 2003. Atmospheric science: Slow in, rapid out—Carbon flux studies and Kyoto targets. Science 300:1242-1243.CrossRefGoogle Scholar
  47. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623-1627.CrossRefGoogle Scholar
  48. Lavorel, S., and Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology 16:545-556.CrossRefGoogle Scholar
  49. Leahy, P., Kiely, G., and Scanlon, T.M. 2004. Managed grasslands: A greenhouse gas sink or source? Geophysical Research Letters 31, L20507, doi:10.1029/2004GL021161.CrossRefGoogle Scholar
  50. Lemaire, G., and Chapman, D. 1996. Tissue flows in grazed plant communities. In: Hodgson, J., Illius, A.W. (Eds.), The Ecology and Management of Grazing Systems. CABI, Wallingford.Google Scholar
  51. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., and Wardle, D.A. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804-808.CrossRefGoogle Scholar
  52. Louault, F., Pillar, V.D., Aufrere, J., Garnier, E., and Soussana, J.F. 2005. Plant traits functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science 16:151-160.CrossRefGoogle Scholar
  53. Lovett, D.K., Shalhoo, L., Dillon, P., and O’Mara, F.P. 2006. A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regimes. Agricultural Systems 88:156-179.CrossRefGoogle Scholar
  54. Machefert, S.E., Dise, N.B., Goulding, K.W.T., and Whitehead, P.G. 2002. Nitrous oxide emission from a range of land uses across Europe. Hydrology and Earth System Sciences 6:325-337.Google Scholar
  55. Marriott, C.A., Fothergill, M., Jeangros, B., Scotton, M., and Louault, F. 2004. Long-term impacts of extensification of grassland management on biodiversity and productivity in upland areas. A review. Agronomie 24:447-462.CrossRefGoogle Scholar
  56. Novick, K., Stoy, P., Katul, G., Ellsworth, D., Siqueira, M., Juang, J., and Joren, R. 2004. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 138:259-274.CrossRefGoogle Scholar
  57. Ogle, S.M., Conant, R.T., and Paustian, K. 2004. Deriving grassland management factors for a carbon accounting approach developed by the Intergovernmental Panel on Climate Change. Environmental Management 33:474-484.CrossRefGoogle Scholar
  58. Olesen, J.E., Schelde, K., Weiske, A., Weisbjerg, M.R., Asman, W.A.H., and Djurhuus, J. 2006. Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems and Environment 112:207-220.CrossRefGoogle Scholar
  59. Paustian, K., Andrèn, O., Clarholm, M., Hansson, A.C., Johansson, G., Lagerlof, J., Lindgerg, T., Pettersson, R., and Sohlenius, B. 1990. Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization. Journal of Applied Ecology 27:60-84.CrossRefGoogle Scholar
  60. Pinares-Patino, C.S., Baumont, R., and Martin, C. 2003. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Canadian Journal of Animal Science 83:769-777.Google Scholar
  61. Pinares-Patino, C.S., Dhour, P., Jouany, J.-P., and Martin, C. 2007. Effects of stocking rate on methane and carbon dioxide production by grazing cattle. Agriculture, Ecosystems and Environment 121:30-46.CrossRefGoogle Scholar
  62. Reynolds, S.G., Batello, C., Baas, S., and Mack, S. 2005. Grasslands and forage to improve liveli-hoods and reduce poverty. In: McGilloway (Ed.), Grassland: A Global Resource, pp. 29-41. Wageningen Acad. Publisher. ISBN907699871X.Google Scholar
  63. Riedo, M., Grub, A., Rosset, M., and Fuhrer, J. 1998. A pasture simulation model for dry matter production, and fluxes of carbon, nitrogen, water and energy. Ecological Modelling 105:141-183.CrossRefGoogle Scholar
  64. Robertson, G.P., Paul, E.A., and Harwood, R.R. 2000. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922-1925.CrossRefGoogle Scholar
  65. Robles, M.D., and Burke, I.C. 1998. Soil organic matter recovery on Conservation Reserve Program fields in southeastern Wyoming. Soil Science Society of America Journal 62:725-730.CrossRefGoogle Scholar
  66. Rogiers, N., Eugster, W., Furger, M., and Siegwolf, R. 2005. Effect of land management on eco-system carbon fluxes at a subalpine grassland site in the Swiss Alps. Theoretical and Applied Climatology 80:187-203.CrossRefGoogle Scholar
  67. Salètes, S., Fiorelli, J.L., Vuichard, N., Cambou, J., Olesen, J.E., Hacala, S., Sutton, M., Furhrer, J., and Soussana, J.F. 2004. Greenhouse gas balance of cattle breeding farms and assessment of mitigation option. In: Greenhouse Gas Emissions from Agriculture Conference. Leipzig, Germany 203-208 (10-12 February 2004).Google Scholar
  68. Schils, R.L.M., Verhagen, A., Aarts, H.F.M., and Šebek, L.B.J. 2005. A farm level approach to define successful mitigation strategies for greenhouse gas emissions from ruminant livestock systems. Nutrient Cycling in Agroecosystems 71:163-175.CrossRefGoogle Scholar
  69. Schils, R.L.M., Olesen, J.E., del Prado, A., and Soussana, J.F. in press. A farm level modelling approach for mitigating greenhouse gas emissions from ruminant livestock systems. Livestock Science 112: 240-251.Google Scholar
  70. Siemens, J., and Janssens, I.A. 2003. The European carbon budget: A gap. Science 302:1681.CrossRefGoogle Scholar
  71. Smith, P., Goulding, K.W.T., Smith, K.A., Powlson, D.S., Smith, J.U., Falloon, P.D., and Coleman, K. 2001. Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential. Nutrient Cycling in Agroecosystems 60:237-252.CrossRefGoogle Scholar
  72. Smith, J., Smith, P., Wattenbach, M., Zaehle, Z., Hiederer, R., Jones, R.A., Montanarella, L., Rounsevell, M.D.A., Reginsters, I., and Ewert, F. 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology 11:2141-2152.CrossRefGoogle Scholar
  73. Sommer, S.G., Petersen, S.O., and Møller, H.B. 2004. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems 69:143-154.CrossRefGoogle Scholar
  74. Soussana, J.F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., and Arrouays, D. 2004a. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management 20:219-230.CrossRefGoogle Scholar
  75. Soussana, J.F., Salètes, S., Smith, P., Schils, R., and Ogle, S. 2004b. Greenhouse gas emissions from European grasslands. In: Sezzi, E., Valentini, R. (Eds.), Report 4/2004, Specific Study 3, CarboEurope GHG, Concerted Action, Synthesis of the European Greenhouse Gas Budget. University of Tuscia, Viterbo, Italy. ISSN1723-2236.Google Scholar
  76. Soussana, J.F., Allard, V., Pilegaard, K., Ambus, P., Ammann, C., Campbell, C., Ceschia, E., Clifton-Brown, J., et al. 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems and Environment 121:121-134.CrossRefGoogle Scholar
  77. Sozanska, M., Skiba, U., and Metcalfe, S. 2002. Developing an inventory of N2O emissions from British soils. Atmospheric Environment 36:987-998.CrossRefGoogle Scholar
  78. Van Den Pol-Van Dasselaar, A. 1998. Methane emissions from grasslands. Ph.D. Thesis, 179 pp, Wageningen University.Google Scholar
  79. Velthof, G.L., and Oenema, O. 1997. Nitrous oxide emission from dairy farming systems in the Netherlands. Netherlands Journal of Agricultural Science 45:347-360.Google Scholar
  80. Vermorel, M. 1995. Prédictions gazeuses et thermiques résultant des fermentations digestives. In: Jarrige, R., Ruckebusch, Y., Demarquilly, C., Farce, M. H., Journet, M., (Eds.), Nutrition des Ruminants Domestiques—Ingestion et Digestion. INRA, Paris.Google Scholar
  81. Vleeshouwers, L.M., and Verhagen, A. 2002. Carbon emission and sequestration by agricultural land use: A model study for Europe. Global Change Biology 8:519-530.CrossRefGoogle Scholar
  82. Vuichard, N., Soussana, J.F., Viovy, N., Calanca, P., Clifton-Brown, J., and Ciais, P. 2007a. Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 1. Model evaluation from in situ measurements. Global Biogeochemical Cycles 21:14. GB1004. doi:10.1029/2005GB002611.Google Scholar
  83. Vuichard, N., Ciais, P., Viovy, N., Calanca, P., and Soussana, J.F. 2007b. Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 2. Simulations at the continental level. Global Biogeochemical Cycles 21:13. GB1005. doi:10.1029/2005GB002612.CrossRefGoogle Scholar
  84. Yazaki, Y., Mariko, S., and Koizumi, H. 2004. Carbon dynamics and budget in a Miscanthus sinensis grassland in Japan. Ecological Research 19:511-520.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Jean-François Soussana
    • 1
  1. 1.INRA, UR874 AgronomieGrassland Ecosystem ResearchClermont-FerrandFrance

Personalised recommendations