Monitoring Carbon Stock Changes in European Forests Using Forest Inventory Data

  • Raisa Mäkipää
  • Aleksi Lehtonen
  • Mikko Peltoniemi
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

The forest carbon stock in Europe is large and changes in it may contribute notably to atmospheric CO2 concentration. The area of forested land in Europe is about 1,000 million ha, which is about 47% of the land area (e.g. MCPFE 2003). The largest part, more than 800 million ha, of the forests in Europe is located in the Russian Federation, whereas the forested area of EU15 is 137 million ha. The percentage of forested land varies considerably between counties ranging from 68% in Finland and Sweden to 1% in Iceland. In the forests of Europe (excluding Russia), the carbon stock of the vegetation was estimated to be about 8,000 Tg (Nabuurs et al. 1997; Goodale et al. 2002). Estimates of the soil carbon stocks range from 5,000 to 14,000 Tg and are evidently more uncertain than the estimated carbon stocks of the vegetation (Goodale et al. 2002; Liski et al. 2002; Nabuurs et al. 2003). Current estimates of the changes in the carbon stock of vegetation in Europe (excluding Russia) range from 50 to 100 Tg C year−1, and the changes in the soil range from 13 to 61 Tg C year−1, depending on the methods applied as well as on the reference area and period (Goodale et al. 2002; Liski et al. 2002; Karjalainen et al. 2003; Nabuurs et al. 2003). In general, large carbon stocks of peatlands soils are not fully accounted in these studies, because of the lack of representative data and/or models.


Soil Carbon Carbon Stock Forest Inventory Coarse Woody Debris Forest Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afman, A., and Kaipainen, T. . Database of biomass turnover rates, Scholar
  2. Alm, J., Shurpali, N.J., Minkkinen, K., Aro, L., Hytönen, J., Laurila, T., Lohila, A., Maljanen, M., Mäkiranta, P., Penttilä, T., Saarnio, S., Silvan, N., Tuittlia, E.-S., and Laine, J. 2007a. Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Environment Research 12: 191-209.Google Scholar
  3. Alm, J., Shurpali, N.J., Tuittila, E.-S., Laurila, T., Maljanen, M., Saarnio, S., and Minkkinen, K. 2007b. Methods for determining emission factors for the use of peat and peatlands—flux measurement and modelling. Boreal Environment Research 12: 85-100.Google Scholar
  4. Amichev, B.Y., and Galbraith, J.M. 2004. A revised methodology for estimation of forest soil car-bon from spatial soils and forest inventory data sets. Environmental Management 33: 74-86.CrossRefGoogle Scholar
  5. Bousquet, P., Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P., and Tans, P.P. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290: 1342-1346.CrossRefGoogle Scholar
  6. Cannell, M.G.R., and Dewar, R.C. 1995. The carbon sink provided by plantation forests and their products in Britain. Forestry 68: 35-48.CrossRefGoogle Scholar
  7. Chen, W., Chen, J., Liu, J., and Cihlar, J. 2000. Approaches for reducing uncertainties in regional forest carbon balance. Global Biogeochemical Cycles 14: 827-838.CrossRefGoogle Scholar
  8. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., and Valentini, R. 2005. Europe-wide reduc-tion in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533.CrossRefGoogle Scholar
  9. Conen, F., Yakutin, M.V., and Sambuu, A.D. 2003. Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Global Change Biology 9: 1515-1520.CrossRefGoogle Scholar
  10. Conen, F., Zerva, A., Arrouays, D., Jolivet, C., Jarvis, P.G., Grace, J., and Mencuccini, M. 2004. The carbon balance of forest soils: detectability of changes in soil carbon stocks in temperate and boreal forests. In Griffith, H., Jarvis, P.G. eds., The carbon balance of forest biomes, pp. 233-247. Garland Science/BIOS Scientific Publishers.Google Scholar
  11. Cullen, A.C., and Frey, H.C. 1999. Probabilistic techniques in exposure assessment. Plenum Press, New York.Google Scholar
  12. Fang, J.-Y., Chen, A., Peng, C., Zhao, S., and Ci, L. 2001. Changes in forest biomass carbon stor-age in China between 1949 and 1998. Science 292: 2320-2322.CrossRefGoogle Scholar
  13. Gaudinski, J., Trumbore, S., Davidson, E., Cook, A., Markewitz, D., and Richter, D. 2001. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129: 420-429.Google Scholar
  14. Goodale, C.L., Apps, M.J., Birdsey, R.A., Field, C.B., Heath, L.S., Houghton, R.A., Jenkins, J.C., Kohlmaier, G.H., Kurz, W., Liu, S.R., Nabuurs, G.J., Nilsson, S., and Shvidenko, A.Z. 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Applications 12: 891-899.CrossRefGoogle Scholar
  15. Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack, K., and Cummins, K.W. 1986. Ecology of coarse woody debris in temperate ecosystems. Ecological Research 15: 133-302.CrossRefGoogle Scholar
  16. Heath, L.S., Birdsey, R.A., and Williams, D.W. 2002. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001. Environmental Pollution 116: 373-380.CrossRefGoogle Scholar
  17. Hökkä, H., Kaunisto, S., Korhonen, K.T., Päivänen, J., Reinikainen, A., and Tomppo, E. 2002. Suomen suometsät 1951-1994. Metsätieteen aikakausikirja 2B.Google Scholar
  18. IPCC 2000. A special report of the IPCC. Land use, land-use change, and forestry. Cambridge University Press.Google Scholar
  19. IPCC 2003. Good practice guidance for land use, land-use change and forestry. IPCC, National Greenhouse Gas Inventories Programme, Kanagawa, Japan.Google Scholar
  20. IPCC 2006. Guidelines for national greenhouse gas inventories. IPCC, National Greenhouse Gas Inventories Programme, Kanagawa, Japan.Google Scholar
  21. Jackson, R.B., Mooney, H.A., and Schulze, E.D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Science of the United States of America 94: 7362-7366.CrossRefGoogle Scholar
  22. Jalkanen, A., Mäkipää, R., Ståhl, G., Lehtonen, A., and Petersson, H. 2005. Estimation of biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals of Forest Science 62: 845-851.CrossRefGoogle Scholar
  23. Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R.W.A., Ceulemans, R., Schulze, E.D., Valentini, R., and Dolman, A.J. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300: 1538-1542.CrossRefGoogle Scholar
  24. Jenkins, J.C., Chojnacky, D.C., Heath, L.S., and Birdsey, R. 2003. National-scale biomass estima-tors for United States tree species. Forest Science 49: 12-35.Google Scholar
  25. Johnson, M.G., and Kern, J.S. 2002. Quantifying the organic carbon held in forested soils of the United States and Puerto Rico. In Kimble, J.M., Heath, L.S., Birdsey, R.A., Lal, R. eds., The potential of U.S. forest soils to sequester and mitigate the greenhouse effect, pp. 47-72. Lewis, Boca Raton.Google Scholar
  26. Jones, R.J.A., Hiederer, R., Rusco, E., Loveland, P.J., and Montanarella, L. 2004. The map of organic carbon in topsoils in Europe, Version 1.2, September 2003: Explanation of Special Publication Ispra 2004 No. 72 (S.P.I.04.72). European Soil Bureau Research Report 17: 1-26.Google Scholar
  27. Jonsson, B.G., Kruys, N., and Ranius, T. 2005. Ecology of species living on dead wood—lessons for dead wood management. Silva Fennica 39: 1-21.Google Scholar
  28. Karjalainen, T., Pussinen, A., Liski, J., Nabuurs, G.J., Eggers, T., Lapveteläinen, T., and Kaipainen, T. 2003. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy and Economics 5: 141-155.CrossRefGoogle Scholar
  29. Kauppi, P.E., Mielikäinen, K., and Kuusela, K. 1992. Biomass and carbon budget of European forests, 1971 to 1990. Science 256: 70-74.CrossRefGoogle Scholar
  30. Krankina, O.N., Treyfeld, R.F., Harmon, M.E., Spycher, G., and Povarov, E.D. 2001. Coarse woody debris in the forests of the St. Petersburg region, Russia. Ecological Bulletins 49: 93-104.Google Scholar
  31. Kruys, N., Jonsson, B.G., and Ståhl, G. 2002. A stage-based matrix model for decay-class dynam-ics of woody debris. Ecological Applications 12: 773-781.CrossRefGoogle Scholar
  32. Kurz, W.A., and Apps, M.J. 1994. The carbon budget of Canadian forests: a sensitivity analysis of changes in disturbance regimes, growth rates, and decomposition rates. Environmental Pollution 83: 55-61.CrossRefGoogle Scholar
  33. Kuusela, K. 1979. Forest balance on the national level. Silva Fennica 13: 265-268.Google Scholar
  34. Kuusisto, E., and Hämekoski, K. 2001. Finland’s third national communication under the United Nations framework convention on climate change. Ministery of Environment, Hämeenlinna, p. 197.Google Scholar
  35. Laitat, E., Karjalainen, T., Loustau, D., and Lindner, M. 2000. Towards an integrated scientific approach for carbon accounting in forestry. Biotechnology, Agronomy, Society and Environment 4: 241-251.Google Scholar
  36. Lehtonen, A. 2005. Carbon stocks and flows in forest ecosystems based on forest inventory data. Dissertationes Forestales 11: 1-51.Google Scholar
  37. Lehtonen, A., Cienciala, E., Tatarinov, F., and Mäkipää, R. 2007. Uncertainty estimation of bio-mass expansion factors for Norway spruce in the Czech Republic. Annals of Forest Science 64: 133-140.CrossRefGoogle Scholar
  38. Lehtonen, A., Mäkipää, R., Heikkinen, J., Sievänen, R., and Liski, J. 2004. Biomass expansion factors (BEF) for Scots pine, Norway spruce and birch according to stand age for boreal for-ests. Forest Ecology and Management 188: 211-224.CrossRefGoogle Scholar
  39. Levy, P.E., Hale, S.E., and Nicoll, B.C. 2004. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry 77: 421-430.CrossRefGoogle Scholar
  40. Liski, J., Korotkov, A.V., Prins, C.F.L., Karjalainen, T., Victor, D.G., and Kauppi, P.E. 2003. Increased carbon sink in temperate and boreal forests. Climatic Change 61: 89-99.CrossRefGoogle Scholar
  41. Liski, J., Lehtonen, A., Palosuo, T., Peltoniemi, M., Eggers, T., Muukkonen, P., and Mäkipää, R. 2006. Carbon accumulation in Finland’s forests 1922-2004 an estimate obtained by combi-nation of forest inventory data with modelling of biomass, litter and soil. Annals of Forest Science 63: 687-697.CrossRefGoogle Scholar
  42. Liski, J., Palosuo, T., Peltoniemi, M., and Sievänen, R. 2005. Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189: 168-182.CrossRefGoogle Scholar
  43. Liski, J., Perruchoud, D., and Karjalainen, T. 2002. Increasing carbon stocks in the forest soils of Western Europe. Forest Ecology and Management 169: 163-179.CrossRefGoogle Scholar
  44. Löwe, H., Seufert, G., and Raes, F. 2000. Comparison of methods used within member states for estimating CO2 emissions and sinks according to UNFCCC and EU monitoring mechanism: forest and other wooded land. Biotechnology, Agronomy, Society and Environment 4: 315-319.Google Scholar
  45. Mäkinen, H., Hynynen, J., Siitonen, J., and Sievänen, R. 2006. Predicting the decomposition of Scots pine, Norway spruce and birch stems in Finland. Ecological Applications 16: 1865-1879.CrossRefGoogle Scholar
  46. Mäkipää, R., and Tomppo, E. 1998. Suomen metsät ovat hiilinielu—vaikka Kioton sopimuksen mukaan muulta näyttää. Folia Forestalia 2: 268-274.Google Scholar
  47. Marklund, L.G. 1987. Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges Lantbruksuniversitet, Rapporter-Skog, p. 123.Google Scholar
  48. Marklund, L.G.1988. Biomassafunktioner för tall, gran och björk i Sverige. Sveriges Lantbruksuniversitet, Rapporter-Skog 45: 1-73.Google Scholar
  49. Matamala, R., Gonzalez-Meler, M.A., Jastrow, J.D., Norby, R.J., and Schlesinger, W.H. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302: 1385-1387.CrossRefGoogle Scholar
  50. MCPFE 2003. State of Europe’s Forests. MCPFE, Vienna.Google Scholar
  51. Metla 2006. Metsätilastollinen vuosikirja 2006, Finnish Statistical Yearbook of Forestry. Metla.Google Scholar
  52. Minkkinen, K., Korhonen, R., Savolainen, I., and Laine, J. 2002. Carbon balance and radiative forcing of Finnish peatlands 1900-2100—the impact of forestry drainage. Global Change Biology 8: 785-799.CrossRefGoogle Scholar
  53. Minkkinen, K., Vasander, H., Jauhiainen, S., Karsisto, M., and Laine, J. 1999. Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant and Soil 207: 107-120.CrossRefGoogle Scholar
  54. Monni, S., Peltoniemi, M., Palosuo, T., Lehtonen, A., Mäkipää, R., and Savolainen, I. 2007. Uncertainty of forest carbon stock changes implications to the total uncertainty of GHG inventory of Finland. Climatic Change 81: 391-413.CrossRefGoogle Scholar
  55. Morgan, M., and Henrion, M. 1990. Uncertainty. A guide to dealing with uncertainty in quantita-tive risk and policy analysis. Cambridge University Press, Cambridge.Google Scholar
  56. Muukkonen, P. 2007. Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research 126: 157-166.CrossRefGoogle Scholar
  57. Muukkonen, P., and Mäkipää, R. 2006a. Biomass equations for European trees: addendum. Silva Fennica 40: 763-773.Google Scholar
  58. Muukkonen, P., and Mäkipää, R. 2006b. Empirical biomass models of understorey vegetation in boreal forests according to stand and site attributes. Boreal Environment Research 11: 355-369.Google Scholar
  59. Muukkonen, P., Mäkipää, R., Laiho, R., Minkkinen, K., Vasander, H., and Finér, L. 2006. Relationship between biomass and percentage cover in understorey vegetation of boreal conif-erous forests. Silva Fennica 40: 231-245.Google Scholar
  60. Nabuurs, G.J., Päivinen, R., Sikkema, R., and Mohren, G.M.J. 1997. The role of European forests in the global carbon cycle a review. Biomass and Bioenergy 13: 345-358.CrossRefGoogle Scholar
  61. Nabuurs, G.J., Schelhaas, M.J., Mohren, G.M.J., and Field, C.B. 2003. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Global Change Biology 9: 152-160.CrossRefGoogle Scholar
  62. Palosuo, T., Liski, J., Trofymow, J.A., and Titus, B. 2005. Litter decomposition affected by climate and litter quality testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecological Modelling 189: 183-198.CrossRefGoogle Scholar
  63. Paustian, K., Levine, E., Post, W.M., and Ryzhova, I.M. 1997. The use of models to integrate information and understanding of soil C at the regional level. Geoderma 17: 227-260.CrossRefGoogle Scholar
  64. Peltoniemi, M., Mäkipää, R., Liski, J., and Tamminen, P. 2004. Changes in soil carbon with stand age an evaluation of a modeling method with empirical data. Global Change Biology 10: 2078-2091.CrossRefGoogle Scholar
  65. Peltoniemi, M., Palosuo, T., Monni, S., and Mäkipää, R. 2006. Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. Forest Ecology and Management 232: 75-85.CrossRefGoogle Scholar
  66. Peltoniemi, M., Thürig, E., Ogle, S., Palosuo, T., Shrumpf, M., Wützler, T., Butterbach-Bahl, K., Chertov, O., Komarov, A., Mikhailov, A., Gärdenäs, A., Perry, C., Liski, J., Smith, P., and Mäkipää, R. 2007. Models in country scale carbon accounting of forest soils. Silva Fennica 41: 575-602.Google Scholar
  67. Petersson, H., and Ståhl, G. 2006. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scandinavian Journal of Forest Research 21, Supplement 7: 84-93.CrossRefGoogle Scholar
  68. Post, W.M., and Kwon, K.C. 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology 6: 317-327.CrossRefGoogle Scholar
  69. Powlson, D.S., Smith, P., and Smith, J.U. 1996. Evaluation of soil organic matter models. Springer-Verlag, Berlin Heidelberg.Google Scholar
  70. Rastetter, E.B., King, A.W., Cosby, B.J., Hornberger, G.M., O’Neill, R.V., and Hobbie, J.E. 1992. Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecological Applications 2: 55-70.CrossRefGoogle Scholar
  71. Roxburgh, S.H., Berry, S.L., Buckley, T.N., Barnes, B., and Roderick, M.L. 2005. What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production. Functional Ecology 19: 378-382.CrossRefGoogle Scholar
  72. Satoo, T., and Madgwick, H.A.I. 1982. Forest biomass. Martinus Nijhoff/Dr W. Junk Publisher, The Hague.Google Scholar
  73. Schlesinger, W.H. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348: 232-234.CrossRefGoogle Scholar
  74. Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins 49: 11-41.Google Scholar
  75. Smith, J.E., Heath, L.S., and Woodbury, P.B. 2004. How to estimate forest carbon for large areas from inventory data. Journal of Forestry 102: 25-31.Google Scholar
  76. Smith, J.E., and Heath, L.S. 2002. A model of forest floor carbon mass for United States forest types. Res. Pap. NE-722 USDA Forest Service, Northeastern Research Station, Newtown Square, PA.Google Scholar
  77. Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., and Jenkinson, D.S. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81: 153-225.CrossRefGoogle Scholar
  78. Somogyi, Z., Cienciala, E., Mäkipää, R., Lehtonen, A., Muukkonen, P., and Weiss, P. 2006. Indirect methods of large scale forest biomass estimation. European Journal of Forest Research 126 (2): 197-207.CrossRefGoogle Scholar
  79. Ståhl, G., Boström, B., Lindkvist, H., Lindroth, A., Nilsson, J., and Olsson, M. 2004. Methodological options for quantifying changes in carbon pools in Swedish forests. Studia Forestalia Suecica 214: 1-46.Google Scholar
  80. Ståhl, G., Ringvall, A., and Fridman, J. 2001. Assessment of coarse woody debris—a methodo-logical overview. Ecological Bulletins 49: 57-70.Google Scholar
  81. Stokland, J.N. 2001. The coarse woody debris profile: an archive of recent forest history and an important biodiversity indicator. Ecological Bulletins 49: 71-83.Google Scholar
  82. Tarasov, M.E., and Birdsey, R.A. 2001. Decay rate and potential storage of coarse woody debris in the Leningrad region. Ecological Bulletins 49: 137-147.Google Scholar
  83. Tate, K.R., Scott, N.A., Saggar, S., Giltrap, D.J., Baisden, W.T., and Newsome, P.F. 2003. Land-use changes alters New Zealand’s terrestrial carbon budget: uncertainties associated with esti-mates of soil carbon change between 1990-2000. Tellus 55B: 364-377.Google Scholar
  84. Tierney, G.L., and Fahey, T.J. 2002. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research 32: 1692-1697.CrossRefGoogle Scholar
  85. Tomppo, E. 2000. National forest inventory in Finland and its role in estimating the carbon bal-ance of forests. Biotechnology, Agronomy, Society and Environment 4: 241-320.Google Scholar
  86. UN-ECE/FAO 1985. The Forest Resources of the ECE region (Europe, the USSR, North America). United Nations, New York and Geneve.Google Scholar
  87. UNECE 2000. Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand. United Nations, Geneva.Google Scholar
  88. UNFCCC 1992. United Nations Framework Convention on Climate Change. UNFCCC 1997. Kyoto Protocol.
  89. Wirth, C., Schumacher, J., and Schulze, E.D. 2004. Generic biomass functions for Norway spruce in Central Europe a meta-analysis approach towards prediction and uncertainty estimation. Tree Physiology 24: 121-139.Google Scholar
  90. Zianis, D., Muukkonen, P., Mäkipää, R., and Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4: 1-63.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Raisa Mäkipää
    • 1
  • Aleksi Lehtonen
    • 1
  • Mikko Peltoniemi
    • 1
  1. 1.Finnish Forest Research InstituteHelsinkiFinland

Personalised recommendations