Advertisement

Power Amplifiers at 60GHz and Beyond

  • Ehsan Afshari
  • Abbas Komijani
Part of the Series on Integrated Circuits and Systems book series (ICIR)

Recently, there has been growing interest in using silicon-based integrated circuits at high microwave and millimeter wave frequencies. The high level of integration offered by silicon enables numerous new topologies and architectures for low-cost reliable SoC applications at microwave and millimeter wave bands, such as broadband wireless access (e.g., WiMax) [1], vehicular radars at 24GHz and 77GHz [2][3], short range communications at 24GHz and 60GHz [4][5][6], and ultra narrow pulse generation for UWB radar [7].

Keywords

Transmission Line Breakdown Voltage Power Gain Match Network Impedance Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hosh, D. R. Wolter, J. G. Andrews, et al., “Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential,” IEEE Comminications Magazine, vol. 43, pp. 129-136, Feb 2005.Google Scholar
  2. 2.
    U. R. Pfeiffer, et al., “A 77GHz SiGe PowerAmplifier for Potential Applications inAutomotive Radar Systems,” Proceedings of RFIC, pp. 91-94, June 2004.Google Scholar
  3. 3.
    A. Natarajan, et al., “A 77-GHz Phased-Array Transceiver with On-chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2807-2819, Dec 2006.CrossRefGoogle Scholar
  4. 4.
    A. Natarajan, A. Komijani and A. Hajimiri, “A Fully Integrated 24-GHz Phased-Array Transmitter in CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 2502-2514, Dec 2005.CrossRefGoogle Scholar
  5. 5.
    C. H. Doan, S. Emami, A. Niknejad, et al., “Millimeter-Wave CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 40, pp.144-155, Jan 2005.CrossRefGoogle Scholar
  6. 6.
    B. Razavi, “A 60-GHz CMOS Receiver Front-End,” IEEE Journal of Solid-State Circuits, vol. 41, pp.17-22, Jan 2006.CrossRefGoogle Scholar
  7. 7.
    S. Vitebskiy, L. Carin, M. A. Ressler, et al. “Ultra-Wideband, Short-Pulse Ground-Penetrating Radar: Simulation and Measurement,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 762-772, May 1997.CrossRefGoogle Scholar
  8. 8.
    C. H. Doan, S. Emami, A. Niknejad, and R. W. Broderson, “Millimeter-Wave CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.CrossRefGoogle Scholar
  9. 9.
    B. Razavi, R. H. Yan, K. F. Lee, “Impact of Distributed Gate Resistance on the Performance of MOS Devices,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 11, pp. 750-754, Nov. 1994.CrossRefGoogle Scholar
  10. 10.
    M. Racanelli and P. Kempf, “SiGe BiCMOS Technology for Communication Products,” Proc. IEEE Custom Integrated Circuits Conf., pp. 331-334, Sep. 2003.Google Scholar
  11. 11.
    A. J. Joseph, et al., “Status and Direction of Communication Technologies-SiGe BiCMOS and RFCMOS,” Proceedings of the IEEE, Vol. 93, no.9, pp. 1539-1558, Sept. 2005.CrossRefGoogle Scholar
  12. 12.
    B. Kleveland, C. H. Diaz, D. Wook, L. Madden, T. H. Lee, and S. S. Wong, “Exploiting CMOS Reverse Interconnect Scaling in MultigigahertzAmplifier and Oscillator Design,” IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1480-1488, Oct. 2001.CrossRefGoogle Scholar
  13. 13.
    L. Zhu, “Guided-Wave Characteristics of Periodic Coplanar Waveguides with Inductive Loading: Unit-Length Transmission Parameters,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 10, pp. 2133-2138, Oct. 2003.CrossRefGoogle Scholar
  14. 14.
    F. Aryanfar and K. Sarabandi, “Compact millimeter-wave filters using distributed capacitively loaded CPW resonators,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 3, pp. 1161-1165, Mar. 2006.CrossRefGoogle Scholar
  15. 15.
    A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm Fully-Integrated Power Amplifier in 0.18µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1901-08, Sept. 2005.CrossRefGoogle Scholar
  16. 16.
    HFSS, High frequency structure simulator [Online]. Available: http://www.ansoft.com
  17. 17.
    IE3D, MoM-based electromagnetic simulator [Online]. Available: http://www.zeland.com
  18. 18.
    A. Komijani and A. Hajimiri, “A 24 GHz, +14.5 dBm fully-integrated power amplifier in 0.18µm CMOS,” Proc. IEEE Custom Integrated Circuits Conf., Oct. 2004, pp. 561-564.Google Scholar
  19. 19.
    Advanced Design System (ADS), TLINP: 2-Terminal Physical Transmission Line Model [Online], Available: http://eesof.tm.agilent.com/products/adsoview.html
  20. 20.
    W. H. Haydl, “On the use of Vias in Conductor-Backed Coplanar Circuits,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 6, pp. 1571-1577, June 2002.CrossRefGoogle Scholar
  21. 21.
    A. Komijani and A. Hajimiri, “A Wideband 77GHz, 17.5dBm Power Amplifier in Silicon,” IEEE Custom Integrated Circuits Conference, pp. 571-575, Sept. 2005.Google Scholar
  22. 22.
    R. Aparicio and A. Hajimiri, “Capacity Limits and Matching Properties of Integrated Capacitors,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 384-393, March 2002.CrossRefGoogle Scholar
  23. 23.
    D. M. Pozar, Microwave Engineering, Wiley, 2005.Google Scholar
  24. 24.
    T. Sowlati and D. M. W. Leenaerts, “A 2.4GHz 0.18µm CMOS Self-Biased Cascode Power Amplifier,” IEEE Journal of Solid-State Circuits, vol. 38, no. 8, pp. 1318-1324, Aug. 2003.CrossRefGoogle Scholar
  25. 25.
    E. O. Johnson, “Physical limitations on frequency and power parameters of transistors,” IRE Int. Convention Record, vol. 13, pp. 27-34, Mar. 1965.CrossRefGoogle Scholar
  26. 26.
    K. K. Ng, M. R. Frei, and C. A. King, “Reevaluation of the fT BVceo Limit on Si Bipolar Transistors,” IEEE Trans. on Electron Devices, vol. 45, no. 8, pp. 1854-1855, Aug. 1998.CrossRefGoogle Scholar
  27. 27.
    S. D. Kee, The class E/F family of harmonictuned switching power amplifiers. Ph.D. Thesis, Caltech, 2002.Google Scholar
  28. 28.
    I. Aoki, et al., “Distributed Active Transformer: A New Power Combining and Impedance Transformation Techniques,” IEEE MTT, pp. 316-332, Jan. 2002.Google Scholar
  29. 29.
    H. Veenstra, G. A. M. Hurkx, D. van Goor, H. Brekelmans, and J. R. Long, “Analyses and Design of Bias Circuits Tolerating Output Voltages above BVCEO,” IEEE Journal of Solid-State Circuits, vol. 40, no. 10, pp. 2008-2018, Oct. 2005.CrossRefGoogle Scholar
  30. 30.
    B. A. Floyd, et al., “SiGe Bipolar Transceiver Circuits Operating at 60GHz,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 156-167, Jan. 2005.CrossRefGoogle Scholar
  31. 31.
    E. Afshari, H. Bhat, X. Li, andA. Hajimiri, “Electrical Funnel: A Broadband Signal Combining Method,” IEEE International Solid-State Circuits Conference, pp. 206-208, Feb. 2006.Google Scholar
  32. 32.
    H. O. Granberg, “Broadband Transformers and Power Combining Techniques for RF,” Motorola Applications Note AN749, Motorola Semiconductor Products, Inc.Google Scholar
  33. 33.
    D. B. Rutledge, Nai-Shuo Cheng, R. A. York, R. M. Weikle, M. P. De Lisio, “Failures in Power-Combining Arrays,” IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 7, part 1, pp. 1077-1082, July 1999.CrossRefGoogle Scholar
  34. 34.
    U. R. Pfeiffer and D. Gordon, “A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 857-865, May 2007.CrossRefGoogle Scholar
  35. 35.
    H. Kaufman, “Bibliography of Nonuniform Transmission Lines,” IRE Transactions—Antennas and Propagation, vol. 3, pp. 218-220, 1955.CrossRefGoogle Scholar
  36. 36.
    A. C. Scott, Active and Nonlinear Wave Propagation in Electronics, Wiley, New York, NY, 1970.Google Scholar
  37. 37.
    M. J.W. Rodwell, M. Kamegawa, R.Yu, M. Case, E. Carman, and K. Giboney, “GaAs Nonlinear Transmission Lines for Picosecond Pulse Generation and Millimeter-Wave Sampling,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 7, pp. 1194-1204, July 1991.CrossRefGoogle Scholar
  38. 38.
    W.-S. Duan, “Nonlinear Waves Propagating in the Electrical Transmission Line,” Europhysics Letters, vol. 66, pp. 192-197, 2004.CrossRefGoogle Scholar
  39. 39.
    E. Afshari and A. Hajimiri, “Nonlinear Transmission Line for Signal Shaping on Silicon,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 744-752, 2005.CrossRefGoogle Scholar
  40. 40.
    E. Afshari, H. S. Bhat, A. Hajimiri, and J. E. Marsden, “Extremely Wideband Signal Shaping Using One-and Two-Dimensional Nonuniform Nonlinear Transmission Lines,” Journal of Applied Physics, vol. 99, 2006.Google Scholar
  41. 41.
    E.Afshari, H. S. Bhat, andA. Hajimiri, “Electrical Lens: a NovelAnalog FourierTransformation Technique,” IEEE Transactions on Circuits and Systems I, submitted.Google Scholar
  42. 42.
    K. C.Gupta and M. D. Abouzahra, Analysis and Design of Planar Microwave Components IEEE Press, 1994.Google Scholar
  43. 43.
    B. Jagannathan, et al., “Self-aligned SiGe NPN transistors with 285 GHz fmax and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 258-260, 2002.CrossRefMathSciNetGoogle Scholar
  44. 44.
    S. C. Cripps, RF Power Amplifiers for Wireless Communications, Boston, MA: Artech House, 1999.Google Scholar
  45. 45.
    H. Li, H. M. Rein, T. Suttorp, and J. Böck, “Fully Integrated SiGe VCOs with Powerful Output Buffer for 77-GHz Automotive Radar Systems and Applications Around 100-GHz,” IEEE Journal of Solid-State Circuits, vol. 39, no. 10, pp. 1650-1658, Oct. 2004.CrossRefGoogle Scholar
  46. 46.
    E. Afshari, H. Bhat, and A. Hajimiri, “Electrical Funnel: A Broadband Signal Combining Method,” IEEE Journal of Solid-State Circuits, submitted.Google Scholar
  47. 47.
    E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: High-precision, temperature-resolved measurements,” Diamond and Related Materials, Vol. 5, No. 6, pp. 688-692, 1996.CrossRefGoogle Scholar
  48. 48.
    U. R. Pfeiffer, D. Goren, B. A. Floyd, and S. K. Reynolds, “SiGe Transformer Matched Power Amplifier for Operation at millimeter-wave Frequencies,” Eur. Solid-State Circuits Conf., Sep. 2005, pp. 141-144.Google Scholar
  49. 49.
    A. Valdes-Garcia, S. Reynolds, and U. R. Pfeiffer, “A 60 GHz Class-E Power Amplifier in SiGe,” Proc. Asian Solid-State Circuits Conf., 2006, pp. 199-202.Google Scholar
  50. 50.
    C. Wang, Y. Cho, C. Lin, H. Wang, C. Chen, D. Niu, J. Yeh, C. Lee, and J. Chern, “A 60 GHz Transmitter with Integrated Antenna in 0.18µm SiGe BiCMOS Technology,” IEEE International Solid-State Circuits Conference, 2006, pp. 186-187.Google Scholar
  51. 51.
    U. R. Pfeiffer and D. Gordon, “A 20 dBm Fully-Integrated 60 GHz SiGe Power Amplifier With Automatic Level Control,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1455-1463, July 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ehsan Afshari
    • 1
  • Abbas Komijani
    • 2
  1. 1.Cornell UniversityIthaca14853
  2. 2.Entropic CommunicationsSan Jose

Personalised recommendations