Advertisement

Voltage-Controlled Oscillators and Frequency Dividers

Part of the Series on Integrated Circuits and Systems book series (ICIR)

Voltage-controlled oscillators (VCOs) and frequency dividers play critical roles in all synchronous circuits. They comprise the core components in phase-locked systems, sometimes necessitating co-design and having great influence on the overall performance. Even though we have witnessed a proliferation of VCO and divider topologies in the past two decades of Si RE, high performance oscillators and dividers operating in the mm-wave range continue to pose difficult challenges even in today’s technology. We begin our discussion with basic oscillation properties as well as a VCO figure of merit.

Keywords

Phase Noise Tuning Range Loop Gain Negative Resistance Colpitts Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol.54, pp.329-330, Feb. 1966.CrossRefGoogle Scholar
  2. 2.
    H. Wang et al., “A 50 GHz VCO in 0,25µmCMOS,” ISSCC Dig. of Tech. Papers, pp. 372-373, Feb. 2001.Google Scholar
  3. 3.
    C. Cao et al., “192 GHz push-push VCO in 0.13 µmCMOS,” Electron. Lett., vol. 42, pp. 208-210, Feb. 2006.CrossRefGoogle Scholar
  4. 4.
    C. Cao et al., “A 140-GHz Fundamental Mode Voltage-Controlled Oscillator in 90-nm CMOS Technology,” Microwave and Wireless Components. Lett., vol. 16, pp.555-557, Oct. 2006.CrossRefGoogle Scholar
  5. 5.
    M. Danesh et al., “A Q-factor ehancement technique for MMIC inductors,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Dig. Paper, pp.217-220, June 1998.Google Scholar
  6. 6.
    A. Zolfaghari et al., “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.CrossRefGoogle Scholar
  7. 7.
    J. Lee, “High-speed circuit designs for transmitters in broadband data links,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1004-1015, May 2006.CrossRefGoogle Scholar
  8. 8.
    E. Hegavi et al., “A Filtering Technique to Lower Oscillator Phase Noise,” ISSCC Dig. of Tech. Papers, pp. 364-365, Feb. 2001.Google Scholar
  9. 9.
    J. Chien et al., “A 40-GHz Wide-Tuning-Range VCO in 0.18-µmCMOS,” VLSI Dig. of Tech. Papers, pp. 178-179, 2006.Google Scholar
  10. 10.
    E. H. Colpitts et al., “Carrier current telephony and telegraphy,” Journal AIEE,, vol. 40, no.4, pp. 301-305, Apr. 1921.Google Scholar
  11. 11.
    B. Razavi, “Design of Integrated Circuits for Optical Communications,” New York: McGraw-Hill, 2002.Google Scholar
  12. 12.
    W. Winkler et al., “60 GHz transceiver circuits in SiGe:C BiCMOS technology,” Proc. of European Solid-State Circuits Conf, pp. 83-86, Sep. 2004.Google Scholar
  13. 13.
    B.A. Floyd et al., “SiGe Bipolar transceiver circuits operating at 60 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 156-167, Jan. 2005.CrossRefGoogle Scholar
  14. 14.
    S.T. Nicolson et al., “Design and scaling of SiGe BiCMOS VCOs above 100GHz,” Bipo-lar/BiCMOS Circuits and Technology Meeting, pp. 1-4, Oct. 2006.Google Scholar
  15. 15.
    B. Heydari et al., “Low-Power mm-Wave Components up to 104GHz in 90nm CMOS,” ISSCC Dig. of Tech. Papers, pp. 200-201, Feb. 2007.Google Scholar
  16. 16.
    D. Pozar, “Microwave Engineering,” John Wiley & Sons, Inc., 1998.Google Scholar
  17. 17.
    P. Huang et al., “A low-power 114-GHz push-push CMOS VCO using LC source degeneration,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1230-1239, June 2007.CrossRefGoogle Scholar
  18. 18.
    R. Wanner et al., “SiGe integrated mm-wave push-push VCOs with reduced power consumption,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Dig. Paper, pp. 483-486, June. 2006.Google Scholar
  19. 19.
    H. Wu and A. Hajimiri, “Silicon-based distributed voltage-controlled oscillators,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 493-502 , Mar. 2001.CrossRefGoogle Scholar
  20. 20.
    N. Tzartzanis et al., “A reversible poly-phase distributed VCO,” ISSCC Dig. of Tech. Papers, pp. 2452-2461, Feb. 2006.Google Scholar
  21. 21.
    R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” Proc. Inst. Radio Eng, vol. 27, pp. 446-456, Jul. 1939.Google Scholar
  22. 22.
    J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.CrossRefGoogle Scholar
  23. 23.
    R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1380-1385, Oct. 1973.CrossRefGoogle Scholar
  24. 24.
    B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424 , Sep. 2004.CrossRefGoogle Scholar
  25. 25.
    H. Wu andA. Hajimiri, “A 19GHz 0.5µm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Dig. of Tech. Papers, pp. 412-413, Feb. 2001.Google Scholar
  26. 26.
    M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.Google Scholar
  27. 27.
    S. Verma et al., “A multiply-by-3 coupled-ring oscillator for low-power frequency synthesis,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 709-713, Apr. 2004.Google Scholar
  28. 28.
    K. Yamamoto et al., “70GHz CMOS harmonic injection-locked divider,” ISSCC Dig. of Tech. Papers, pp. 2472-2481, Feb. 2006.Google Scholar
  29. 29.
    A. Natarajan et al., “A 77-Ghz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2807-2819, Dec. 2006.CrossRefGoogle Scholar
  30. 30.
    J. Jinho et al., “A Fully Integrated V-band PLL MMIC Using 0.15-µm GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1042-1050, May 2006.CrossRefGoogle Scholar
  31. 31.
    P. J. Howes et al., “Ka-band and MMIC pHEMT-based VCOs with low phase-noise properties,” IEEE Trans. Microw Theorey Tech., vol. 46, no. 10, pp. 1531-1536, Oct. 1998.CrossRefGoogle Scholar
  32. 32.
    B. Piernas et al., “A compact and low-phase-noise Ka-Band pHEMT-based VCOs,” IEEE Trans. Microw Theorey Tech., vol. 51, no. 3, pp. 778-783, Mar. 2003.CrossRefGoogle Scholar
  33. 33.
    J. Lee, “A 75GHz PLL in 90 nm CMOS,” ISSCC Dig. of Tech. Papers, pp. 432-433, Feb. 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jri Lee
    • 1
  1. 1.Electrical Engineering DepartmentNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations