Skip to main content

Voltage-Controlled Oscillators and Frequency Dividers

  • Chapter
mm-Wave Silicon Technology

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

Voltage-controlled oscillators (VCOs) and frequency dividers play critical roles in all synchronous circuits. They comprise the core components in phase-locked systems, sometimes necessitating co-design and having great influence on the overall performance. Even though we have witnessed a proliferation of VCO and divider topologies in the past two decades of Si RE, high performance oscillators and dividers operating in the mm-wave range continue to pose difficult challenges even in today’s technology. We begin our discussion with basic oscillation properties as well as a VCO figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol.54, pp.329-330, Feb. 1966.

    Article  Google Scholar 

  2. H. Wang et al., “A 50 GHz VCO in 0,25µmCMOS,” ISSCC Dig. of Tech. Papers, pp. 372-373, Feb. 2001.

    Google Scholar 

  3. C. Cao et al., “192 GHz push-push VCO in 0.13 µmCMOS,” Electron. Lett., vol. 42, pp. 208-210, Feb. 2006.

    Article  Google Scholar 

  4. C. Cao et al., “A 140-GHz Fundamental Mode Voltage-Controlled Oscillator in 90-nm CMOS Technology,” Microwave and Wireless Components. Lett., vol. 16, pp.555-557, Oct. 2006.

    Article  Google Scholar 

  5. M. Danesh et al., “A Q-factor ehancement technique for MMIC inductors,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Dig. Paper, pp.217-220, June 1998.

    Google Scholar 

  6. A. Zolfaghari et al., “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.

    Article  Google Scholar 

  7. J. Lee, “High-speed circuit designs for transmitters in broadband data links,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1004-1015, May 2006.

    Article  Google Scholar 

  8. E. Hegavi et al., “A Filtering Technique to Lower Oscillator Phase Noise,” ISSCC Dig. of Tech. Papers, pp. 364-365, Feb. 2001.

    Google Scholar 

  9. J. Chien et al., “A 40-GHz Wide-Tuning-Range VCO in 0.18-µmCMOS,” VLSI Dig. of Tech. Papers, pp. 178-179, 2006.

    Google Scholar 

  10. E. H. Colpitts et al., “Carrier current telephony and telegraphy,” Journal AIEE,, vol. 40, no.4, pp. 301-305, Apr. 1921.

    Google Scholar 

  11. B. Razavi, “Design of Integrated Circuits for Optical Communications,” New York: McGraw-Hill, 2002.

    Google Scholar 

  12. W. Winkler et al., “60 GHz transceiver circuits in SiGe:C BiCMOS technology,” Proc. of European Solid-State Circuits Conf, pp. 83-86, Sep. 2004.

    Google Scholar 

  13. B.A. Floyd et al., “SiGe Bipolar transceiver circuits operating at 60 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 156-167, Jan. 2005.

    Article  Google Scholar 

  14. S.T. Nicolson et al., “Design and scaling of SiGe BiCMOS VCOs above 100GHz,” Bipo-lar/BiCMOS Circuits and Technology Meeting, pp. 1-4, Oct. 2006.

    Google Scholar 

  15. B. Heydari et al., “Low-Power mm-Wave Components up to 104GHz in 90nm CMOS,” ISSCC Dig. of Tech. Papers, pp. 200-201, Feb. 2007.

    Google Scholar 

  16. D. Pozar, “Microwave Engineering,” John Wiley & Sons, Inc., 1998.

    Google Scholar 

  17. P. Huang et al., “A low-power 114-GHz push-push CMOS VCO using LC source degeneration,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1230-1239, June 2007.

    Article  Google Scholar 

  18. R. Wanner et al., “SiGe integrated mm-wave push-push VCOs with reduced power consumption,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Dig. Paper, pp. 483-486, June. 2006.

    Google Scholar 

  19. H. Wu and A. Hajimiri, “Silicon-based distributed voltage-controlled oscillators,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 493-502 , Mar. 2001.

    Article  Google Scholar 

  20. N. Tzartzanis et al., “A reversible poly-phase distributed VCO,” ISSCC Dig. of Tech. Papers, pp. 2452-2461, Feb. 2006.

    Google Scholar 

  21. R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” Proc. Inst. Radio Eng, vol. 27, pp. 446-456, Jul. 1939.

    Google Scholar 

  22. J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.

    Article  Google Scholar 

  23. R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1380-1385, Oct. 1973.

    Article  Google Scholar 

  24. B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424 , Sep. 2004.

    Article  Google Scholar 

  25. H. Wu andA. Hajimiri, “A 19GHz 0.5µm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Dig. of Tech. Papers, pp. 412-413, Feb. 2001.

    Google Scholar 

  26. M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.

    Google Scholar 

  27. S. Verma et al., “A multiply-by-3 coupled-ring oscillator for low-power frequency synthesis,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 709-713, Apr. 2004.

    Google Scholar 

  28. K. Yamamoto et al., “70GHz CMOS harmonic injection-locked divider,” ISSCC Dig. of Tech. Papers, pp. 2472-2481, Feb. 2006.

    Google Scholar 

  29. A. Natarajan et al., “A 77-Ghz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2807-2819, Dec. 2006.

    Article  Google Scholar 

  30. J. Jinho et al., “A Fully Integrated V-band PLL MMIC Using 0.15-µm GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1042-1050, May 2006.

    Article  Google Scholar 

  31. P. J. Howes et al., “Ka-band and MMIC pHEMT-based VCOs with low phase-noise properties,” IEEE Trans. Microw Theorey Tech., vol. 46, no. 10, pp. 1531-1536, Oct. 1998.

    Article  Google Scholar 

  32. B. Piernas et al., “A compact and low-phase-noise Ka-Band pHEMT-based VCOs,” IEEE Trans. Microw Theorey Tech., vol. 51, no. 3, pp. 778-783, Mar. 2003.

    Article  Google Scholar 

  33. J. Lee, “A 75GHz PLL in 90 nm CMOS,” ISSCC Dig. of Tech. Papers, pp. 432-433, Feb. 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, J. (2008). Voltage-Controlled Oscillators and Frequency Dividers. In: Niknejad, A.M., Hashemi, H. (eds) mm-Wave Silicon Technology. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76561-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76561-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76558-7

  • Online ISBN: 978-0-387-76561-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics