Amplifiers and Mixers

  • Ali M. Niknejad
  • Sohrab Emami
  • Babak Heydari
  • Ehsan Adabi
  • Bagher Afshar
  • Brian A. Floyd
Part of the Series on Integrated Circuits and Systems book series (ICIR)

The key performance requirements of the 60 GHz low-noise amplifier (LNA) are power gain, noise figure, linearity, stability, impedance matching, power dissipation, bandwidth, and design robustness to process/voltage/temperature variation. These basic requirements are universal for LNAs, and as will be shown, the basic design methodologies at 60 GHz are not all that different than those at much lower frequencies. The circuit topologies, however, will be different to account for the three fundamental differences of 60 GHz design compared to lower frequency design, which are (1) designing using transistors operating much closer to their cutoff frequencies, (2) operating with signals with small wavelengths resulting in distributed effects within actual components of the circuit, and (3) designing with parasitic elements which represent a much larger portion of the total impedance or admittance on a given node. The implications of these three differences are now briefly discussed, and then illustrated through circuit examples later on in the chapter.


Intermediate Frequency Local Oscillator Conversion Gain Common Gate Local Oscillator Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. W. Couch, Modern Communication Systems: Principles and Applications, Englewood Cliffs, NJ: Prentic-Hall, 1995.MATHGoogle Scholar
  2. 2.
    B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentic-Hall, 1998.Google Scholar
  3. 3.
    G. Gonzalez, MicrowaveTransistorAmplifiers: Analysis and Design, 2nd edition, Upper Saddle River, NJ: Prentice-Hall, 1997.Google Scholar
  4. 4.
    P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 3rd edition, New York, NY: John Wiley & Sons, Inc., 1993.Google Scholar
  5. 5.
    S. P. Voinigescu, M. C. Maliepaard, J. L. Showell, G. E. Babcock, D. Marchesan, M. Schroter, P. Schvan, and D. L. Harame, “A Scalable High-Frequency Noise Model for Bipolar Transistors withApplication to Optimal Transistor Sizing for Low-NoiseAmplifier Design,” IEEE J. SolidState Circuits, vol. 32, no. 9, pp. 1430 -1438, Sept. 1997.CrossRefGoogle Scholar
  6. 6.
    B. A. Floyd, “A CMOS Wireless Interconnect System for Multigigathertz clock distribution,” Ph.D. Dissertation, University of Florida, Gainesville, FL, 2001.Google Scholar
  7. 7.
    K. Hartmann and M. Strutt, “Changes of the four noise parameters due to general changes of linear two-port circuits,” IEEE Trans. Electron Devices, vol. 20, pp. 874-877, Oct. 1973.CrossRefGoogle Scholar
  8. 8.
    S. Reynolds, B. Floyd, U. Pfeiffer, and T. Zwick, “60GHz transceiver circuits in SiGe bipolar technology,” IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 442-538.Google Scholar
  9. 9.
    B. A. Floyd, “V-band and W-band SiGe bipolar low-noise amplifiers and voltage-controlled oscillators,” IEEE RFIC, June 2004, pp. 295-298.Google Scholar
  10. 10.
    B. A. Floyd, S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher, “SiGe bipolar transceiver circuits operating at 60 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 156-167.Google Scholar
  11. 11.
    B. Jagannathan, et al., “Self-aligned SiGe NPN transistors with 285GHz fMAX and 207GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol.23, no.5, 2002.Google Scholar
  12. 12.
    B. Floyd, S. Reynolds, U. Pfeiffer, T. Beukema, J. Grzyb, and C. Haymes, “A silicon 60GHz receiver and transmitter chipset for broadband communications,” IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 184-185.Google Scholar
  13. 13.
    U. R. Pfeiffer, J. Grzyb, D. Liu, B. Gaucher, T. Beukema, B. A. Floyd, and S. K. Reynolds, “A chip-scale packaging technology for 60-GHz wireless chipsets,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 8, pp. 3387-3397, Aug. 2006.CrossRefGoogle Scholar
  14. 14.
    S. Reynolds, B. Floyd, U. Pfeiffer, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher, and M. Soyuer, “A silicon 60GHz receiver and transmitter chipset for broadband communications,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2820-2831, Dec. 2006.CrossRefGoogle Scholar
  15. 15.
    B. Heydari, M. Bohsali, E. Adabi, A.M. Niknejad, “Low-Power mm-Wave Components up to 104GHz in 90nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 200-201, 597, Feb. 2007.Google Scholar
  16. 16.
    B. Heydari, M. Bohsali, E. Adabi, A.M. Niknejad, “mm-Wave devices and circuit blocks up to 104 GHz in 90nm CMOS,” to appear in IEEE J. Solid-State Circuits.Google Scholar
  17. 17.
    C. H. Doan, S. Emami, A. M. Niknejad, R. W. Brodersen, “Millimeter-Wave CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 40, pp.144-155, Jan. 2005.CrossRefGoogle Scholar
  18. 18.
    T. Yao, M. Gordon, K. Yau, M.T. Yang, and S.P. Voinigescu, “60-GHz PA and LNA in 90-nm RF-CMOS,” IEEE RFIC Symposium Digest, pp. 147-150, June 2006.Google Scholar
  19. 19.
    C.-M. Lo, C.-S. Lin, H. Wang, “A Miniature V-band 3-Stage Cascode LNA in 0.13µm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 322-323, Feb. 2006.Google Scholar
  20. 20.
    X. Guan and A. Hajimiri, “ A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.CrossRefGoogle Scholar
  21. 21.
    Mitomo et al., “A 60GHz Receiver with frequency Synthesizer,” presented at the VLSI Symposium, 2007.Google Scholar
  22. 22.
    D. Huang, R. Wong, C. Chien, M.-C.F. Chang, “1.2V and 8.6mW CMOS differential receiver front-end with 24 dB gain and -11dBm IRCP,” Electronics Letters, vol. 42, issue 25, pp. 1449-1450, December 2006.CrossRefGoogle Scholar
  23. 23.
    B. Heydari, P. Reynaert, E. Adabi, M. Bohsali, B. Afshar, M. A. Arbabian and A. M. Niknejad, “A 60-GHz 90-nm CMOS cascode amplier with interstage matching,” to be presetned at EU Microwave Conference (EuMic), 2007.Google Scholar
  24. 24.
    B. Afshar, A. M. Niknejad, “X/Ku Band CMOS LNA Desi gn Techniques,” Proceedings of CICC, pp. 389-392, Sept. 2006.Google Scholar
  25. 25.
    Payam Heydari, “Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1892-1905, Sept. 2007.CrossRefGoogle Scholar
  26. 26.
    E. Adabi, B. Heydari, M. Bohsali and A. M. Niknejad, “30 GHz CMOS Low Noise Amplifier,” IEEE RFIC Symposium Dig., pp. 625-628, June 2007.Google Scholar
  27. 27.
    S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz down-converting CMOS single-gate mixer," IEEE RFIC Symposium Dig., pp. 163-166, June 2005.Google Scholar
  28. 28.
    M. Schefer, U. Lott, H. Benedickter, Hp Meier, W. Patrick, and W. Bachtold, “Active, mono-lithically integrated coplanar V-band mixer," in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1043-1046, June 1997.Google Scholar
  29. 29.
    S. A. Maas, Microwave Mixers, 2nd edition, Boston: Artech House.Google Scholar
  30. 30.
    A. M. Niknejad, Electromagnetics for High-SpeedAnalog and Digital Communication Circuits, Cambridge University Press, 2007.Google Scholar
  31. 31.
    S. Emami, C. H. Doan, A. M. Niknejad, R.W. Brodersen, “A 60GHz CMOS Front-End Receiver,” ISSCC Dig. Tech. Papers, pp. 190-191, Feb. 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ali M. Niknejad
    • 1
  • Sohrab Emami
    • 1
  • Babak Heydari
    • 1
  • Ehsan Adabi
    • 1
  • Bagher Afshar
    • 1
  • Brian A. Floyd
    • 2
  1. 1.Berkeley Wireless Research CenterUniversity of CaliforniaBerkeley
  2. 2.IBM T. J. Watson Research CenterYorktown Heights

Personalised recommendations