Advertisement

Design and Modeling of Active and Passive Devices

  • Ali M. Niknejad
  • Sohrab Emami
  • Chinh Doan
  • Babak Heydari
  • Mounir Bohsali
Part of the Series on Integrated Circuits and Systems book series (ICIR)

Transmission lines play a critical role at mm-wave frequencies. Due to the relatively small wavelength, significantly long structures such as quarter wave can be realized on-chip. Transmission lines are suitable for high frequencies since there is no ambiguity in how one defines reference planes — since the signal and ground are always co-located, it’s easy to connect a transmission line structure at any point in the circuit and predict the resulting reactance. Furthermore, the close physical proximity of the ground return current creates a dipole (multipole) radiation pattern that couples less energy to the substrate, which improves the quality factor of these devices. The well-defined ground return path also significantly reduces magnetic and electric field coupling to adjacent structures.

Keywords

Transmission Line Passive Device Slow Wave Structure Ring Inductor NMOS Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Emami, C. H. Doan, A. M. Niknejad, R. W. Brodersen, “Large-signal millimeter-wave CMOS modeling with BSIM3," RFIC Digest of Papers, pp. 163-166, June 2004.Google Scholar
  2. 2.
    D.M. PozarMicrowave engineering, Wiley, New York, 1998.Google Scholar
  3. 3.
    C. H. Doan, S. Emami,A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design," IEEE Journal of Solid-State Circuits, vol. 40, pp. 144-155, Jan. 2005.CrossRefGoogle Scholar
  4. 4.
    C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s," IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998.CrossRefGoogle Scholar
  5. 5.
    S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. New York: Wiley, 1994.Google Scholar
  6. 6.
    S. J. Mason, “Power gain in feedback amplifiers," IRE Trans. Circuit Theory, vol. CT-1, pp. 20-25, June 1954.Google Scholar
  7. 7.
    C. Doan, Ph.D. Dissertation in Preparation, U.C. Berkeley.Google Scholar
  8. 8.
    C. Enz, “An MOS transistor model for RF IC design valid in all regions of operation," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 342-359, Jan. 2002.CrossRefGoogle Scholar
  9. 9.
    B. Razavi, R.-H. Yan, and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices," IEEE Trans. Circuits Syst. I, vol. 41, pp. 750-754, Nov. 1994.CrossRefGoogle Scholar
  10. 10.
    T. C. Edwards and M. B. Steer, Foundations of Interconnect and Microstrip Design, 3rd ed. New York: Wiley, 2000.Google Scholar
  11. 11.
    S. P. Voinigescu, S. W. Tarasewicz, T. MacElwee, and J. Ilowski, “An assessment of the state-of-the-art 0.5µm bulk CMOS technology for RF applications," in IEDM Tech. Dig., Dec. 1995, pp. 721-724.Google Scholar
  12. 12.
    J. N. Burghartz, M. Hargrove, C. Webster, R. Groves, M. Keene, K. Jenkins, D. Edelstein, R. Logan, and E. Nowak, “RF potential of a 0.18-µm CMOS logic technology," in IEDM Tech. Dig., pp. 853-856, Dec. 1999.Google Scholar
  13. 13.
    B. Kleveland, C. H. Diaz, D. Vook, L. Madden, T. H. Lee, and S. S. Wong, “Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design," IEEE J. Solid-State Circuits, vol. 36, pp.1480-1488, Oct. 2001.CrossRefGoogle Scholar
  14. 14.
    G. Carchon, W. De Raedt, and B. Nauwelaers, “Novel approach for a design-oriented measure-mentbased fully scalable coplanar waveguide transmission line model," IEE Proc. Microwave, Antennas Propagat., vol. 148, pp. 227-232, Aug. 2001.CrossRefGoogle Scholar
  15. 15.
    W. F. Andress and D. Ham, “Standing wave oscillators utilizing wave-adaptive tapered transmission lines,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 638-651, Mar. 2005.CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    EKV model website, http://legwww.epfl.ch/ekv/.
  19. 19.
  20. 20.
    J. C. Guo, W.Y. Lien, M.C. Hung, C.C. Liu, C.W. Chen, C.M. Wu, Y.C. Sun, and Ping Yang, “Low-K/Cu CMOS Logic Based SoC Technology for 10Gb Transceiver with 115GHz fT, 80GHz fMAX RF CMOS, High-Q MiM Capacitor and Spiral Cu Inductor," VLSI Digest of Technical Papers, pp. 39-40, June 2003.Google Scholar
  21. 21.
    L. F. Tiemeijer et al., “Record RF performance of standard 90 nm CMOS technology," IEDM Technical Digest, pp. 441-444, Dec. 2004.Google Scholar
  22. 22.
    R. Spence, Linear Active Networks, London: Wiley, 1970.Google Scholar
  23. 23.
    C. Enz, “An MOS transistor model for RF IC design valid in all regions of operation," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 342-359, Jan. 2002.CrossRefGoogle Scholar
  24. 24.
    Tsividis, Y., Operation and Modeling of the MOS Transistor, 2nd ed. Boston : WCB/McGraw-Hill, c1999.Google Scholar
  25. 25.
    I. Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. Hoboken, NJ: Wiley, 2003.Google Scholar
  26. 26.
    B. Heydari, M.Bohsali, E.Adabi, A. M. Niknejad, “Low-Power mm-Wave Components up to 104GHz in 90nm CMOS," ISSCC Dig. Tech. Papers, pp. 200-201, Feb. 2007.Google Scholar
  27. 27.
    B. Heydari, M. Bohsali, E. Adabi, A.M. Niknejad, “mm-Wave devices and circuit blocks up to 104 GHz in 90nm CMOS,” to appear in IEEE J. Solid-State Circuits.Google Scholar
  28. 28.
    D. Huang, W Hant, N.-Yi Wang, T.W. Ku, Q. Gu, R. Wong, M.-C.F. Chang, “A 60GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size, loss and noise reduction,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 1218-1227, Feb. 2006.Google Scholar
  29. 29.
    A. M. Niknejad, Electromagnetics for High-SpeedAnalog and Digital Communication Circuits, 1st Edition. Cambridge University Press, 2007.Google Scholar
  30. 30.
    Agilent IC-CAP 2002 User’s Guide, http://eesof.tm.agilent.com.
  31. 31.
    B. Heydari, P. Reynaert, E. Adabi, M. Bohsali, B. Afshar, M. A. Arbabian and A. M. Niknejad, “A 60-GHz 90-nm CMOS cascode amplier with interstage matching,” to be presetned at EU Microwave Conference (EuMic), 2007.Google Scholar
  32. 32.
    J. Wood and D. E. Root, “Bias-dependent linear scalable millimeter-wave FET model," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2352-2360, Dec. 2000.CrossRefGoogle Scholar
  33. 33.
  34. 34.
    R. Van Langevelde, L. F. Tiemeijer, R. J. Havens, M. J. Knitel, R. F. M. Ores, P. H. Woerlee, and D.B.M. Klaassen, “RF-distortion in deep-submicron CMOS technologies," in Electron Devices Meeting, pp. 807-810, Dec. 2000.Google Scholar
  35. 35.
    K. Koh, H.-M. Park, and S. Hong, “A spline large-signal FET model based on bias-dependent pulsed I-V measurement," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2589-2603, Nov. 2002.CrossRefGoogle Scholar
  36. 36.
    T. Y. Lee and Y. Cheng, “MOSFET HF distortion behavior and modeling for RF IC design," in CICC Conf. Dig. Tech. Papers, Sep. 2003, pp. 87-91.Google Scholar
  37. 37.
    I. Angelov, H. Zirath, and N. Rorsman, “Validation of a nonlinear transistor model by power spectrum characteristics of HEMT.s and MESFET.s," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1046-1052, May 1995.CrossRefGoogle Scholar
  38. 38.
    M.W. Pospieszalski, “Modeling of Noise parameters of MESFETs and MODFETs and Their Frequency and Temperature Dependence," IEEE Trans. on Microwave Theory and Techniques, vol. 37, pp.1340-1350, Sept. 1989.CrossRefGoogle Scholar
  39. 39.
    A. Van Der Ziel, Noise in Solid State Devices and Circuits, Wiley, New York, 1986.Google Scholar
  40. 40.
    A. Van Der Ziel, “Thermal Noise in Field Effect Transistors," Proc. IEEE, pp.1801-12, Aug. 1962.Google Scholar
  41. 41.
    A. Abidi, “High-frequency noise measurements on FETs with small dimensions," IEEE Trans. Electron Devices, vol. 33, pp. 1801-1805, Nov. 1986.CrossRefGoogle Scholar
  42. 42.
    C. McAndrew, G. Coram, A. Blaum and O. Pilloud, “Correlated Noise Modeling and Simulation," Workshop on Compact Modeling, pp. 40-45, 2005.Google Scholar
  43. 43.
    A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens,A.T.A. Zegers-van Duijnhoven, V. C. Venezia, “Noise Modeling for RF CMOS Circuit Simulation," IEEE Trans. on Electron Devices, vol. 50, pp.618-632, March 2003.CrossRefGoogle Scholar
  44. 44.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ali M. Niknejad
    • 1
  • Sohrab Emami
    • 1
  • Chinh Doan
    • 1
  • Babak Heydari
    • 1
  • Mounir Bohsali
    • 1
  1. 1.Berkeley Wireless Research CenterUniversity of CaliforniaBerkeley

Personalised recommendations