Silicon Technologies to Address mm-Wave Solutions

  • Andreia Cathelin
  • John J. Pekarik
Part of the Series on Integrated Circuits and Systems book series (ICIR)

There are strong reasons not to consider silicon technologies for mm-wave applications. Silicon comes up short in many comparisons to III-V semiconductors. Silicon carrier mobility is relatively low and so device-level FOMs of raw performance appear to be inferior. The silicon bandgap is relatively small and so voltage tolerance tends to be lower. Furthermore, highly-resistive or semi-insulating silicon substrates are difficult to achieve resulting in poorer isolation and higher losses in interconnects and passive devices. Each of these presents serious challenges to implementing mm-wave functions.


Technology Node Silicon Technology Float Body CMOS Device NMOS Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Technology Roadmap for Semiconductors,
  2. 2.
  3. 3.
    Pekarik, J., et al., "Enabling RFCMOS solutions for emerging advanced applications", Euro. Gallium Arsenide and Other Semic. Appl. Symp., EGAAS, 2005, p. 29.Google Scholar
  4. 4.
    Semiconductor International Capacity Statistics;
  5. 5.
    J. Wiley, “Future challenges in computational lithography,” Solid-State Technology, Display.cfm?Section=HOME&ARTICLE ID=254908 &VERSION NUM=2&p=5
  6. 6.
    Narasimha, S., et al., “High Performance 45-nm SOI Technology with Enhanced Strain, Porous Low-k BEOL, and Immersion Lithography,” Electron Devices Meeting, 2006, pp. 1-4.Google Scholar
  7. 7.
    B. Santo, “Plans for Next-Gen Chips Imperiled,”
  8. 8.
    Rothschild, M., et al., “Recent Trends in Optical Lithography,” The Lincoln Lab Journal, vol. 14, no. 2, 2003.Google Scholar
  9. 9.
    Kikkawa, T., “Advanced interconnect technologies for ULSI scaling,” 6th International Conference on VLSI and CAD, 1999. pp. 202-207.Google Scholar
  10. 10.
    Rim, K., et al., “Characteristics and device design of sub-100 nm strained Si N-and PMOS-FETs,” VLSI Technology, 2002. Digest of Technical Papers, pp. 98-99.Google Scholar
  11. 11.
    Ito, S., et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design,” Electron Devices Meeting, 2000, IEDM Technical Digest, pp. 247-250.Google Scholar
  12. 12.
    Ota, K., et al., “Novel locally strained channel technique for high performance 55nm CMOS,” Electron Devices Meeting, 2002, IEDM Technical Digest, pp. 27-30.Google Scholar
  13. 13.
    Ghani, T., et al., “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,” Electron Devices Meeting, 2003, IEDM Technical Digest, pp. 11.6.1-11.6.3.Google Scholar
  14. 14.
    Horstmann, M., et al., “Integration and optimization of embedded-sige, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies,” Electron Devices Meeting, 2005, IEDM Technical Digest, pp. 233-236.Google Scholar
  15. 15. Yang, M., et al., “On the integration of CMOS with hybrid crystal orientations,” VLSI Technology, 2004, Digest of Technical Papers. pp. 160-161.Google Scholar
  16. 16.
    P. Chevalier, et al., “Advanced SiGe BiCMOS and CMOS platforms for Optical and Millimeter-Wave Integrated Circuits,” IEEE CSICS 2006.Google Scholar
  17. 17.
    E. Guesev, et al., IBM J. Res. & Dev. vol. 50 No. 4/5 July/September 2006Google Scholar
  18. 18.
    R. Chau, et al., “High-k/Metal-Gate Stack and Its MOSFET Characteristics,” IEEE Electron Device Letters, vol. 25, no.6, June 2004, p. 408.CrossRefMathSciNetGoogle Scholar
  19. 19.
    S. Nuttinck, “Ultrathin-Body SOI Devices as a CMOS Technology Downscaling Option: RF Perspective,” IEEE Trans. On Electron Device, vol. 53, no. 5, May 2006, p. 1193.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    A. Cathelin, et al, “Design for Millimeter-waveApplications in siliconTechnologies,” ESSCIRC 2007, Munich, Sept. 2007.Google Scholar
  22. 22.
    P. Chevalier, “STMicroelectronics Foundry Services for mmW Frequencies,” ESSCIRC2006 Wireless Communications Workshop: ldquo;1Gbit/s+ wireless communications at 60GHz and beyond,” Montreux, Sept. 2006.Google Scholar
  23. 23.
    G. Dambrine, et al., “What are the Limiting Parameters of Deep-Submicron MOSFETs for High Frequency Applications?,” IEEE Electron Device Letters, vol. 24, no. 3, March 2003.Google Scholar
  24. 24.
    C. Raynaud, “Advanced SOI Technology for RF Applications,” 2007 IEEE International SOI Conference Short Course Google Scholar
  25. 25.
    B. Heydari, et al., “Low Power mm-Wave Components up to 104 GHz in 90nm CMOS,” ISSCC 2007, Dig. of Tech. Paperes.Google Scholar
  26. 26.
    B. Martineau, et al., “80 GHz Low Noise Amplifiers in 65nm CMOS SOI,” ESSCIRC 2007, Munich, Sept. 2007.Google Scholar
  27. 27.
    B. Martineau, A. Cathelin, “Optimized MOS topology on CMOS process for millimeter wave design,” FR Patent Application, September 2007.Google Scholar
  28. 28.
    F. Gianesello, “Evaluation de la technologie CMOS SOI Haute-R ésistivit é pour applications RF jusqu’en bande millim étrique,” PhD Thesis presented at the Institut Polytechnique de Grenoble, France, October 2006Google Scholar
  29. 29.
    C. Raynaud et al., “Is SOI CMOS a promising Technology for SOCs in High Frequency range?,” in Proc. 207th ECS, 2005, pp. 331-344.Google Scholar
  30. 30.
    T.O. Dickson, et al., “The Invariance of Characteristic Current Densities in Nanoscale MOS-FETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks,” IEEE J. Solid-State Circuits, vol. 41, no. 8, Aug. 2006.CrossRefGoogle Scholar
  31. 31.
    P. Chevalier, et al., “High-Speed SiGe BiCMOS Technologies: 120-nm Status and End-of-Roadmap Challenges,” 7th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF07), Long Beach, Jan. 2007.Google Scholar
  32. 32.
    S. Pruvost, “Etude de faisabilit é de circuits pour syst èmes de communication en bande mil-lim étrique, en technologie BiCMOS SiGeC 0.13 µm,” PhD Thesis presented at the Université des Sciences et Technologies de Lille, Nov. 25 2005.Google Scholar
  33. 33.
    F. Gianesello, et al., “65nm HR SOI CMOS Technology: emergence of Millimeter-Wave SoC,” RFIC 2007, Honolulu, June 2007.Google Scholar
  34. 34.
    B. Martineau, “Potentialit és des technologies CMOS 65nm SOI LP pour des applications en bande millim étrique,” PhD Thesis to be presented at the Universit é des Sciences et Technologies de Lille, December 2007.Google Scholar
  35. 35.
    N. Seller, et al., “A 10GHz Distributed Voltage Controlled Oscillator for WLAN Application in a VLSI 65nm CMOS Process,” RFIC 2007, Honolulu, June 2007.Google Scholar
  36. 36.
  37. 37.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andreia Cathelin
    • 1
  • John J. Pekarik
    • 2
  1. 1.STMicroelectronicsCrollesFrance
  2. 2.IBM CorporationVermontUSA

Personalised recommendations