Biodegradable Multitargeting Nanoconjugates for Drug Delivery

  • Julia Y. Ljubimova
  • Keith L. Black
  • Alexander V. Ljubimov
  • Eggehard Holler
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

Combination of several treatment regimens such as chemotherapy, radiotherapy, and surgery was always more beneficial for cancer patients than monotherapy. Advances in combination chemotherapy in the 1970s brought improvement of life quality and prolonged patient survival. New types of radiotherapy and progress in noninvasive surgery in the mid-1990s were other milestones in cancer treatment. With human genome sequencing and rapid development of individual medicine approaches, new technologies are needed for successful treatment of cancer and many other pathological conditions. The road map for cancer treatment for the first two decades of twenty-first century is likely to focus on simultaneous inhibition of several cancer-specific molecular markers and/or several altered pathways or on conventional chemotherapy in combination with prevention of synthesis of tumor-specific genes/proteins. The new drug engineering strategies will be based on achievements of genomics and proteomics, production of monoclonal antibodies, nanotechnology, and bioinformatics.


Drug Delivery Malic Acid Transferrin Receptor Proliferative Diabetic Retinopathy Tumor Cell Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdellaouri, K., Boustta, M., Vert, M., Marjani, H., and Manfait, M. 1998. Metabolic-derived artificial polymers designed for drug targeting, cell penetration and bioresorption. Eur. J. Pharm. Sci. 6:61–73.CrossRefGoogle Scholar
  2. Ahmad, K. A., Wang, G., Slaton, J., Unger, G., and Ahmed, K. 2005. Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043.PubMedCrossRefGoogle Scholar
  3. Andersson L., Davies, J., Duncan, R., Ferruti, P., Ford, J., Kneller, S., Mendichi, R., Pasut, G., Schiavon, O., Summerford, C., Tirk, A., Veronese, F. M., Vincenzi, V., and Wu, G. 2005. Poly(ethylene glycol)-poly(ester-carbonate) block copolymers carrying PEG-peptidyl-doxorubicin pendant side chains: synthesis and evaluation as anticancer conjugates. Biomacromolecules 6:914–926.PubMedCrossRefGoogle Scholar
  4. Arpicco, S., Dosio, F., Bolognesi, A., Lubelli, C., Brusa, P., Stells, B., Ceruti, M., and Cattel, L. 2002. Novel poly(ethylene glycol) derivatives for preparation of ribosome-inactivating protein conjugates. Bioconjug. Chem. 13:757–765.PubMedCrossRefGoogle Scholar
  5. Bae, Y., Jang, W. D., Nishiyama, N., Fukushima, S., and Kataoka, K. 2005. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 1:242–250.PubMedCrossRefGoogle Scholar
  6. Bickenbach, K., Wilcox, R., Veerapong, J., Kindler, H. L., Posner, M. C., Noffsinger, A., and Roggin, K. K. 2007. A review of resistance patterns and phenotypic changes in gastrointestinal stromal tumors following imatinib mesylate therapy. J. Gastrointest. Surg. 11:758–766.PubMedCrossRefGoogle Scholar
  7. Brekke, O. H. and Sandlie, I. 2003. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2:52–62.PubMedCrossRefGoogle Scholar
  8. Broadwell, R. D., Baker-Cairns, B. J., Frieden, P. M., Oliver, C., and Villegas, J. C. 1996. Transcytosis of protein through the mammalian cerebral epithelium and endothelium III. Receptormediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp. Neurol. 142:47–65.PubMedCrossRefGoogle Scholar
  9. Cammas, S., Béar M.-M., Moine, L., Escalup, R., Ponchel, G., Kataoka, K., and Guérin, P. 1999. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolysable devices. Int. J. Biol. Macromol. 25:273–282.PubMedCrossRefGoogle Scholar
  10. Carter, P. J. 2006. Potent antibody therapeutics by design. Nat. Rev. Immunol. 6:343–357.PubMedCrossRefGoogle Scholar
  11. Chatila, K., Ren, G., Xia, Y., Huebener, P., Bujak, M., and Frangogiannis, N. G. 2007. The role of the thrombospondins in healing myocardial infarcts. Cardiovasc. Hematol. Agents Med. Chem. 5:21–27.PubMedGoogle Scholar
  12. Cho, Y. W., Kim, J. D., and Park, K. 2003. Polycation gene delivery systems: escape from endosomes to cytosol. J. Pharm. Pharmacol. 55:721–734.PubMedCrossRefGoogle Scholar
  13. Chytil, P., Etrych, T., Konak, C., Sirova, M., Mrkvan, T., Rihova, B., and Ulbrich, K. 2006. Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification. J. Control. Release 115:26–36.PubMedCrossRefGoogle Scholar
  14. Coloma, M. J., Lee, H. J., Kurihara, A., Landaw, E. M., Boado, R.J., Morrison, S. L., and Pardridge, W. M. 2000. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm. Res. 17:266–274.PubMedCrossRefGoogle Scholar
  15. Daniels, T. R., Delgado, T., Rodriguez, J. A., Helguera, G., and Penichet, M. L. 2006a. The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121:144–158.PubMedCrossRefGoogle Scholar
  16. Daniels, T. R., Delgado, T., Helguera, G., and Penichet, M. L. 2006b. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 121:159–176.PubMedCrossRefGoogle Scholar
  17. Deres, S., Gdalevsky, G. Y., Gilboa, I., Voorspoels, J., Remon, J. P., and Kost, J. 2004. Bioadhesive grafted starch copolymers as platform for peroral drug delivery: a study of theophylline release. J. Control. Release 94:391–399.CrossRefGoogle Scholar
  18. Duncan, R. 1992. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs 3:175–210.PubMedCrossRefGoogle Scholar
  19. Duncan, R., Seymour, L. C. W., Scarlett, L., Lloyd, J. B., Rejmanová, P., and Kopecek, J. 1986. Fate of N-(2-hydroxypropyl) methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats. Biochim. Biophys. Acta 880:62–71.PubMedGoogle Scholar
  20. Duncan, R., Vicent, M. J., Greco, F., and Nicholson, R. I. 2005. Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr. Relat. Cancer 12:S189–S199.PubMedCrossRefGoogle Scholar
  21. Ehrlich, P. 1906. Studies in Immunity, New York: Plenum Press.Google Scholar
  22. Etrych, T., Jelinkova, M., Rihova, B., and Ulrich, K. 2001. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release 73:89–102.PubMedCrossRefGoogle Scholar
  23. Faivre, S., Delbaldo, C., Vera, K., Robert, C., Lozahic, S., Lassau, N., Bello, C., Deprimo, S., Brega, N., Massimini, G., Armand, J. P., Scigalla, P., and Raymond, E. 2006. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 24:25–35.PubMedCrossRefGoogle Scholar
  24. Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., Richie, J. P., and Langer, R. 2006. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103:6315–6320.PubMedADSCrossRefGoogle Scholar
  25. Fleming, A. B., Haverstick, K., and Saltzman, W. M. 2004. In vitro cytotoxicity and in vivo distribution after direct delivery of PEG-Camptothecin conjugates to the rat brain. Bioconjug. Chem. 15:1364–1375.PubMedCrossRefGoogle Scholar
  26. Fujita, M., Khazenzon, N. M., Bose, S., Sekiguchi, K., Sasaki, T., Carter, W. G., Ljubimov, A. V., Black, K. L., and Ljubimova, J. Y. 2005. Overexpression of β1 chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res. 7:411–421.CrossRefGoogle Scholar
  27. Fujita, M., Khazenzon, N. M., Ljubimov, A. V., Lee, B.-S., Virtanen, I., Holler, E., Black, K. L., Ljubimova, J. Y. 2006. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9:183–191.PubMedCrossRefGoogle Scholar
  28. Fujita, M., Lee, B.-S., Khazenzon, M. N., Penichet, M. L., Wawrowsky, K. A., Patil, R., Ding, H., Holler, E., Black, K. L., and Ljubimova, J. L. 2007. Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(β-L-malic acid). J. Control. Release 122:356–363.CrossRefGoogle Scholar
  29. Fujiwara, H., Gu, J., and Sekiguchi, K. 2004. Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8. Exp. Cell Res. 292:67–77.PubMedCrossRefGoogle Scholar
  30. Gaur, U., Sahoo, S. K., De, T. K., Ghosh, P. C., Maitra, A., and Ghosh, P. K. 2000. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int. J. Pharm. 202:1–10.PubMedCrossRefGoogle Scholar
  31. Golenser, J., Frankenburg, S., Ehrenfreund, T., and Domb, A. J. 1999. Efficacious treatment of experimental Leishmaniasis with amphotericin t-arabinogalactan water-soluble derivatives. Antimicrob. Agents Chemother. 43:2209–2214.PubMedGoogle Scholar
  32. Grantab, R., Sivananthan, S., and Tannock, I. F. 2006. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor. Cancer Res. 66:1033–1039.PubMedCrossRefGoogle Scholar
  33. Greenwald, R. B., Choe, Y. H., McGuire, J., and Conover, C. D. 2003. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55:217–250.PubMedCrossRefGoogle Scholar
  34. Gupta, B. and Torchilin, V. P. 2007. Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol. Immunother. 56:1215–1223.PubMedCrossRefGoogle Scholar
  35. Gupta, N. and Yucel, Y. H. 2007. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 18:110–114.PubMedCrossRefGoogle Scholar
  36. Haider, M., Megeed, Z., and Ghandehari, H. 2004. Genetically engineered polymers: status and prospects for controlled release. J. Contol. Release 95:1–26.CrossRefGoogle Scholar
  37. Hallmann, R., Horn, N., Selg, M., Wendler, O., Pausch, F., and Sorokin, L.M. 2005. Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev. 85:979–1000.PubMedCrossRefGoogle Scholar
  38. Heaney, N. B. and Holyoake, T. L. 2007. Therapeutic targets in chronic myeloid leukaemia. Hematol. Oncol. 25:66–75.PubMedCrossRefGoogle Scholar
  39. Iakoubov, L. Z. and Torchilin, V. P. 1997. A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol. Res. 9:439–446.PubMedGoogle Scholar
  40. Jabbour, E., Cortes, J., and Kantarjian, H. 2007. Dasatinib for the treatment of Philadelphia chromosome-positive leukaemias. Expert Opin. Investig. Drugs 16:679–687.PubMedCrossRefGoogle Scholar
  41. Jatzkewitz, H. 1955. Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (Mescaline). Z. Naturforsch. 10b:27–31.Google Scholar
  42. Jefferies, W. A., Brandon, M. R., Williams, A. F., and Hunt, V. 1985. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology 54:333–341.PubMedGoogle Scholar
  43. Jensen, K., D., Kopeckova, P., and Kopecek, J. 2002. Antisense oligonucleotides delivered to the lysosome escape and actively inhibit hepatitis B virus. Bioconjug. Chem. 13:975–984.PubMedCrossRefGoogle Scholar
  44. Kabanov, A. V., Batrakova, E. V., and Alakhov, V. Y. 2002. Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 13:759–779.CrossRefGoogle Scholar
  45. Kantarjian, H. M., Cortes, J., Guilhot, F., Hochhaus, A., Baccarani, M., and Lokey, L. 2007. Diagnosis and management of chronic myeloid leukemia: a survey of American and European practice patterns. Cancer 109:1365–1375.PubMedCrossRefGoogle Scholar
  46. Khandare, J. J. and Minko, T. 2006. Antibodies and peptides in cancer therapy. Crit. Rev. Ther. Drug Carrier Syst. 23:401–436.PubMedGoogle Scholar
  47. Khazenzon, N. M., Ljubimov, A. V., Lakhter, A. J., Fujita, M., Fujiwara, H., Sekiguchi, K., Sorokin, L. M., Petajaniemi, N., Virtanen, I., Black, K. L., and Ljubimova, J. Y. 2003. Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol. Cancer Ther. 2:985–994.PubMedGoogle Scholar
  48. Kishore, B. K., Lambricht, P., Laurent, G., Maldague, P., Wagner, R., and Tulkens, P. M. 1990. Mechanism of protection afforded by polyaspartic acid against gentamicin-induced phospholipidosis. II. Comparative in vitro and in vivo studies with poly-L-aspartic, poly-L-glutamic and poly-D-glutamic acids. J. Pharmacol. Exp. Ther. 255:875–885.Google Scholar
  49. Kishore, B. K., Maldague, P., Tulkens, P. M., and Courtoy, P. J. 1996. Pol-D-glutamic acid induces an acute lysosomal thesaurismosis of proximal tubules and a marked proliferation of intrstitium in rat kidney. Lab. Invest. 74:1013–1023.PubMedGoogle Scholar
  50. Konstantinopoulos, P. A., Vandoros, G. P., and Papavassiliou, A. G. 2006. FK228 (depsipeptide): a HDAC inhibitor with pleiotropic antitumor activities. Cancer Chemother. Pharmacol. 58:711–715.PubMedCrossRefGoogle Scholar
  51. Kopecek, J. and Baziliva, H. 1973. Poly[n-(2-hydroxypropyl) methacrylamide]. 1. Radical polymerization and copolymerization. Eur. Polym. J. 9:7–14.CrossRefGoogle Scholar
  52. Kopecek, J., Reijmanová, P, Strohalm, J., Ulbrich, K., Rihová, B., Chytrý, V., Lloyd, J. B., and Duncan, R. 1991. Synthetic polymeric drugs. U.S. Patent. 5, 037, 883.Google Scholar
  53. Kopecek, J., Kopecková, P., Minko, T., and Lu, Z.-R. 2000. HPMA Copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 50:61–81.PubMedCrossRefGoogle Scholar
  54. Kopecek, J., Kopeckova, P., Minko, T., Lu, Z.-R., and Peterson, C. M. 2001. Water soluble polymers in tumor targeted delivery. J. Control. Release 74:147–158.PubMedCrossRefGoogle Scholar
  55. Korherr, C., Roth, M., and Holler, E. 1995. Poly(β-L-malate) hydrolase from plasmodia of Physarum polycephalum. Can. J. Microbiol. 41(Suppl. 1):192–199.CrossRefGoogle Scholar
  56. Kramerov, A. A., Saghizadeh, M., Pan, H., Kabosova, A., Montenarh, M., Ahmed, K., Penn, J. S., Chan, C. K., Hinton, D. R., Grant, M. B., and Ljubimov, A. V. 2006. Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. Am. J. Pathol. 168:1722–1736.PubMedCrossRefGoogle Scholar
  57. Kumar, D. M., Perez, E., Cai, Z. Y., Aoun, P., Brun-Zinkernagel, A. M., Covey, D. F., Simpkins, J. W., and Agarwal, N. 2005. Role of nonfeminizingestrogen analogues in neuroprotection of rat retinal ganglion cells against glutamate-induced cytotoxicity. Free Radic. Biol. Med. 38:1152–1163.PubMedCrossRefGoogle Scholar
  58. Kunath, K., Kopceckova, P., Minko, T., and Kopecek, J. 2000. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 3. The effect of free and and polymer-bound adriamycin on the expression of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur. J. Pharm. Biopharm. 49:11–15.CrossRefGoogle Scholar
  59. Leamon, C. P. and Reddy, J. A. 2004. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev. 56:1127–1141.PubMedCrossRefGoogle Scholar
  60. Leary, S. P., Liu, C.Y., and Apuzzo, M. L. J. 2006. Toward the emergence of nanoneurosurgery: Part III–nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery 58:1009–1026.PubMedCrossRefGoogle Scholar
  61. Lee, B.-S. and Holler, E. 1999. Effects of culture conditions on L-poly(L-malate) production by Physarum polycephalum. Appl. Microbiol. Biotechnol. 51:647–652.CrossRefGoogle Scholar
  62. Lee, B.-S., Vert, M., and Holler, E. 2002. Water-soluble aliphatic polyesters: poly(malic acid) s. In Biopolymers. Vol. 3a, eds. V. Doi, and A. Steinbuechel, pp. 75–103. New York:Wiley-VCH.Google Scholar
  63. Lee, B.-S., Fujita, M., Khazenzon, N. M., Wawrowsky, K. A., Wachsmann-Hogiu, S., Farkas, D. L., Black, K. L., Ljubimova, J. Y., and Holler, E. 2006. Polycefin, a new prototype of a multifunctional nanoconjugate based on poly( -L-malic acid) for drug delivery. Bioconjug. Chem. 17:317–326.PubMedCrossRefGoogle Scholar
  64. Li, C. 2002. Poly(L-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 54:695–713.PubMedCrossRefGoogle Scholar
  65. Ljubimov, A. V., Caballero, S., Aoki, A. M., Pinna, L. A., Grant, M. B., and Castellon, R. 2004. Involvement of protein kinase CK2 in angiogenesis and retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 45:4583–4591.PubMedCrossRefGoogle Scholar
  66. Ljubimova, J. Y., Lakhter, A. J., Loksh, A., Yong, W. H., Riedinger, M. S., Miner, J. H., Sorokin, L. M., Ljubimov, A. V., and Black, K. L. 2001. Overexpression of L4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res. 61:5601–5610.PubMedGoogle Scholar
  67. Ljubimova, J. Y., Fugita, M., Khazenzon, N. M., Das, A., Pikul, B. B., Newman, D., Sekiguchi, K., Sorokin, L. M., Sasaki, T., and Black, K. L. 2004. Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer 101:604–612.PubMedCrossRefGoogle Scholar
  68. Ljubimova, J. Y., Fujita, M., Khazenzon, N. M., Lee, B.-S., Wachsmann-Hogiu, S., Farkas, D. L., Black, K. L., and Holler, E. 2007. Nanoconjugate based on polymalic acid for tumor targeting. Chem. Biol. Interact. In press.Google Scholar
  69. Luo, Y. and Prestwich, G. D. 2002. Cancer-targeted polymeric drugs. Curr. Cancer Drug Targets 2:209–226.PubMedCrossRefGoogle Scholar
  70. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:271–284.PubMedCrossRefGoogle Scholar
  71. Maruyama, K., Takahashi, N., Toshiaki, T., Nagaike, K., and Iwatsuru, M. 1997. Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett. 413:177–180.PubMedCrossRefGoogle Scholar
  72. Mastrobattista, E., Koning, G. A., van Bloois, L., Filipe, A. C., Jiskoot, W., and Storm, G. 2002. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J. Biol. Chem. 277:27135–27143.PubMedCrossRefGoogle Scholar
  73. Mathé, G., Lo, T. B., and Bernard, J. 1958. Effect sur la leucémie L1210 de la souris d’une combinaison par diazotation d’améthoptérine et de γ-globulines de hamsters porteurs de cette leucémie par hétérogreffe. C. R. Hebd. Seances Acad. Sci. 246:1626–1628.PubMedGoogle Scholar
  74. Maurer, P. H., Gerulat, B. F., and Pinchuck, P. 1964. Antigenicity of polypeptides (pol-M-amino acids). XI. Quantitative relationships among polymers and rabbit antisera. J. Biol. Chem. 239:922–929.PubMedGoogle Scholar
  75. McNamara II, J. O., Andrechek, E. R., Wang, Y., Viles, K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A., and Giangrande, P. H. 2006. Cell type-specific delivery of siRNA aptamer-siRNA chimeras. Nat. Biotechnol. 24:1005–1015.PubMedCrossRefGoogle Scholar
  76. Merdan, T., Kopecˇek, J., and Kissel, T. 2002. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54:715–758.PubMedCrossRefGoogle Scholar
  77. Moghimi, S. M., Hunter, A. C., and Murray, J. C. 2005. Nanomedicine: current status and future prospects. FASEB J. 19:311–330.PubMedCrossRefGoogle Scholar
  78. Montemurro, F., Valabrega, G., and Aglietta, M. 2007. Lapatinib: a dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin. Biol. Ther. 7:257–268.PubMedCrossRefGoogle Scholar
  79. Murphy, P. D. and Sage, H. J. 1970. Variation in the size of antibody sites for the poly-L-aspartate hapten during the immune response. J. Immunol. 105:460–470.PubMedGoogle Scholar
  80. Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S., and Hoffman, A. S. 1999. The design and synthesis of polymers for eukaryotic membrane disruption. J. Control. Release 61:137–143.PubMedCrossRefGoogle Scholar
  81. Muzykantov, V. R. and Torchilin, V. P, eds. 2003. Biomedical Aspects of Drug Targeting. New York: Springer.Google Scholar
  82. Nakamura, K., Sata, M., Iwata, H., Sakai, Y., Hirata, Y., Kugiyama, K., and Nagai, R. 2007. A synthetic small molecule, ONO-1301, enhances endogenous growth factor expression and augments angiogenesis in the ischaemic heart. Clin. Sci. (Lond.) 112:607–616.CrossRefGoogle Scholar
  83. Nori, A. and Kopecek, J. 2005. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev. 57:609–636.PubMedCrossRefGoogle Scholar
  84. Omelyanenko, V., Kopeckova, P., Prakash, R. K., Ebert, C. D., and Kopecek, J. 1999. Biorecognition of HPMA copolymer-adriamycin conjugates by lymphocytes mediated by synthetic receptor binding epitopes. Pharm. Res. 16:1010–1019.PubMedCrossRefGoogle Scholar
  85. Otsuka, H., Nagasaki, Y., and Kataoka, K. 2003. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 55:403–419.PubMedCrossRefGoogle Scholar
  86. Ouchi, T., Fujino, A., Tanaka, K., and Banba, T. 1990. Synthesis and antitumor activity of conjugates of poly(α-malic acid) and 5-fluoroacils bound via ester, amide or carbamoyl bonds. J. Control. Release 12:143–153.CrossRefGoogle Scholar
  87. Pagano, M. A., Cesaro, L., Meggio, F., and Pinna, L. A. 2006. Protein kinase CK2: a newcomer in the ‘druggable kinome’. Biochem. Soc. Trans. 34(Pt 6):1303–1306.PubMedCrossRefGoogle Scholar
  88. Panarin, E. F. and Ushakov, S. N. 1968. Synthesis of polymer salts and amidopenicillines. Khim. Pharm. Zhur. 2:28–31.Google Scholar
  89. Papisov, M. I. 1998. Theoretical considerations of RES-avoiding liposomes: molecular mechanics and chemistry of liposome interactions. Adv. Drug Deliv. Rev. 32:119–138.PubMedCrossRefGoogle Scholar
  90. Pardridge, W. M. 1999. Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 36:299–321.PubMedCrossRefGoogle Scholar
  91. Pardridge, W. M. 2002. Drug and gene delivery to the brain: the vascular route. Neuron 36:555–558.PubMedCrossRefGoogle Scholar
  92. Pardridge, W. M. 2003. Blood-brain-barrier drug targeting: the future of brain drug development. Mol. Interv. 3:90–105.PubMedCrossRefGoogle Scholar
  93. Pardridge W. M. 2005. Molecular biology of the blood-brain barrier. Mol. Biotechnol. 30:57–70.PubMedCrossRefGoogle Scholar
  94. Philippova, O. E., Hourdet, D., Audebert, R., and Khokhlov, A. R. 1997. pH-Responsive gels of hydrophobically modified poly(acrylic acid). Macromolecules 30:8278–8285.ADSCrossRefGoogle Scholar
  95. Qian, Z. M., Li, H., Sun, H., and Ho, K. 2002. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54:561–587.PubMedCrossRefGoogle Scholar
  96. Qiu, L. Y. and Bae, Y. H. 2006. Polymer architecture and drug delivery. Pharm. Res. 23:1–30.PubMedCrossRefGoogle Scholar
  97. Reddy, J. A., Allagadda, V. M., and Leamon, C. P. 2005. Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol. 6:131–150.PubMedCrossRefGoogle Scholar
  98. Ringsdorf, H. 1975. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 51:135–153.CrossRefGoogle Scholar
  99. Roldo, M., Hornof, M., Caliceti, P., and Bernkop-Schnurch, A. 2004. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 57:115–121.PubMedCrossRefGoogle Scholar
  100. Rozema, D. B., Ekena, K., Lewis, D. L., Loomis, A. G., and Wolff, J. A. 2003. Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug. Chem. 14:51–57.PubMedCrossRefGoogle Scholar
  101. Ruiz, F., Alvarez, G., Ramos, M., Hernandez, M., Bogonez, E., and Satrustegui, J. 2000. Cyclosporin A targets involved in protection against glutamate excitoxicity. Eur. J. Pharmacol. 404:29–39.PubMedCrossRefGoogle Scholar
  102. Saito, G., Swanson, J. A., and Lee, K. D. 2003. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55:199–215.PubMedCrossRefGoogle Scholar
  103. Schneerson, R., Kubler-Kielb, J., Liu, T. Y., Dai, Z. D., Leppla, S. H., Yergey, A., Backlund, P., Shiloach, J., Majadly, F., and Robbins, J. B. 2003. Poly(γ-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc. Natl. Acad. Sci. USA 100:8945–8950.PubMedADSCrossRefGoogle Scholar
  104. Schrama, D., Reisfeld, R. A., and Becker, J. C. 2006. Antibody targeted drugs as cancer therapeutics. Nat. Rev. Drug Discov. 5:147–159.PubMedCrossRefGoogle Scholar
  105. Seymour, L. W., Duncan, R., Strohalm, J., and Kopecek, J. 1987. Effect of molecular weight of N-(2-Hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J. Biomed. Mater. Res. 21:1341–1358.PubMedCrossRefGoogle Scholar
  106. Singh, M. 1999. Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr. Pharm. Res. 5:443–451.Google Scholar
  107. Sinha, V. R. and Kumria, R. 2001. Polysaccharides in colon-specific drug delivery. Int. J. Pharm. 214:19–38.CrossRefGoogle Scholar
  108. Skarlatos, S., Yoshikawa, T., and Pardridge, W. M. 1995. Transport of [125I]-transferrin through the rat blood-brain barrier. Brain Res. 683:164–171.PubMedCrossRefGoogle Scholar
  109. Solit, D. B. and Rosen, N. 2007. Targeting HER2 in prostate cancer: where to next? J. Clin. Oncol. 3:241–243.CrossRefGoogle Scholar
  110. Sprincl, L., Exner, J., Sterba, O., and Kopecek, J., 1976. New types of synthetic infusion solutions. III. Elimination and retention of poly[N-(2-hydroxypropyl) methacrylamide] in a test organism. J. Biomed. Mater. Res. 10:953–963.Google Scholar
  111. Sugahara, S., Okuno, S., Yano, T., Hamana, H., and Inoue, K. 2001. Characteristics of tissue distribution of various polysaccharides as drug carriers: influences of molecular weight and anionic charge on tumor targeting. Biol. Pharm. Bull. 24:535–543.PubMedCrossRefGoogle Scholar
  112. Summerton, J. and Weller, D. 1997. Morpholino antisense oligomers: design, preparation and properties. Antisense Nucleic Acid Drug Dev. 7:187–195.PubMedGoogle Scholar
  113. Takeda, A. L., Colquitt, J. L., Clegg, A. J, and Jones, J. 2007. Pegaptanib and ranibizumab for neovascular age-related macular degeneration: a systematic review. Br. J. Ophthalmol. 91:1177–1182.PubMedCrossRefGoogle Scholar
  114. Taylor, E. M. 2002. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin. Pharmacokinet. 41:81–92.PubMedCrossRefGoogle Scholar
  115. Thorstensen, K. and Romslo, I. 1993. The transferrin receptor: its diagnostic value and its potential as therapeutic target. Scand. J. Clin. Lab. Invest. 53:113–120.CrossRefGoogle Scholar
  116. Tomlinson, R., Heller, J., Brocchini, S., and Duncan, R. 2003. Polyacetal-doxorubicin conjugates designed for pH-dependent degradation. Bioconjug. Chem. 14:1096–1106.PubMedCrossRefGoogle Scholar
  117. Torchilin, V. P. and Lukyanov, A. N. 2003. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov. Today 8:259–266.PubMedCrossRefGoogle Scholar
  118. Turk, M. J., Reddy, J. A., Chmielewski, J. A., and Low, P. S. 2002. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta 1559:56–68.PubMedCrossRefGoogle Scholar
  119. Wang, Y., Dias, J. A., Nimec, Z., Rotundo, R., O’Conner, B. M., Freisheim, J., and Galivan, J. 1993. The properties and function of gama-glutamyl hydrolase and poly-gamma-glutamate. Adv. Enzyme Regul. 33:207–218.PubMedCrossRefGoogle Scholar
  120. Wang, L., Kristensen, J., and Ruffner, D. E. 1998. Delivery of antisense oligonucleotides using HPMA polymer: synthesis of a thiol polymer and its conjugation to water-soluble molecules. Bioconjug. Chem. 9:749–757.PubMedCrossRefGoogle Scholar
  121. Wang, G., Ahmad, K. A., Unger, G., Slaton, J. W., and Ahmed, K. 2006. CK2 signaling in androgen-dependent and -independent prostate cancer. J. Cell Biochem. 99:382–391.PubMedCrossRefGoogle Scholar
  122. West, K. R. and Otto, S. 2005. Reversible covalent chemistry in drug delivery. Curr. Drug Discov. Technol. 2:123–160.PubMedCrossRefGoogle Scholar
  123. Yao, J. C. 2007. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 21:163–172.PubMedCrossRefGoogle Scholar
  124. Yoshida, T., Oide, N., Sakamoto, T., Yotsumoto, S., Negishi, Y., Tsuchiya, S., and Aramaki, Y. 2006. Induction of cancer cell-specific apoptosis by folate-labeled cationic liposomes. J. Control. Release 111:325–332.PubMedCrossRefGoogle Scholar
  125. Younes, M. N., Park, Y. W., Yazici, Y. D., Gu, M., Santillan, A. A., Nong, X., Kim, S., Jasser, S. A., El-Naggar, A. K., and Myers, J. N. 2006. Concomitant inhibition of epidermal growth factor and vascular endothelial growth factor receptor tyrosine kinases reduces growth and metastasis of human salivary adenoid cystic carcinoma in an orthotopic nude mouse model. Mol. Cancer Ther. 5:2696–2705.PubMedCrossRefGoogle Scholar
  126. Zhang, Y. and Bhavnani, B. R. 2006. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci. 7:49–71.PubMedCrossRefGoogle Scholar
  127. Zhang, Y. and Pardridge, W. M. 2005. Delivery of β-galactosidase to mouse brain via the blood-brain barrier transferrin receptor. J. Pharmacol. Exp. Ther. 313:1075–1081.PubMedCrossRefGoogle Scholar
  128. Zhang, Y., Zhang, Y. F., Bryant, J., Charles, A., Boado, R. J., and Pardridge, W. M. 2004. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10:3667–3677.PubMedCrossRefGoogle Scholar
  129. Zinner, R. G. and Herbst, R. S. 2004. Pemetrexed in the treatment of advanced non-small-cell lung cancer: a review of the clinical data. Clin. Lung Cancer 5(Suppl 2):S67–S74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Julia Y. Ljubimova
    • 1
  • Keith L. Black
    • 1
  • Alexander V. Ljubimov
    • 2
  • Eggehard Holler
    • 3
  1. 1.Department of NeurosurgerySinai Medical CenterLos AngelesUSA
  2. 2.David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  3. 3.Institut für Biophysik und Physikalische Biochemie der Universität RegensburgGermany

Personalised recommendations