“Smart” pH-Responsive Carriers for Intracellular Delivery of Biomolecular Drugs

  • P. S. Stayton
  • A. S. Hoffman
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

A large number of therapeutic drugs that utilize biological molecules, i.e., DNA, RNA, and proteins, are under current development in the biotechnology and pharmaceutical industries. Their potential is widely recognized, but bringing them into medical practice remains a major challenge. For proteins such as antibodies that act at the extracellular membrane face, considerable progress has been made in bringing them into medical practice. However, for biomolecules that function at intracellular locations (e.g., immunotoxins, antisense oligonucleotides, siRNA, antigens for vaccines), there is the additional difficult barrier of cytoplasmic entry (Kyriakides et al., 1999, 2001) in addition to the general challenges of drug stability, tissue penetration and transport, and therapeutic targeting. The predominant fates of internalized biomolecules are enzymatic degradation in the lysosome or recycling and extracellular clearance. In this chapter, we review the development of synthetic polymeric carriers that mimic the highly efficient intracellular delivery systems found in pathogenic viruses and organisms. Their most important property ties together the sensing of pH changes to membrane-destabilizing activity. The carriers are applicable to a wide range of biotherapeutics, and might additionally open up new families of protein or nucleic acid candidates that attack intracellular targets.


Reversible Addition Fragmentation Chain Transfer Polymeric Carrier Intracellular Delivery Proton Sponge Cytosolic Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, C. H., Chae, S. Y., Bae, Y. H., and Kim, S. W. 2002. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Release 80:273–282.PubMedCrossRefGoogle Scholar
  2. Alakhov, V., Klinski, E., Lemieux, P., Pietrzynski, G., and Kabanov, A. V. 2001. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin. Biol. Ther. 1:583–602.PubMedCrossRefGoogle Scholar
  3. Alasino, R. V., Ausar, S. F., Bianco, I. D., Castagna, L. F., Contigiani, M., and Beltramo, D. M. 2005. Amphipathic and membrane-destabilizing properties of the cationic acrylate polymer Eudragit(R E100). Macromol. Biosci. 5:207–213.PubMedCrossRefGoogle Scholar
  4. Albarran, B., To, R., and Stayton, P. S. 2005. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Protein Eng. Des. Sel. 18:147–152.PubMedCrossRefGoogle Scholar
  5. Albarran, B., Hoffman, A. S., and Stayton, P. S. 2007. Efficient intracellular delivery of a pro-apoptotic peptide with a pH-responsive carrier. Manuscript submitted.Google Scholar
  6. Behr, J. 1997. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36.Google Scholar
  7. Boussif, O., Lezoualch, F., Zanta, M., Mergny, M., Scherman, D., Demeneix, B., and Behr, J. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc. Natl. Acad. Sci. USA 92:7297–7301.PubMedCrossRefADSGoogle Scholar
  8. Bulmus, V., Woodward, M., Lin, L., Murthy, N., Stayton, P. S., and Hoffman, A. S. 2003. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release 93:105–120.PubMedCrossRefGoogle Scholar
  9. Caiolfa, V., Zamai, A., Fiorino, A., Frigerio, E., Pellizoni, C., d’Argy, R., Ghiglieri, A., Castelli, M., Farao, M., Pesenti, E., Gigli, M., Angelucci, F., and Suarato, A. 2000. Polymer-bound camptothecin: initial biodistribution and antitumor activity studies. J. Control. Release 65:105–119.PubMedCrossRefGoogle Scholar
  10. Cheung, C. Y., Murthy, N., Stayton, P. S., and Hoffman, A. S. 2001. A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. Bioconjug. Chem. 12:906–910.PubMedCrossRefGoogle Scholar
  11. Cheung, C. Y., Stayton, P. S., and Hoffman, A. S. 2004. Poly(propylacrylic acid) protects cationic lipoplexes against serum inactivation. J. Biomater. Sci. 16:163–179.CrossRefGoogle Scholar
  12. Chilkoti, A., Dreher, M. R., and Meyer, D. E. 2002. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv. Drug Deliv. Rev. 54:1093–1111.PubMedCrossRefGoogle Scholar
  13. Conover, C., Greenwald, R., Pendri, A., Gilbert, C., and Shum, K. 1998. Camptothecin delivery systems: enhanced efficacy and tumor accumulation of campotothecin to polyethylene glycol via a glycine linker. Cancer Chemother. Pharmacol. 42:407–414.PubMedCrossRefGoogle Scholar
  14. Cuschieri, J., Bulmus, V., Gourlay, D., Garcia, I., Stayton, P., and Maier, R. 2004. Modulation of macrophage responsiveness to lipopolysaccharide by IRAK-1 manipulation. Shock 21:182–188.PubMedGoogle Scholar
  15. Davis, M. E., Pun, S. H., Bellocq, N. C., Reineke, T. M., Popielarski, S. R., Mishra, S., and Heidel, J. D. 2004. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem. 11:179–197.PubMedCrossRefGoogle Scholar
  16. El-Sayed, M. E. H., Hoffman, A. S., and Stayton, P. S. 2005. Rational design of composition and activity correlations for pH-responsive and glutathione-reactive polymer therapeutics. J. Control. Release 104:417–427.PubMedCrossRefGoogle Scholar
  17. Fukushima, S., Miyata, K., Nishiyama, N., Kanayama, N., Yamasaki, Y., and Kataoka, K. 2005. PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J. Am. Chem. Soc. 127:2810–2811.PubMedCrossRefGoogle Scholar
  18. Gebhart, C. L. and Kabanov, A. V. 2001. Evaluation of polyplexes as gene transfer agents. J. Control. Release 73:401–416.PubMedCrossRefGoogle Scholar
  19. Guo, X. and Sozka, F. C. 2001. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjug. Chem. 12:291–300.PubMedCrossRefGoogle Scholar
  20. Guo, X., MacKay, J. A., and Szoka, F. C. 2003. Mechanism of pH-triggered collapse of phosphatidylethanolamine liposomes stabilized by an ortho ester polyethyleneglycol lipid. Biophys. J. 84:1784–1795.PubMedCrossRefADSGoogle Scholar
  21. Henry, S. M., El-Sayed, M. E. H., Pirie, C. M., Hoffman, A. S., and Stayton, P. S. 2006. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 7:2407–2414.PubMedCrossRefGoogle Scholar
  22. Hershfield, M. 1997. Biochemistry and immunology of poly(ethylene glycol)-midifie adenosine deaminase (PEG-ADA). In: Harris, J., Zalipsky, S., eds. ACS Symposium. Poly(Ethylene Glycol) Biological Applications: American Chemical Society. pp. 145–154.Google Scholar
  23. Holinger, E. P., Chittenden, T., and Lutz, R. J. 1999. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274:13298–13304.PubMedCrossRefGoogle Scholar
  24. ŠHolle, L. 1997. Pegaspargase: an alternative? Ann. Pharmacother. 31:616–624.Google Scholar
  25. Huang, Z., Guo, X., Li, W., MacKay, A., and Szoka, F. C. 2006. Acid-triggered transformation of diortho ester phosphocholine liposome. J. Am. Chem. Soc. 128:60–61.PubMedCrossRefGoogle Scholar
  26. Hughson, F. M. 1995. Structural characterization of viral fusion proteins. Curr. Biol. 5:265–274.PubMedCrossRefGoogle Scholar
  27. Johns, R. E., Convertine, A. J., Hoffman, A. S., and Stayton, P. S. 2007. Synergistic delivery of siRNA with the pH-responsive poly(propylacrylic acid) and a new cationic diblock copolymer. Manuscript submitted.Google Scholar
  28. Julyan, P., Seymour, L., Ferry, D., Daryani, S., Boivin, C., Doran, J., David, M., Anderson, D., Christodolou, C., Young, A., Hesselwood, S., and Kerr, D. 1999. Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J. Control. Release 57:281–290.PubMedCrossRefGoogle Scholar
  29. Kakizawa, Y., Furukawa, S., Ishii, A., and Kataoka, K. 2006. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J. Control. Release 111:368–370.PubMedCrossRefGoogle Scholar
  30. Kim, W. J., Yockman, J. W., Jeong, J. H., Christensen, L. V., Lee, M., Kim, Y. H., and Kim, S. W. 2006. Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J. Control. Release 114:381–388.PubMedCrossRefGoogle Scholar
  31. Kusonwiriyawong, C., van de Wetering, P., Hubbell, J. A., Merkle, H. P., and Walter, E. 2003. Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers. Eur. J. Pharm. Biopharm. 56:237–246.PubMedCrossRefGoogle Scholar
  32. Kyriakides, T. R., Zhu, Y. N., Smith, L. T., Bain, S. D, Yang, Z., Lin, M. T., Danielson, K. G., Iozzo, R. V., LaMarca, M., McKinney, C. E., Ginns, E. I., and Bornstein, P. 1998. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J. Cell Biol. 140:419–430.PubMedCrossRefGoogle Scholar
  33. Kyriakides, T. R., Tam, J. W., and Bornstein, P. 1999. Accelerated wound healing in mice with a disruption of the thrombosponding 2 gene. J. Invest. Dermatol. 113:782–787.PubMedCrossRefGoogle Scholar
  34. Kyriakides, T. R., Hartzel, T., Huyen, G., and Bornstein, P. 2001. Modulation of angiogenesis and matrix remodeling by localized, matrix-mediated, antisense gene delivery. Mol. Ther. 3:842–849.PubMedCrossRefGoogle Scholar
  35. Kyriakides, T. R., Cheung, C. Y., Murthy, N., Bornstein, P., Stayton, P. S., and Hoffman, A. S. 2002. pH-Sensitive polymers that enhance intracellular drug delivery in vivo. J. Control. Release 78:295–303.PubMedCrossRefGoogle Scholar
  36. Kyung, T., Oh, T. K. B., Bronberg, L., Hatton, T. A., and Kabanov, A. V. 2006. Block ionomer complexes as prospective nanocontainers for drug delivery. J. Control. Release 115:9–17.CrossRefGoogle Scholar
  37. Lackey, C. A., Press, O. W., Hoffman, A. S., and Stayton, P. S. 2002. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug. Chem. 13:996–1001.PubMedCrossRefGoogle Scholar
  38. Li, W., Huang, Z., MacKay, J. A., Grube, S., and Szoka, F. C. 2005. Low pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipioparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med. 7:67–79.PubMedCrossRefGoogle Scholar
  39. Maeda, H. 1991. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 6:181–202.CrossRefGoogle Scholar
  40. Maeda, H. 2001. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46:169–185.PubMedCrossRefGoogle Scholar
  41. Maeda, H. and Matsumura, Y. 1989. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst. 6:193–210.PubMedGoogle Scholar
  42. Maeda, H., Takeshita, J., and Kanamaru, R. 1979. A lipophilic derivative of neocarzinostatin. A polymer conjugation of an antitumor protein antibiotic. Int. J. Pept. Protein Res. 14:81–87.PubMedCrossRefGoogle Scholar
  43. Maeda, H., Matsumoto, T., Konno, T., Iwaqi, K., and Ueda, M. 1984. Tailor-making of protein drugs by polymer conjugation for tumor targeting: a brief review on SMANCS. J. Protein Chem. 3:181–193.CrossRefGoogle Scholar
  44. Maeda, H., Ueda, M., Morinaga, T., and Matsumoto, T. 1985. Conjugation of poly(styrene-co-maleic acid) derivatives to the antitumor protein neocarzionstatin: pronounced improvements in pharmacological properties. J. Med. Chem. 28:455–461.PubMedCrossRefGoogle Scholar
  45. Maeda, H., Sawa, T., and Konno, T. 2001. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 74:47–61.PubMedCrossRefGoogle Scholar
  46. Murthy, N., Robichaud, J. R., Tirrell, D. T., Stayton, P. S., and Hoffman, A. S. 1999. The design and synthesis of polymers for eukaryotic membrane disruption. J. Control. Release 61: 137–143.PubMedCrossRefGoogle Scholar
  47. Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S., and Stayton, P. S. 2003. Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J. Control. Release 89:365–374.PubMedCrossRefGoogle Scholar
  48. Nishiyama, N. and Kataoka, K. 2006. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112:630–648.PubMedCrossRefGoogle Scholar
  49. Noguchi, Y., Wu, J., Duncan, R., Strohalm, J., Ulbrich, K., Akaike, T., and Maeda, H. 1998. Early phase tumor accumulation of macromolecules: a great difference between the tumor vs normal tissue in their clearance rate. Jpn. J. Cancer Res. 89:307–314.PubMedGoogle Scholar
  50. Parente, R. A., Nir, S., and Szoka, F. C. 1990. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29:8720–8728.PubMedCrossRefGoogle Scholar
  51. Park, T. G., Jeong, J. H., and Kim, S.W. 2006. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 58:467–486.PubMedCrossRefGoogle Scholar
  52. Plank, C., Oberhauser, B., Mechtler, K., Koch, C., and Wagner, E. 1994. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem. 269:12918–12924.PubMedGoogle Scholar
  53. Popielarski, S. R., Hu-Lieskovan, S., French, S. W., Triche, T. J., and Davis, M. E. 2005. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake results. Bioconjug. Chem. 16:1071–1080.Google Scholar
  54. Press, O. W., Hansen, J. A., Farr, A., and Martin, P. J. 1988. Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res. 48:2249–2257.PubMedGoogle Scholar
  55. Richardson, S., Ferruti, S., and Duncan, R. 1996. Poly(amidoamine) s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour bearing animals. J. Drug Target. 6:391–394.CrossRefGoogle Scholar
  56. Sethuraman, V. A., Na, K., and Bae, Y. H. 2006. pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules 7:64–70.PubMedCrossRefGoogle Scholar
  57. Shangary, S., Oliver, C. L., Tillman, T. S., Cascio, M., and Johnson, D. E. 2004. Sequence and helicity requirements for the proapoptotic activity of Bax BH3 peptides. Mol. Cancer Ther. 3:1343–1354.PubMedGoogle Scholar
  58. Subbarao, N. K., Parente, R. A., Szoka, F. C., Nadasdi, L., and Pongracz, K. 1987. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 26:2964–2972.PubMedCrossRefGoogle Scholar
  59. Takakura, Y. and Hashida, M. 1996. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm. Res. 13:820–831.PubMedCrossRefGoogle Scholar
  60. Thomas, J. L. and Tirrell, D. A. 1992. Polyelectrolyte-sensitized phospholipid vesicles. Acc. Chem. Res. 25:336–342.CrossRefGoogle Scholar
  61. Thomas, J. L., Barton, S. W., and Tirrell, D. A. 1994. Membrane solubilization by a hydrophobic polyelectrolyte: surface activity and membrane binding. Biophys. J. 67:1101–1106.PubMedCrossRefADSGoogle Scholar
  62. Tsuchiya, K., Uchida, T., Kobayashi, M., Maeda, H., Konno, T., and Yamanaka, H. 2000. Tumor-targeted chemotherapy with SMANCS in lipiodol for renal cell carcinoma: longer survival with larger size tumors. Urology 55:495–500.PubMedCrossRefGoogle Scholar
  63. Vasey, P. A., Kaye, S. B., Morrison, R., Twelves, C., Wilson, P., Duncan, R., Thomson, A. H., Murray, L. S., Hilditch, T. E., Murray, T., Burtles, S., Fraier, D., Frigerio, E., and Cassidy, J. 1999. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin. Cancer Res. 5:83–94.PubMedGoogle Scholar
  64. Walsh, M., Lutz, R. J., Cotter, T. G., and O’Connor, R. 2002. Erythrocyte survival is promoted by plasma and suppressed by a Bak-derived BH3 peptide that interacts with membrane-associated Bcl-XL. Blood 99:3439–3448.PubMedCrossRefGoogle Scholar
  65. Wiley, D. C. and Skehel, J. J. 1987. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann. Rev. Biochem. 56:365–394.PubMedCrossRefGoogle Scholar
  66. Yin, X., Hoffman, A. S., and Stayton, P. S. 2006. Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7:1381–1385.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. S. Stayton
    • 1
  • A. S. Hoffman
    • 1
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations