Multifunctional Water-Soluble Polymers for Drug Delivery

  • Huaizhong Pan
  • Jindrich Kopecek
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

Water-soluble polymer–drug conjugates are multifunctional nanomedicines at the interface of polymer chemistry and biomedical sciences. Advances in chemistry and applied biology have provided scientists with powerful and flexible tools to tailor the features of synthetic polymers and design functions according to their ultimate usage. The techniques used to synthesize polymer conjugates (copolymerization of polymerizable bioactive compounds and polymeranalogous reactions) afford a vast variety of designs to match their ultimate applications. Incorporation of hydrophilic groups confers polymers with water solubility and improved biocompatibility. Charged groups or hydrophobic groups can be introduced into polymers to endow them with special interactions, or environmental response abilities. Targeting moieties bestow biorecognizability; attachment of drug(s) provides specific pharmaceutical properties. Reporter (labeling) groups are frequently incorporated into the structure to permit the evaluation of the fate of the conjugate. The possibility to insert multiple functions into one macromolecule gives the scientists the opportunity to mimic natural functional macromolecules (Torchilin, 2006a). Multifunctional polymer–drug conjugates have abilities to store inactive drugs as prodrugs or pro-enzymes, protect drugs that do not reach the target place, direct drugs to the proper site by passive or active targeting, activate the drugs at a suitable site, have impact on cellular signaling pathways, block or prompt reactions, etc.


Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Drug Conjugate Polymer Conjugate Human Ovarian Carcinoma Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhlynina, T.V., Rosenkranz, A.A., Jans, D.A., and Sobolev, A.S. 1995. Insulin-mediated intracellular targeting enhances the photodynamic activity of chlorin e6. Cancer Res. 55: 1014–1019.PubMedGoogle Scholar
  2. Akinc, A., Anderson, D.G., Lynn, D.M., and Langer, R. 2003. Synthesis of poly(beta-amino ester) s optimized for highly effective gene delivery. Bioconjug. Chem. 14: 979–988.PubMedCrossRefGoogle Scholar
  3. Akita, H., Ito, R., Khalil, I.A., Futaki, S., and Harashima, H. 2004. Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Mol. Ther. 9: 443–451.PubMedCrossRefGoogle Scholar
  4. Alakhov, V.Y. and Kabanov, A.V. 1998. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin. Investig. Drugs 7: 1453–1473.PubMedCrossRefGoogle Scholar
  5. Allen, T.M. 2002. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2: 750–763.PubMedCrossRefGoogle Scholar
  6. Allen, L.A. and Aderem, A. 1996. Mechanisms of phagocytosis. Curr. Opin. Immunol. 8: 36–40.PubMedCrossRefGoogle Scholar
  7. Al-Shamkhani, A. and Duncan, R. 1995. Synthesis, controlled release properties and antitumour activity of alginate-cis-aconityl-daunomycin conjugates. Int. J. Pharm. 122: 107–119.CrossRefGoogle Scholar
  8. Amyere, M., Mettlen, M., Van Der Smissen, P., Platek, A., Payrastre, B., Veithen, A., and Courtoy, P.J. 2002. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291: 487–494.PubMedCrossRefGoogle Scholar
  9. Anderson, D.G., Lynn, D.M., and Langer, R. 2003. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. Engl. 42: 3153–3158.PubMedCrossRefGoogle Scholar
  10. Arcaro, A. and Wymann, M.P. 1993. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3, 4, 5-trisphosphate in neutrophil responses. Biochem. J. 296 (Pt 2): 297–301.PubMedGoogle Scholar
  11. Arefjev, D.V., Domnina, N.S., Komarova, E.A., and Bilibin, A.Y. 1999. Sterically hindered phenol-dextran conjugates: synthesis and radical scavenging activity. Eur. Polym. J. 35: 279–284.CrossRefGoogle Scholar
  12. Arunachalam, B., Phan, U.T., Geuze, H.J., and Creswell, P. 2000. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc. Natl. Acad. Sci. USA 97: 745–750.PubMedADSCrossRefGoogle Scholar
  13. Beigelman, L., McSwiggen, J.A., Draper, K.G., Gonzalez, C., Jensen, K., Karpeisky, A.M., Modak, A.S., Matulic-Adamic, J., DiRenzo, A.B., Haeberli, P., Sweedler, D., Tracz, D., Grimm, S., Wincott, F.E., Thackray, V.G., and Usman, N. 1995. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem. 270: 25702–25708.PubMedCrossRefGoogle Scholar
  14. Bhatt, R., de Vries, P., Tulinsky, J., Bellamy, G., Baker, B., Singer, J.W., and Klein, P. 2003. Synthesis and in vivo antitumor activity of poly(L-glutamic acid) conjugates of 20S-camptothecin. J. Med. Chem. 46: 190–193.PubMedCrossRefGoogle Scholar
  15. Bilim, V. 2003. Technology evaluation: PK1, Pfizer/Cancer Research UK. Curr. Opin. Mol. Ther. 5: 326–330.PubMedGoogle Scholar
  16. Bissett, D., Cassidy, J., de Bono, J.S., Muirhead, F., Main, M., Robson, L., Fraier, D., Magne, M.L., Pellizzoni, C., Porro, M.G., Spinelli, R., Speed, W., and Twelves, C. 2004. Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br. J. Cancer 91: 50–55.PubMedCrossRefGoogle Scholar
  17. Bloomfield, V.A. 1996. DNA condensation. Curr. Opin. Struct. Biol. 6: 334–341.PubMedCrossRefGoogle Scholar
  18. Bohdanecký, M., Bažilová, H., and Kopeček, J. 1974. Poly[N-(2-hydroxypropyl) methacrylamide]. II. Hydrodynamic properties of diluted polymer solutions. Eur. Polym. J. 10: 405–410.CrossRefGoogle Scholar
  19. Bonomi, P., Paz-Ares, L., and Langer, C.J. 2006. XYOTAX vs. docetaxel for the second-line treatment of non-small cell lung canceer: the STELLAR 2 phase III study. Lung Cancer S35.Google Scholar
  20. Boulikas, T. 1993. Nuclear localization signals (NLS). Crit. Rev. Eukaryot. Gene Expr. 3: 193–227.PubMedGoogle Scholar
  21. Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., and Behr, J.P. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92: 7297–7301.PubMedADSCrossRefGoogle Scholar
  22. Bremner, K.H., Seymour, L.W., and Pouton, C.W. 2001. Harnessing nuclear localization pathways for transgene delivery. Curr. Opin. Mol. Ther. 3: 170–177.PubMedGoogle Scholar
  23. Brömme, D. and Okamoto, K. 1995. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol. Chem. Hoppe-Seyler 376: 379–384.PubMedGoogle Scholar
  24. Brooks, H., Lebleu, B., and Vives, E. 2005. Tat peptide-mediated cellular delivery: back to basics. Adv. Drug. Deliv. Rev. 57: 559–577.PubMedCrossRefGoogle Scholar
  25. Brown, J.P., McGarraugh, G.V., Parkinson, T.M., Wingard, R.E., Jr., and Onderdonk, A.B. 1983. A polymeric drug for treatment of inflammatory bowel disease. J. Med. Chem. 26: 1300–1307.PubMedCrossRefGoogle Scholar
  26. Brown, M.D., Gray, A.I., Tetley, L., Santovena, A., Rene, J., Schätzlein, A.G., and Uchegbu, I.F. 2003. In vitro and in vivo gene transfer with poly(amino acid) vesicles. J. Control. Release 93: 193–211.PubMedCrossRefGoogle Scholar
  27. Brownlie, A., Uchegbu, I.F., and Schätzlein, A.G. 2004. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int. J. Pharm. 274: 41–52.PubMedCrossRefGoogle Scholar
  28. Bulmus, V., Woodward, M., Lin, L., Murthy, N., Stayton, P., and Hoffman, A. 2003. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release 93: 105–120.PubMedCrossRefGoogle Scholar
  29. Burmeister, P.E., Lewis, S.D., Silva, R.F., Preiss, J.R., Horwitz, L.R., Pendergrast, P.S., McCauley, T.G., Kurz, J.C., Epstein, D.M., Wilson, C., and Keefe, A.D. 2005. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem. Biol. 12: 25–33.PubMedCrossRefGoogle Scholar
  30. Callahan, J. and Kopeček, J. 2006. Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug carriers for membrane transduction and mitochondrial localization. Biomacromolecules 7: 2347–2356.PubMedCrossRefGoogle Scholar
  31. Callahan, J., Kopečková, P., and Kopeček, J. 2008. To be submitted.Google Scholar
  32. Campone, M., Rademaker-Lakhai, J.M., Bennouna, J., Howell, S.B., Nowotnik, D.P., Beijnen, J.H., Schellens, J.H. 2007. Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemotherapy Pharmacol. 60: 523–533.CrossRefGoogle Scholar
  33. Carl, P.L., Chakravarty, P.K., and Katzenellenbogen, J.A. 1981. A novel connector linkage applicable in prodrug design. J. Med. Chem. 24: 479–480.PubMedCrossRefGoogle Scholar
  34. Cartlidge, S.A., Duncan, R., Lloyd, J.B., Kopečková-Rejmanova, P., and Kopeček, J. 1987a. Soluble crosslinked N-(2-hydroxypropyl) methacrylamide copolymers as potential drug carriers. 2. Effect of molecular weight on blood clearance and body distribution in the rat after intravenous administration. Distribution of unfractionated copolymer after intraperitoneal, subcutaneous or oral administration. J. Control. Release 4: 253–264.CrossRefGoogle Scholar
  35. Cartlidge, S.A., Duncan, R., Lloyd, J.B., Kopečková-Rejmanova, P., and Kopeček, J. 1987b. Soluble, crosslinked N-(2-hydroxypropyl) methacrylamide copolymers as potential drug carriers. 3. Targeting by incorporation of galactosamine residues. Effect of route of administration. J. Control. Release 4: 265–278.CrossRefGoogle Scholar
  36. Chang, Y. and McCormick, C.L. 1993. Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamidoethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers. Macromolecules 26: 6121–6126.ADSCrossRefGoogle Scholar
  37. Chang, Y. and Mccormick, C.L. 1994. Water-soluble copolymers. 57. Amphiphilic cyclocopolymers of diallylalkoxybenzyl-methylammonium chloride and diallyldimethylammonium chloride. Polymer 35: 3503–3512.CrossRefGoogle Scholar
  38. Cheremisinoff, N. 1997. Handbook of Engineering Polymeric Materials. Marcel Dekker, New York.Google Scholar
  39. Chiu, H.-C., Koňák, Č., Kopečková, P., and Kopeček, J. 1994. Enzymatic degradation of poly(ethylene glycol) modified dextrans. J. Bioact. Compat. Polym. 9: 388–410.CrossRefGoogle Scholar
  40. Chiu, H.C., Kopečková, P., Deshmane, S.S., and Kopeček, J. 1997. Lysosomal degradability of poly(alpha-amino acids). J. Biomed. Mater. Res. 34: 381–392.PubMedCrossRefGoogle Scholar
  41. Cho, K.C., Kim, S.H., Jeong, J.H., and Park, T.G. 2005. Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine) conjugate. Macromol. Biosci. 5: 512–519.PubMedCrossRefGoogle Scholar
  42. Choe, Y.H., Conover, C.D., Wu, D., Royzen, M., Gervacio, Y., Borowski, V., Mehlig, M., and Greenwald, R.B. 2002a. Anticancer drug delivery systems: multi-loaded N4-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control. Release 79: 55–70.PubMedCrossRefGoogle Scholar
  43. Choe, Y.H., Conover, C.D., Wu, D., Royzen, M., and Greenwald, R.B. 2002b. Anticancer drug delivery systems: N4-acyl poly(ethyleneglycol) prodrugs of ara-C. I. Efficacy in solid tumors. J. Control. Release 79: 41–53.PubMedCrossRefGoogle Scholar
  44. Choi, W.-M., Kopečková, P., Minko, T., and Kopeček, J. 1999. Synthesis of HPMA copolymer containing adriamycin bound via an acid-labile spacer and its activity toward human ovarian carcinoma cells. J. Bioact. Compat. Polym. 14: 447–456.Google Scholar
  45. Christophe, D., Christophe-Hobertus, C., and Pichon, B. 2000. Nuclear targeting of proteins: how many different signals? Cell Signal 12: 337–341.PubMedCrossRefGoogle Scholar
  46. Chytil, P., Etrych, T., Koňák, Č., Šírová, M., Mrkvan, T., Říhová, B., and Ulbrich, K. 2006. Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: Effect of polymer chain modification. J. Control. Release 115: 26–36.PubMedCrossRefGoogle Scholar
  47. Chytrý, V., Vrána, A., and Kopeček, J. 1978. Synthesis and activity of a polymer which contains insulin covalently bound on a copolymer of N-(2-hydroxypropyl) methacrylamide and N-methacryloylglycylglycine 4-nitrophenyl ester. Makromol. Chem. 179: 329–336.CrossRefGoogle Scholar
  48. Coessens, V., Schacht, E., and Domurado, D. 1996. Synthesis of polyglutamine and dextran conjugates of streptomycin with an acid-sensitive drug-carrier linkage. J. Control. Release 38: 141–150.CrossRefGoogle Scholar
  49. Collas, P. and Alestrom, P. 1996. Nuclear localization signal of SV40 T antigen directs import of plasmid DNA into sea urchin male pronuclei in vitro. Mol. Reprod. Dev. 45: 431–438.PubMedCrossRefGoogle Scholar
  50. Collas, P., Husebye, H., and Alestrom, P. 1996. The nuclear localization sequence of the SV40 T antigen promotes transgene uptake and expression in zebrafish embryo nuclei. Transgenic Res. 5: 451–458.PubMedCrossRefGoogle Scholar
  51. Conner, S.D. and Schmid, S.L. 2003. Regulated portals of entry into the cell. Nature 422: 37–44.PubMedADSCrossRefGoogle Scholar
  52. Coulter, C.V., Kelso, G.F., Lin, T.K., Smith, R.A., and Murphy, M.P. 2000. Mitochondrially targeted antioxidants and thiol reagents. Free Radic. Biol. Med. 28: 1547–1554.PubMedCrossRefGoogle Scholar
  53. Cuchelkar, V. and Kopeček, J. 2006. Polymer-drug conjugates. In: Polymers in Drug Delivery, I.F. Uchegbu, A.G. Schätzlein, Eds., CRC Press, Boca Raton, Florida, 2006, pp. 155–182.Google Scholar
  54. Cuchelkar, V., Kopečková, P., and Kopeček, J. 2008. To be submitted.Google Scholar
  55. Dahlheimer, P., Engler, A.J., Parthasarathy, R., and Discher, D.E. 2004. Targeted worm micelles. Biomacromolecules 5: 1714–1719.CrossRefGoogle Scholar
  56. Dang, C.V. and Lee, W.M. 1988. Identification of the human c-myc protein nuclear translocation signal. Mol. Cell Biol. 8: 4048–4054.PubMedGoogle Scholar
  57. Danhauser-Riedl, S., Hausmann, E., Schick, H.D., Bender, R., Dietzfelbinger, H., Rastetter, J., and Hanauske, A.R. 1993. Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest. New Drugs 11: 187–195.PubMedCrossRefGoogle Scholar
  58. de Groot, F.M., Loos, W.J., Koekkoek, R., van Berkom, L.W., Busscher, G.F., Seelen, A.E., Albrecht, C., de Bruijn, P., and Scheeren, H.W. 2001. Elongated multiple electronic cascade and cyclization spacer systems in activatible anticancer prodrugs for enhanced drug release. J. Org. Chem. 66: 8815–8830.PubMedCrossRefGoogle Scholar
  59. Derycke, A.S. and De Witte, P.A. 2002. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int. J. Oncol. 20: 181–187.PubMedGoogle Scholar
  60. Ding, H., Prodinger, W.M., and Kopeček, J. 2006a. Identification of CD21-binding peptides with phage display and investigation of binding properties of HPMA copolymer-peptide conjugates. Bioconjug. Chem. 17: 514–523.PubMedCrossRefGoogle Scholar
  61. Ding, H., Prodinger, W.M., and Kopeček, J. 2006b. Two-step fluorescence screening of CD21-binding peptides with one-bead one-compound library and investigation of binding properties of N-(2-hydroxypropyl) methacrylamide copolymer-peptide conjugates. Biomacromolecules 7: 3037–3046.PubMedCrossRefGoogle Scholar
  62. Ding, H., Kopečková, P., and Kopeček, J. 2007. Self-association properties of HPMA copolymers containing an amphipathic heptapeptide. J. Drug Target. 15: 465–475.PubMedCrossRefGoogle Scholar
  63. Discher, D.E. and Ahmed, F. 2006. Polymersomes. Annu. Rev. Biomed. Eng. 8: 323–341.PubMedCrossRefGoogle Scholar
  64. Drake, F.H., Dodds, R.A., James, I.E., Connor, J.R., Debouck, C., Richardson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., Hastings, G., and Gowen, M. 1996. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 271: 12511–12516.PubMedCrossRefGoogle Scholar
  65. Drobník, J., Kopeček, J., Labský, J., Rejmanová, P., Exner, J., Saudek, V., and Kálal, J. 1976. Enzymatic cleavage of side-chains of synthetic water-soluble polymers. Makromol. Chem. 177: 2833–2848.CrossRefGoogle Scholar
  66. D’Souza, A.J. and Topp, E.M. 2004. Release from polymeric prodrugs: linkages and their degradation. J. Pharm. Sci. 93: 1962–1979.PubMedCrossRefGoogle Scholar
  67. Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fisher, R., Brock, R. 2007. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8: 848–866.PubMedCrossRefGoogle Scholar
  68. Duncan, R. 2003. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2: 347–360.PubMedCrossRefGoogle Scholar
  69. Duncan, R. 2006. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6: 688–701.PubMedCrossRefGoogle Scholar
  70. Duncan, R., Lloyd, J.B., and Kopeček, J. 1980. Degradation of side chains of N-(2-hydroxypropyl) methacrylamide copolymers by lysosomal enzymes. Biochem. Biophys. Res. Commun. 94: 284–290.PubMedCrossRefGoogle Scholar
  71. Duncan, R., Kopeček, J., Rejmanová, P., and Lloyd, J.B. 1983. Targeting of N-(2-hydroxypropyl) methacrylamide copolymers to liver by incorporation of galactose residues. Biochim. Biophys. Acta 755: 518–521.PubMedGoogle Scholar
  72. Duncan, R., Cable, H.C., Rejmanová, P., Kopeček, J., and Lloyd, J.B. 1984. Tyrosinamide residues enhance pinocytic capture of N-(2-hydroxypropyl) methacrylamide copolymers. Biochim. Biophys. Acta 799: 1–8.PubMedGoogle Scholar
  73. Duncan, R., Seymour, L.C., Scarlett, L., Lloyd, J.B., Rejmanová, P., and Kopeček, J. 1986. Fate of N-(2-hydroxypropyl) methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats. Biochim. Biophys. Acta 880: 62–71.PubMedGoogle Scholar
  74. Duncan, R., Gac-Breton, S., Keane, R., Musila, R., Sat, Y.N., Satchi, R., and Searle, F. 2001. Polymer-drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J. Control. Release 74: 135–146.PubMedCrossRefGoogle Scholar
  75. Dvořák, M., Kopečková, P., and Kopeček, J. 1999. High-molecular weight HPMA copolymer-adriamycin conjugates. J. Control. Release 60: 321–332.PubMedCrossRefGoogle Scholar
  76. Eaton, B. 2005. The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr. Opin. Chem. Biol. 1: 10–16.CrossRefGoogle Scholar
  77. Edidin, M. 2001a. Membrane cholesterol, protein phosphorylation, and lipid rafts. Sci. STKE 2001: PE1.Google Scholar
  78. Edidin, M. 2001b. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell. Biol. 11: 492–496.PubMedCrossRefGoogle Scholar
  79. Elliott, G. and O’Hare, P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88: 223–233.PubMedCrossRefGoogle Scholar
  80. Esfand, R. and Tomalia, D.A. 2001. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6: 427–436.PubMedCrossRefGoogle Scholar
  81. Eyetech Study Group. 2002. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22: 143–152.CrossRefGoogle Scholar
  82. Eyetech Study Group. 2003. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 110: 979–986.CrossRefGoogle Scholar
  83. Fang, J., Sawa, T., and Maeda, H. 2003. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv. Exp. Med. Biol. 519: 29–49.PubMedCrossRefGoogle Scholar
  84. Farokhzad, O.C., Jon, S., Khademhosseini, A., Tran, T.N., Lavan, D.A., and Langer, R. 2004. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Clin. Cancer Res. 64: 7668–7672.Google Scholar
  85. Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P., and Langer, R. 2006. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103: 6315–6320.PubMedADSCrossRefGoogle Scholar
  86. Fernandez-Carneado, J., Van Gool, M., Martos, V., Castel, S., Prados, P., de Mendoza, J., and Giralt, E. 2005. Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J. Am. Chem. Soc. 127: 869–874.PubMedCrossRefGoogle Scholar
  87. Ferrari, A., Pellegrini, V., Arcangeli, C., Fittipaldi, A., Giacca, M., and Beltram, F. 2003. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol. Ther. 8: 284–294.PubMedCrossRefGoogle Scholar
  88. Fisher, K.D., Stallwood, Y., Green, N.K., Ulbrich, K., Mautner, V., and Seymour, L.W. 2001. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8: 341–348.PubMedCrossRefGoogle Scholar
  89. Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., and Giacca, M. 2003. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 278: 34141–34149.PubMedCrossRefGoogle Scholar
  90. Frank, R. 2002. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J. Immunol. Methods 267: 13–26.PubMedCrossRefGoogle Scholar
  91. Frankel, A.D. and Pabo, C.O. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189–1193.PubMedCrossRefGoogle Scholar
  92. Frankel, A.E., Powell, B.L., Hall, P.D., Case, L.D., and Kreitman, R.J. 2002. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin. Cancer Res. 8: 1004–1013.PubMedGoogle Scholar
  93. Fujita, M., Khazenzon, N.M., Ljubimov, A.V., Lee, B.S., Virtanen, I., Holler, E., Black, K.L., and Ljubimova, J.Y. 2006. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9: 183–191.PubMedCrossRefGoogle Scholar
  94. Gabizon, A., Horowitz, A.T., Goren, D., Tzemach, D., Mandelbaum-Shavit, F., Qazen, M.M., and Zalipsky, S. 1999. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug. Chem. 10: 289–298.PubMedCrossRefGoogle Scholar
  95. Gao, S.Q., Lu, Z.R., Petri, B., Kopečková, P., and Kopeček, J. 2006a. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1, 6-elimination spacer. J. Control. Release 110: 323–331.PubMedCrossRefGoogle Scholar
  96. Gao S.Q., Kopečková P., Sun Y., Lu Z.-R., Peterson C.M., and Kopeček J. 2006b. Activity of a polymer-bound 9-aminocamptothecin in a colon cancer model. Eur. J. Clin. Invest. 36(Suppl 1): 52–53.Google Scholar
  97. Gao, S.Q., Lu, Z.R., Kopečková, P., and Kopeček, J. 2007. Biodistribution and pharmacokinetics of colon-specific HPMA copolymer–9-aminocamptothecin conjugate in mice. J. Control. Release 117: 179–185.PubMedCrossRefGoogle Scholar
  98. Garnett, M.C. 2001. Targeted drug conjugates: principles and progress. Adv. Drug Deliv. Rev. 53: 171–216.PubMedCrossRefGoogle Scholar
  99. Gautier, S., Boustta, M., and Vert, M. 1997. Poly (L-Lysine Citramide), a water-soluble bioresorbable carrier for drug delivery: Aqueous solution properties of hydrophobized derivatives. J. Bioact. Compat. Polym. 12: 77–98.Google Scholar
  100. Gebhart, C.L., Sriadibhatla, S., Vinogradov, S., Lemieux, P., Alakhov, V., and Kabanov, A.V. 2002. Design and formulation of polyplexes based on pluronic-polyethyleneimine conjugates for gene transfer. Bioconjug. Chem. 13: 937–944.PubMedCrossRefGoogle Scholar
  101. Gijsens, A. and De Witte, P. 2000. [Targeting of chlorine E6 by EGF increasing its photodynamic activity in selective ways]. Verh. K. Acad. Geneeskd. Belg. 62: 329–352.PubMedGoogle Scholar
  102. Godbey, W.T., Wu, K.K., and Mikos, A.G. 1999a. Poly(ethylenimine) and its role in gene delivery. J. Control. Release 60: 149–160.PubMedCrossRefGoogle Scholar
  103. Godbey, W.T., Wu, K.K., and Mikos, A.G. 1999b. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res. 45: 268–275.PubMedCrossRefGoogle Scholar
  104. Goldfarb, D.S., Gariépy, J., Schoolnik, G., and Kornberg, R.D. 1986. Synthetic peptides as nuclear localization signals. Nature 322: 641–644.PubMedADSCrossRefGoogle Scholar
  105. Görlich, D. and Mattaj, I.W. 1996. Nucleocytoplasmic transport. Science 271: 1513–1518.PubMedADSCrossRefGoogle Scholar
  106. Gottesman, M.M., Fojo, T., and Bates, S.E. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2: 48–58.PubMedCrossRefGoogle Scholar
  107. Gottschalk, S., Sparrow, J.T., Hauer, J., Mims, M.P., Leland, F.E., Woo, S.L., and Smith, L.C. 1996. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther. 3: 448–457.PubMedGoogle Scholar
  108. Graham, M.L. 2003. Pegaspargase: a review of clinical studies. Adv. Drug Deliv. Rev. 55: 1293–1302.PubMedCrossRefGoogle Scholar
  109. Greco, F., Vicent, M.J., Penning, N.A., Nicholson, R.I., and Duncan, R. 2005. HPMA copolymer-aminoglutethimide conjugates inhibit aromatase in MCF-7 cell lines. J. Drug Target. 13: 459–470.PubMedCrossRefGoogle Scholar
  110. Greco, F., Vicent, M.J., Gee, S., Jones, A.T., Gee, J., Nicholson, R.I., and Duncan, R. 2007. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J. Control. Release 117: 28–39.PubMedCrossRefGoogle Scholar
  111. Green, N.K., Herbert, C.W., Hale, S.J., Hale, A.B., Mautner, V., Harkins, R., Hermiston, T., Ulbrich, K., Fisher, K.D., and Seymour, L.W. 2004. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 11: 1256–1263.PubMedCrossRefGoogle Scholar
  112. Greenwald, R.B., Conover, C.D., and Choe, Y.H. 2000a. Poly(ethylene glycol) conjugated drugs and prodrugs: a comprehensive review. Crit. Rev. Ther. Drug Carrier Syst. 17: 101–161.PubMedGoogle Scholar
  113. Greenwald, R.B., Choe, Y.H., Conover, C.D., Shum, K., Wu, D., and Royzen, M. 2000b. Drug delivery systems based on trimethyl lock lactonization: poly(ethylene glycol) prodrugs of amino-containing compounds. J. Med. Chem. 43: 475–487.PubMedCrossRefGoogle Scholar
  114. Greenwald, R.B., Choe, Y.H., McGuire, J., and Conover, C.D. 2003. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55: 217–250.PubMedCrossRefGoogle Scholar
  115. Gref, R., Couvreur, P., Barratt, G., and Mysiakine, E. 2003. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 24: 4529–4537.PubMedCrossRefGoogle Scholar
  116. Greish, K., Fang, J., Inutsuka, T., Nagamitsu, A., and Maeda, H. 2003. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin. Pharmacokinet. 42: 1089–1105.PubMedCrossRefGoogle Scholar
  117. Grim, Y. and Kopeček, J. 1991. Bioadhesive water-soluble polymeric drug carriers for site-specific oral drug delivery. Synthesis, characterization and release of 5-aminosalicylic acid by Streptococcum faecium in vitro. New Polym. Mater. 3: 49–59.Google Scholar
  118. Gupta, B. and Torchilin, V.P. 2006. Transactivating transcriptional activator-mediated drug delivery. Expert Opin. Drug Deliv. 3: 177–190.PubMedCrossRefGoogle Scholar
  119. Gupta, B., Levchenko, T.S., and Torchilin, V.P. 2005. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug. Deliv. Rev. 57: 637–651.PubMedCrossRefGoogle Scholar
  120. Hama, S., Akita, H., Ito, R., Mizuguchi, H., Hayakawa, T., and Harashima, H. 2006. Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems. Mol. Ther. 13: 786–794.PubMedCrossRefGoogle Scholar
  121. Harris, J.M. and Chess, R.B. 2003. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2: 214–221.PubMedCrossRefGoogle Scholar
  122. Harris, J., Werling, D., Hope, J.C., Taylor, G., and Howard, C.J. 2002a. Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol. 23: 158–164.PubMedCrossRefGoogle Scholar
  123. Harris, J., Werling, D., Koss, M., Monaghan, P., Taylor, G., and Howard, C.J. 2002b. Expression of caveolin by bovine lymphocytes and antigen-presenting cells. Immunology 105: 190–195.PubMedCrossRefGoogle Scholar
  124. Hegazy, A.K., Barakat, H.N., and Kabiel, H.F. 2006. Anatomical significance of the hygrochastic movement in Anastatica hierochuntica. Ann. Bot. (Lond.) 97: 47–55.CrossRefGoogle Scholar
  125. Henry, S.M., El-Sayed, M.E., Pirie, C.M., Hoffman, A.S., and Stayton, P.S. 2006. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 7: 2407–2414.PubMedCrossRefGoogle Scholar
  126. Hersel, U., Dahmen, C., and Kessler, H. 2003. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24: 4385–4415.PubMedCrossRefGoogle Scholar
  127. Hewlett, L.J., Prescott, A.R., and Watts, C. 1994. The coated pit and macropinocytic pathways serve distinct endosome populations. J. Cell Biol. 124: 689–703.PubMedCrossRefGoogle Scholar
  128. Hodel, M.R., Corbett, A.H., and Hodel, A.E. 2001. Dissection of a nuclear localization signal. J. Biol. Chem. 276: 1317–1325.PubMedCrossRefGoogle Scholar
  129. Hong, C.Y. and Pan, C.Y. 2006. Direct synthesis of biotinylated stimuli-responsive polymer and diblock copolymer by RAFT polymerization using biotinylated trithiocarbonate as RAFT agent. Macromolecules 39: 3517–3524.ADSCrossRefGoogle Scholar
  130. Hoste, K., De Winne, K., and Schacht, E. 2004. Polymeric prodrugs. Int. J. Pharm. 277: 119–131.PubMedCrossRefGoogle Scholar
  131. Hrubý, M., Etrych, T., Kučka, J., Forsterová, M., and Ulbrich, K. 2006. Hydroxybisphosphonate-containing polymeric drug-delivery systems designed for targeting into bone tissue. J. Appl. Polym. Sci. 101: 3192–3201.CrossRefGoogle Scholar
  132. Hudson, P.J. and Souriau, C. 2003. Engineered antibodies. Nat. Med. 9: 129–134.PubMedCrossRefGoogle Scholar
  133. Hynes, R.O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25.PubMedCrossRefGoogle Scholar
  134. Jain, R.K. 1989. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl. Cancer Inst. 81: 570–576.PubMedCrossRefGoogle Scholar
  135. Jatzkewitz, H. 1955. Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z. Naturforsch 10b: 27–31.Google Scholar
  136. Jelínková, M., Strohalm, J., Etrych, T., Ulbrich, K., and Říhová, B. 2003. Starlike vs. classic macromolecular prodrugs: two different antibody-targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs. Pharm. Res. 20: 1558–1564.PubMedCrossRefGoogle Scholar
  137. Jensen, K.D., Kopečková, P., and Kopeček, J. 2002. Antisense oligonucleotides delivered to the lysosome escape and actively inhibit the hepatitis B virus. Bioconjug. Chem. 13: 975–984.PubMedCrossRefGoogle Scholar
  138. Kabanov, A.V., Batrakova, E.V., and Alakhov, V.Y. 2002. Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 54: 759–779.PubMedCrossRefGoogle Scholar
  139. Kafienah, W., Brömme, D., Buttle, D.J., Croucher, L.J., and Hollander, A.P. 1998. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem. J. 331 (Pt 3): 727–732.PubMedGoogle Scholar
  140. Kakudo, T., Chaki, S., Futaki, S., Nakase, I., Akaji, K., Kawakami, T., Maruyama, K., Kamiya, H., and Harashima, H. 2004. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artifical viral-like delivery system. Biochemistry 43: 5618–5628.PubMedCrossRefGoogle Scholar
  141. Kale, A.A. and Torchilin, V.P. 2007. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug. Chem. 18: 363–370.PubMedCrossRefGoogle Scholar
  142. Kamei, S. and Kopeček, J. 1995. Prolonged blood circulation in rats of nanospheres surface-modified with semitelechelic poly[N-(2-hydroxypropyl) methacrylamide]. Pharm. Res. 12: 663–668.PubMedCrossRefGoogle Scholar
  143. Kaplan, I.M., Wadia, J.S., and Dowdy, S.F. 2005. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release 102: 247–253.PubMedCrossRefGoogle Scholar
  144. Kasuya, Y., Lu, Z.R., Kopečková, P., Minko, T., Tabibi, S.E., and Kopeček, J. 2001. Synthesis and characterization of HPMA copolymer-aminopropylgeldanamycin conjugates. J. Control. Release 74: 203–211.PubMedCrossRefGoogle Scholar
  145. Kasuya, Y., Lu, Z.R., Kopečková, P., Tabibi, S.E., and Kopeček, J. 2002. Influence of the structure of drug moieties on the in vitro efficacy of HPMA copolymer-geldanamycin derivative conjugates. Pharm. Res. 19: 115–123.PubMedCrossRefGoogle Scholar
  146. Kawakami, S., Hattori, Y., Lu, Y., Higuchi, Y., Yamashita, F., and Hashida, M. 2004. Effect of cationic charge on receptor-mediated transfection using mannosylated cationic liposome/plasmid DNA complexes following the intravenous administration in mice. Pharmazie 59: 405–408.PubMedGoogle Scholar
  147. Kelso, G.F., Porteous, C.M., Hughes, G., Ledgerwood, E.C., Gane, A.M., Smith, R.A., and Murphy, M.P. 2002. Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann. N. Y. Acad. Sci. 959: 263–274.PubMedGoogle Scholar
  148. Khalil, I.A., Kogure, K., Akita, H., and Harashima, H. 2006. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58: 32–45.PubMedCrossRefGoogle Scholar
  149. Khandare, J. and Minko, T. 2006. Polymer-drug conjugates: progress in polymeric prodrugs. Prog. Polym. Sci. 31: 359–397.CrossRefGoogle Scholar
  150. Khandare, J.J., Chandna, P., Wang, Y., Pozharov, V.P., and Minko, T. 2006a. Novel polymeric prodrug with multivalent components for cancer therapy. J. Pharmacol. Exp. Ther. 317: 929–937.PubMedCrossRefGoogle Scholar
  151. Khandare, J.J., Jayant, S., Singh, A., Chandna, P., Wang, Y., Vorsa, N., and Minko, T. 2006b. Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug. Chem. 17: 1464–1472.PubMedCrossRefGoogle Scholar
  152. Kirkham, M. and Parton, P.G. 2005. Clathrin-independent endocytosis: new insight into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta 1746: 350–363.CrossRefGoogle Scholar
  153. Kishore, B.K., Lambricht, P., Laurent, G., Maldague, P., Wagner, R., and Tulkens, P.M. 1990. Mechanism of protection afforded by polyaspartic acid against gentamicin-induced phospholipidosis. II. Comparative in vitro and in vivo studies with poly-L-aspartic, poly-L-glutamic and poly-D-glutamic acids. J. Pharmacol. Exp. Ther. 255: 875–885.PubMedGoogle Scholar
  154. Kleinschmidt, J.A. and Seiter, A. 1988. Identification of domains involved in nuclear uptake and histone binding of protein N1 of Xenopus laevis. EMBO J. 7: 1605–1614.PubMedGoogle Scholar
  155. Köhler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.PubMedADSCrossRefGoogle Scholar
  156. Kolb, H.C., Finn, M.G., and Sharpless, K.B. 2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40: 2004–2021.PubMedCrossRefGoogle Scholar
  157. Koňák, Č., Ganchev, B., Teodorescu, M., Matyjaszewski, K., Kopečková, P., and Kopeček, J. 2002. Poly[N-(2-hydroxypropyl) methacrylamide-block-n-butyl acrylate] micelles in water/DMF mixed solvents. Polymer 43: 3735–3741.CrossRefGoogle Scholar
  158. Kopeček, J. 1977. Soluble biomedical polymers. Polim. Med. 7: 191–221.PubMedGoogle Scholar
  159. Kopeček, J. 1984. Controlled biodegradability of polymers–a key to drug delivery systems. Biomaterials 5: 19–25.PubMedCrossRefGoogle Scholar
  160. Kopeček, J. 2003. Smart and genetically engineered biomaterials and drug delivery systems. Eur. J. Pharm. Sci. 20: 1–16.PubMedCrossRefGoogle Scholar
  161. Kopeček, J. and Kopečková, P. 2003. Macromolecular therapeutics: state-of-the-art and future potential. Bull. Tech. Gattefossé 96: 9–21.Google Scholar
  162. Kopeček, J. and Rejmanová, P. 1983. Enzymatically degradable bonds in synthetic polymers. In: Controlled Drug Delivery, S.D. Bruck, Ed., CRC Press, Boca Raton, Florida, pp. 81–124.Google Scholar
  163. Kopeček, J., Cífková, I., Rejmanová, P., Strohalm, J., Obereigner, B., and Ulbrich, K. 1981a. Polymers containing enzymatically degradable bonds. 4. Preliminary experiments in vivo. Makromol. Chem. 182: 2941–2949.CrossRefGoogle Scholar
  164. Kopeček, J., Rejmanová, P., and Chytrý, V. 1981b. Polymers containing enzymatically degradable bonds 1. Chymotrypsin catalyzed hydrolysis of p-nitroanilides of phenylalanine and tyrosine attached to side-chains of copolymers of N-(2-hydroxypropyl) methacrylamide. Makromol. Chem. 182: 799–809.CrossRefGoogle Scholar
  165. Kopeček, J., Kopečková, P., Minko, T., and Lu, Z. 2000. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 50: 61–81.PubMedCrossRefGoogle Scholar
  166. Kopečková, P., Rathi, R.C., Takada, S., Říhová, B., Berenson, M.M., and Kopeček, J. 1994. Bioadhesive N-(2-hydroxypropyl) methacrylamide copolymers for colon-specific drug delivery. J. Control. Release 28: 211–222.CrossRefGoogle Scholar
  167. Kovář, M., Strohalm, J., Etrych, T., Ulbrich, K., and Říhová, B. 2002a. Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug. Chem. 13: 206–215.PubMedCrossRefGoogle Scholar
  168. Kovář, M., Strohalm, J., Ulbrich, K., and Říhová, B. 2002b. In vitro and in vivo effect of HPMA copolymer-bound doxorubicin targeted to transferrin receptor of B-cell lymphoma 38C13. J. Drug Target. 10: 23–30.PubMedCrossRefGoogle Scholar
  169. Kovář, M., Mrkvan, T., Strohalm, J., Etrych, T., Ulbrich, K., Štastný, M., and Říhová, B. 2003. HPMA copolymer-bound doxorubicin targeted to tumor-specific antigen of BCL1 mouse B cell leukemia. J. Control. Release 92: 315–330.PubMedCrossRefGoogle Scholar
  170. Kratz, F., Beyer, U., and Schutte, M.T. 1999. Drug-polymer conjugates containing acid-cleavable bonds. Crit. Rev. Ther. Drug Carrier Syst. 16: 245–288.PubMedGoogle Scholar
  171. Krinick, N.L., Sun, Y., Joyner, D., Spikes, J.D., Straight, R.C., and Kopeček, J. 1994. A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J. Biomat. Sci., Polym. Ed. 5: 303–324.CrossRefGoogle Scholar
  172. Kulkarni, S., Schilli, C., Grin, B., Muller, A.H., Hoffman, A.S., and Stayton, P.S. 2006. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules 7: 2736–2741.PubMedCrossRefGoogle Scholar
  173. Kumar, P., Wu, H., McBride, J.L., Jung, K.E., Kim, M.H., Davidson, B.L., Lee, S.K., Shankar, P., Manjunath, N., 2007. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448: 39–43.PubMedADSCrossRefGoogle Scholar
  174. Kumazawa, E. and Ochi, Y. 2004. DE-310, a novel macromolecular carrier system for the camptothecin analog DX-8951f: potent antitumor activities in various murine tumor models. Cancer Sci. 95: 168–175.PubMedCrossRefGoogle Scholar
  175. Kunath, K., Kopečková, P., Minko, T., and Kopeček, J. 2000. HPMA copolymer-anticancerdrug-OV-TL16 antibody conjugates. 3. The effect of free and polymer-bound adriamycin on the expression of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur. J. Pharm. Biopharm. 49: 11–15.PubMedCrossRefGoogle Scholar
  176. Lääne, A., Aaviksaar, A., Haga, M, Chytrý, V., and Kopeček, J. 1985. Preparation of polymer-modified enzymes of prolonged circulation times. Poly[N-(2-hydroxypropyl) methacrylamide] bound acetylcholinesterase. Makromol. Chem., Suppl. 9: 35–42.CrossRefGoogle Scholar
  177. Lacey, J.V., Mink, P.J., Lubin, J.H., Sherman, M.E., Troisi, R., Hartge, P., Schatzkin, A., and Schairer, C. 2002a. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288: 334–341.PubMedCrossRefGoogle Scholar
  178. Lacey, J.V., Mink, R., Lubin, J.H., Sherman, M.E., Troisi, R., Hartge, P., Schatzkin, A., and Schairer, C. 2002b. Estrogen replacement therapy and risk of ovarian cancer in postmenopausal women. JAMA 288: 2539–2539.CrossRefGoogle Scholar
  179. Lackey, C.A., Press, O.W., Hoffman, A.S., and Stayton, P.S. 2002. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug. Chem. 13: 996–1001.PubMedCrossRefGoogle Scholar
  180. Ladmiral, V., Mantovani, G., Clarkson, G.J., Cauet, S., Irwin, J.L., and Haddleton, D.M. 2006. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J. Am. Chem. Soc. 128: 4823–4830.PubMedCrossRefGoogle Scholar
  181. Lam, K.S., Lehman, A.L., Song, A., Doan, N., Enstrom, A.M., Maxwell, J., and Liu, R. 2003. Synthesis and screening of “one-bead one-compound” combinatorial peptide libraries. Methods Enzymol. 369: 298–322.PubMedCrossRefGoogle Scholar
  182. Lamaze, C. and Schmid, S.L. 1995. The emergence of clathrin-independent pinocytic pathways. Curr. Opin. Cell Biol. 7: 573–580.PubMedCrossRefGoogle Scholar
  183. Lamaze, C., Dujeancourt, A., Baba, T., Lo, C.G., Benmerah, A., and Dautry-Varsat, A. 2001. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7: 661–671.PubMedCrossRefGoogle Scholar
  184. Lammers, T., Kuhnlein, R., Kissel, M., Šubr, V., Etrych, T., Pola, R., Pechar, M., Ulbrich, K., Storm, G., Huber, P., and Peschke, P. 2005. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J. Control. Release 110: 103–118.PubMedCrossRefGoogle Scholar
  185. Lanciotti, J., Song, A., Doukas, J., Sosnowski, B., Pierce, G., Gregory, R., Wadsworth, S., and O’Riordan, C. 2003. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol. Ther. 8: 99–107.PubMedCrossRefGoogle Scholar
  186. Lanford, R.E., Kanda, P., and Kennedy, R.C. 1986. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575–582.PubMedCrossRefGoogle Scholar
  187. Langer, C.J. 2004a. CT-2103: a novel macromolecular taxane with potential advantages compared with conventional taxanes. Clin. Lung Cancer 6 (Suppl 2): S85–S88.PubMedCrossRefGoogle Scholar
  188. Langer, C.J. 2004b. CT-2103: emerging utility and therapy for solid tumours. Expert. Opin. Investig. Drugs 13: 1501–1508.PubMedCrossRefGoogle Scholar
  189. Langer, C.J., Socinski, M.A., Ross, H., and O’Byrne, K.J. 2005. Paclitaxel poliglumex (PPX)/carboplatin vs. paclitaxel/carboplatin for the treatment of PS2 patients with chemotherapy-naïve advanced non-small cell lung cancer (NSCLC): a phase III study. J. Clin. Oncol. 23: 7011, 2005 ASCO Annual Meeting Proceedings.Google Scholar
  190. Langer, C.J., Socinski, M.A., and O’Byrne, K.J. 2006. Paclitaxel poliglumex (PPX/carboplatin vs. paclitaxel/carboplatin for the treatment of PS2 patients with chemotherapy-naïve advanced non-small cell lung cancer: a phase III study. Proc. Am. Soc. Clin. Oncol. 23: 623s.Google Scholar
  191. Larsen, A.K., Escargueil, A.E., and Skladanowski, A. 2000. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 85: 217–229.PubMedCrossRefGoogle Scholar
  192. Lee, B.S., Fujita, M., Khazenzon, N.M., Wawrowsky, K.A., Wachsmann-Hogiu, S., Farkas, D.L., Black, K.L., Ljubimova, J.Y., and Holler, E. 2006. Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-L-malic acid) for drug delivery. Bioconjug. Chem. 17: 317–326.PubMedCrossRefGoogle Scholar
  193. Lee, R.J. and Huang, L. 1996. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. 271: 8481–8487.PubMedCrossRefGoogle Scholar
  194. Lee, S.W. and Sullenger, B.A. 1997. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nat. Biotechnol. 15: 41–45.PubMedCrossRefGoogle Scholar
  195. Levy, Y., Hershfield, M.S., Fernandez-Mejia, C., Polmar, S.H., Scudiery, D., Berger, M., and Sorensen, R.U. 1988. Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. J. Pediatr. 113: 312–317.PubMedCrossRefGoogle Scholar
  196. Li, C. 2002. Poly(L-glutamic acid)–anticancer drug conjugates. Adv. Drug Deliv. Rev. 54: 695–713.PubMedCrossRefGoogle Scholar
  197. Li, C., Yu, D.F., Newman, R.A., Cabral, F., Stephens, L.C., Hunter, N., Milas, L., and Wallace, S. 1998. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Clin. Cancer Res. 58: 2404–2409.Google Scholar
  198. Lin, J.J., Silas, J.A., Bermudez, H., Milam, V.T., Bates, F.S., and Hammer, D.A. 2004. The effect of polymer chain length and surface density on the adhesiveness of functionalized polymersomes. Langmuir 20: 5493–5500.PubMedCrossRefGoogle Scholar
  199. Lu, Z.R., Kopečková, P., Wu, Z., and Kopeček, J. 1998. Functionalized semitelechelic poly[N-(2-hydroxypropyl) methacrylamide] for protein modification. Bioconjug. Chem. 9: 793–804.PubMedCrossRefGoogle Scholar
  200. Lu, J.M., Peterson, C.M., Guo-Shiah, J., Gu, Z.W., Peterson, C.A., Straight, R.C., and Kopeček, J. 1999a. Cooperativity between free and N-(2-hydroxypropyl) methacrylamide copolymer bound adriamycin and meso-chlorin e6 monoethylene diamine induced photodynamic therapy in human epithelial ovarian carcinoma in vitro. Int. J. Oncol. 15: 5–16.PubMedGoogle Scholar
  201. Lu, Z.R., Kopečková, P., and Kopeček, J. 1999b. Polymerizable Fab’ antibody fragments for targeting of anticancer drugs. Nat. Biotechnol. 17: 1101–1104.PubMedCrossRefGoogle Scholar
  202. Lu, Z.R., Shiah, J.G., Kopečková, P., and Kopeček, J. 2001. Preparation and biological evaluation of polymerizable antibody Fab’ fragment targeted polymeric drug delivery system. J. Control. Release 74: 263–268.PubMedCrossRefGoogle Scholar
  203. Lu, Z.R., Shiah, J.G., Kopečková, P., and Kopeček, J. 2003. Polymerizable Fab’ antibody fragment targeted photodynamic cancer therapy in nude mice. STP Pharm. Sci. 13: 69–75.Google Scholar
  204. Lynn, D.M., Anderson, D.G., Putnam, D., and Langer, R. 2001. Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123: 8155–8156.PubMedCrossRefGoogle Scholar
  205. Maeda, H. 2001a. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41: 189–207.PubMedCrossRefGoogle Scholar
  206. Maeda, H. 2001b. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46: 169–185.PubMedCrossRefGoogle Scholar
  207. Maeda, H., Ueda, M., Morinaga, T., and Matsumoto, T. 1985. Conjugation of poly(styrene-comaleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties. J. Med. Chem. 28: 455–461.PubMedCrossRefGoogle Scholar
  208. Mahat, R.I., Monera, O.D., Smith, L.C., and Rolland, A. 1999. Peptide-based gene delivery. Curr. Opin. Mol. Ther. 1: 226–243.PubMedGoogle Scholar
  209. Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J.W., Meijer, E.W., Paulus, W., and Duncan, R. 2000. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65: 133–148.PubMedCrossRefGoogle Scholar
  210. Malkoch, M., Vestberg, R., Gupta, N., Mespouille, L., Dubois, P., Mason, A.F., Hedrick, J.L., Liao, Q., Frank, C.W., Kingsbury, K., and Hawker, C.J. 2006. Synthesis of well-defined hydrogel networks using click chemistry. Chem. Commun. 26: 2774–2776.CrossRefGoogle Scholar
  211. Mann, J.S., Huang, J.C., and Keana, J.F. 1992. Molecular amplifiers: synthesis and functionalization of a poly(aminopropyl) dextran bearing a uniquely reactive terminus for univalent attachment to biomolecules. Bioconjug. Chem. 3: 154–159.PubMedCrossRefGoogle Scholar
  212. Markman, M. 2004. Improving the toxicity profile of chemotherapy for advanced ovarian cancer: a potential role for CT-2103. J. Exp. Ther. Oncol. 4: 131–136.PubMedGoogle Scholar
  213. Martinez-Fong, D., Navarro-Quiroga, I., Ochoa, I., Alvarez-Maya, I., Meraz, M.A., Luna, J., and Arias-Montano, J.A. 1999. Neurotensin-SPDP-poly-L-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells. Brain Res. Mol. Brain Res. 69: 249–262.PubMedCrossRefGoogle Scholar
  214. Matsumura, Y. and Maeda, H. 1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46: 6387–6392.PubMedGoogle Scholar
  215. Matveev, S., Li, X., Everson, W., and Smart, E.J. 2001. The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Adv. Drug Deliv. Rev. 49: 237–250.PubMedCrossRefGoogle Scholar
  216. Maxfield, F.R. and McGraw, T.E. 2004. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5: 121–132.PubMedCrossRefGoogle Scholar
  217. Meerum Terwogt, J.M., ten Bokkel Huinink, W.W., Schellens, J.H., Schot, M., Mandjes, I.A., Zurlo, M.G., Rocchetti, M., Rosing, H., Koopman, F.J., and Beijnen, J.H. 2001. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 12: 315–323.PubMedCrossRefGoogle Scholar
  218. Mehvar, R. 2000. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 69: 1–25.PubMedCrossRefGoogle Scholar
  219. Mehvar, R. and Hoganson, D.A. 2000. Dextran-methylprednisolone succinate as a prodrug of methylprednisolone: immunosuppressive effects after in vivo administration to rats. Pharm. Res. 17: 1402–1407.PubMedCrossRefGoogle Scholar
  220. Meier, O. and Greber, U.F. 2003. Adenovirus endocytosis. J. Gene Med. 5: 451–462.PubMedCrossRefGoogle Scholar
  221. Merdan, T., Kunath, K., Fischer, D., Kopeček, J., and Kissel, T. 2002. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm. Res. 19: 140–146.PubMedCrossRefGoogle Scholar
  222. Midoux, P. and Monsigny, M. 1999. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10: 406–411.PubMedCrossRefGoogle Scholar
  223. Minko, T., Kopečková, P., and Kopeček, J. 1999. Chronic exposure to HPMA copolymer-bound adriamycin does not induce multidrug resistance in a human ovarian carcinoma cell line. J. Control. Release 59: 133–148.PubMedCrossRefGoogle Scholar
  224. Minko, T., Kopečková, P., and Kopeček, J. 2000. Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int. J. Cancer 86: 108–117.PubMedCrossRefGoogle Scholar
  225. Mitra, A., Coleman, T., Borgman, M., Nan, A., Ghandehari, H., and Line, B.R. 2006. Polymeric conjugates of mono- and bi-cyclic alphaVbeta3 binding peptides for tumor targeting. J. Control. Release 114: 175–183.PubMedCrossRefGoogle Scholar
  226. Molineux, G. 2004. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr. Pharm. Des. 10: 1235–1244.PubMedCrossRefGoogle Scholar
  227. Mrkvan, T., Šírová, M., Etrych, T., Chytil, P., Strohalm, J., Plocová, D., Ulbrich, K., and Říhová, B. 2005. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. J. Control. Release 110: 119–129.PubMedCrossRefGoogle Scholar
  228. Mukherjee, A., Monson, J.P., Jonsson, P.J., Trainer, P.J., and Shalet, S.M. 2003. Seeking the optimal target range for insulin-like growth factor I during the treatment of adult growth hormone disorders. J. Clin. Endocrinol. Metab. 88: 5865–5870.PubMedCrossRefGoogle Scholar
  229. Mukherjee, S., Ghosh, R.N., and Maxfield, F.R. 1997. Endocytosis. Physiol. Rev. 77: 759–803.PubMedGoogle Scholar
  230. Nagayama, T., Hashidzume, A., and Morishima, Y. 2002. Characterization of self-association in water of polycations hydrophobically modified with hydrocarbon and siloxane chains. Langmuir 18: 6775–6782.CrossRefGoogle Scholar
  231. Nakanishi, T., Fukushima, S., Okamoto, K., Suzuki, M., Matsumura, Y., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K. 2001. Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74: 295–302.PubMedCrossRefGoogle Scholar
  232. Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, M., Tanaka, S., Ueda, K., Simpson, J.C., Jones, A.T., Sugiura, Y., and Futaki, S. 2004. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10: 1011–1022.PubMedCrossRefGoogle Scholar
  233. Nan, A., Ghandehari, H., Hebert, C., Siavash, H., Nikitakis, N., Reynolds, M., and Sauk, J.J. 2005. Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. J. Drug Target. 13: 189–197.PubMedCrossRefGoogle Scholar
  234. Nigg, E.A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386: 779–787.PubMedADSCrossRefGoogle Scholar
  235. Nimjee, S.M., Rusconi, C.P., and Sullenger, B.A. 2005. Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56: 555–583.PubMedCrossRefGoogle Scholar
  236. Nishiyama, N. and Kataoka, K. 2006. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112: 630–648.PubMedCrossRefGoogle Scholar
  237. Nishiyama, N., Nori, A., Malugin, A., Kasuya, Y., Kopečková, P., and Kopeček, J. 2003. Free and N-(2-hydroxypropyl) methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Res. 63: 7876–7882.PubMedGoogle Scholar
  238. Nori, A. and Kopeček, J. 2005. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug. Deliv. Rev. 57: 609–636.PubMedCrossRefGoogle Scholar
  239. Nori, A., Jensen, K.D., Tijerina, M., Kopečková, P., and Kopeček, J. 2003a. Subcellular trafficking of HPMA copolymer-Tat conjugates in human ovarian carcinoma cells. J. Control. Release 91: 53–59.PubMedCrossRefGoogle Scholar
  240. Nori, A., Jensen, K.D., Tijerina, M., Kopečková, P., and Kopeček, J. 2003b. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug. Chem. 14: 44–50.PubMedCrossRefGoogle Scholar
  241. Obereigner, B., Burešová, M., Vrána, A., and Kopeček, J. 1979. Preparation of polymerizable derivatives of N-(4-aminobenzenesulfonyl)-N’-butylurea. J. Polym. Sci., Polym. Symp. 66: 41–52.CrossRefGoogle Scholar
  242. Ohkawa, K., Hatano, T., Yamada, K., Joh, K., Takada, K., Tsukada, Y., and Matsuda, M. 1993. Bovine serum albumin-doxorubicin conjugate overcomes multidrug resistance in a rat hepatoma. Cancer Res. 53: 4238–4242.PubMedGoogle Scholar
  243. Okuno, S., Harada, M., Yano, T., Yano, S., Kiuchi, S., Tsuda, N., Sakamura, Y., Imai, J., Kawaguchi, T., and Tsujihara, K. 2000. Complete regression of xenografted human carcinomas by camptothecin analogue-carboxymethyl dextran conjugate (T-0128). Cancer Res. 60: 2988–2995.PubMedGoogle Scholar
  244. Omelyanenko, V., Gentry, C., Kopečková, P., and Kopeček, J. 1998. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int. J. Cancer 75: 600–608.PubMedCrossRefGoogle Scholar
  245. Pan, H., Kopečková, P., Wang, D., Yang, J., Miller, S., and Kopeček, J. 2006. Water-soluble HPMA copolymer–prostaglandin E1 conjugates containing a cathepsin K sensitive spacer. J. Drug Target. 14: 425–435.PubMedCrossRefGoogle Scholar
  246. Panarin, E.F. and Ushakov, S.N. 1968. Synthesis of polymer salts and amidopenicillines (in Russian). Khim. Pharm. Zhur. 2: 28–31.Google Scholar
  247. Parrish, B. and Emrick, T. 2007. Soluble camptothecin derivatives prepared by click cycloaddition chemistry on functional aliphatic polyesters. Bioconjug. Chem. 18: 263–267.PubMedCrossRefGoogle Scholar
  248. Parrish, B., Breitenkamp, R.B., and Emrick, T. 2005. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127: 7404–7410.PubMedCrossRefGoogle Scholar
  249. Parton, R.G., Joggerst, B., and Simons, K. 1994. Regulated internalization of caveolae. J. Cell Biol. 127: 1199–1215.PubMedCrossRefGoogle Scholar
  250. Pasut, G., Scaramuzza, S., Schiavon, O., Mendichi, R., and Veronese, F.M. 2005. PEG-epirubicin conjugates with high drug loading. J. Bioact. Compat. Polym. 20: 213–230.CrossRefGoogle Scholar
  251. Paul, A., Vicent, M.J., and Duncan, R. 2007. Using small-angle neutron scattering to study the solution conformation of N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugates. Biomacromolecules 8: 1573–1579.PubMedCrossRefGoogle Scholar
  252. Pechar, M., Braunová, A., Ulbrich, K., Jelínková, M., and Říhová, B. 2005. Poly(ethylene glycol)–Doxorubicin conjugates with pH-controlled activation. J. Bioact. Compat. Polym. 20: 319–341.CrossRefGoogle Scholar
  253. Pedone, E., Li, X.W., Koseva, N., Alpar, O., and Brocchini, S. 2003. An information rich biomedical polymer library. J. Mater. Chem. 13: 2825–2837.CrossRefGoogle Scholar
  254. Pelkmans, L. and Helenius, A. 2002. Endocytosis via caveolae. Traffic 3: 311–320.PubMedCrossRefGoogle Scholar
  255. Pelkmans, L., Puntener, D., and Helenius, A. 2002. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296: 535–539.PubMedADSCrossRefGoogle Scholar
  256. Peterson, C.M., Lu, J.M., Sun, Y., Peterson, C.A., Shiah, J.G., Straight, R.C., and Kopeček, J. 1996. Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res. 56: 3980–3985.PubMedGoogle Scholar
  257. Phan, U.T., Arunachalam, B., and Creswell, P. 2000. Gamma-interferon-inducible lysosomal thiol reductase (GILT). Maturation, activity, and mechanism of action. J. Biol. Chem. 275: 25907–25914.PubMedCrossRefGoogle Scholar
  258. Pichon, C., Goncalves, C., and Midoux, P. 2001. Histidine-rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev. 53: 75–94.PubMedCrossRefGoogle Scholar
  259. Pieken, W.A., Olsen, D.B., Benseler, F., Aurup, H., and Eckstein, F. 1991. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253: 314–317.PubMedADSCrossRefGoogle Scholar
  260. Poujol, S., Pinguet, F., Bressole, F., Boustta, M., and Vert, M. 2000. Molecular microencapsulation: paclitaxel formations in aqueous medium using hydrophobized poly(L-lysine citramide imide). J. Bioact. Compat. Polym. 15: 99–114.CrossRefGoogle Scholar
  261. Putnam, D. and Kopeček, J. 1995a. Polymer conjugates with anticancer activity. Adv. Polym. Sci. 122: 55–123.Google Scholar
  262. Putnam, D. and Kopeček, J. 1995b. Enantioselective release of 5-fluorouracil from HPMA based copolymers via lysosomal enzymes. Bioconjug. Chem. 6: 483–492.PubMedCrossRefGoogle Scholar
  263. Putnam, D., Gentry, C.A., Pack, D.W., and Langer, R. 2001. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA. 98: 1200–1205.PubMedADSCrossRefGoogle Scholar
  264. Putnam, D., Zelikin, A.N., Izumrudov, V.A., and Langer, R. 2003. Polyhistidine-PEG:DNA nanocomposites for gene delivery. Biomaterials 24: 4425–4433.PubMedCrossRefGoogle Scholar
  265. Qiu, L.Y. and Bae, Y.H. 2006. Polymer architecture and drug delivery. Pharm. Res. 23: 1–30.PubMedCrossRefGoogle Scholar
  266. Rademaker-Lakhai, J.M., Terret, C., Howell, S.B., Baud, C.M., De Boer, R.F., Pluim, D., Beijnen, J.H., Schellens, J.H., and Droz, J.P. 2004. A phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res. 10: 3386–3395.PubMedCrossRefGoogle Scholar
  267. Rajender Reddy, K., Modi, M.W., and Pedder, S. 2002. Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Rev. 54: 571–586.PubMedCrossRefGoogle Scholar
  268. Rask, R., Rasmussen, J.M., Hansen, H.V., Bysted, P., and Svehag, S.E. 1988. Complement C3d, g/Epstein-Barr virus receptor density on human B-lymphocytes estimated by immunoenzymatic assay and immunocytochemistry. J. Clin. Lab. Immunol. 25: 153–156.PubMedGoogle Scholar
  269. Rathi, R.C., Kopečková, P., Říhová, B., and Kopeček, J. 1991. N-(2-Hydroxypropyl) methacrylamide copolymers containing pendant saccharide moieties. Synthesis and bioadhesive properties. J. Polym. Sci. [A1] 29: 1895–1902.Google Scholar
  270. Read, M.L., Singh, S., Ahmed, Z., Stevenson, M., Briggs, S.S., Oupický, D., Barrett, L.B., Spice, R., Kendall, M., Berry, M., Preece, J.A., Logan, A., and Seymour, L.W. 2005. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33: e86.PubMedCrossRefGoogle Scholar
  271. Rejman, J., Bragonzi, A., and Conese, M. 2005. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol. Ther. 12: 468–474.PubMedCrossRefGoogle Scholar
  272. Rejmanová, P., Labský, J., and Kopeček, J. 1977. Aminolyses of monomeric and polymeric p-nitrophenyl esters of methacryloylated amino acids. Makromol. Chem. 178: 2159–2168.CrossRefGoogle Scholar
  273. Rejmanová, P., Obereigner, B., and Kopeček, J. 1981. Polymers containing enzymatically degradable bonds. 2. Poly[N-(2-hydroxypropyl) methacrylamide] chains connected by oligopeptide sequences cleavable by chymotrypsin. Makromol. Chem. 182: 1899–1915.CrossRefGoogle Scholar
  274. Rejmanová, P., Pohl, J., Baudyš, M., Kostka, V., and Kopeček, J. 1983. Polymers containing enzymatically degradable bonds. 8. Degradation of oligopeptide sequences in N-(2-hydroxypropyl) methacrylamide copolymers by bovine spleen cathepsin B. Makromol. Chem. 184: 2009–2020.CrossRefGoogle Scholar
  275. Rejmanová, P., Kopeček, J., Duncan, R., and Lloyd, J.B. 1985. Stability in rat plasma and serum of lysosomally degradable oligopeptide sequences in N-(2-hydroxypropyl) methacrylamide copolymers. Biomaterials 6: 45–48.PubMedCrossRefGoogle Scholar
  276. Rensberger, K.L., Hoganson, D.A., and Mehvar, R. 2000. Dextran-methylprednisolone succinate as a prodrug of methylprednisolone: in vitro immunosuppressive effects on rat blood and spleen lymphocytes. Int. J. Pharm. 207: 71–76.PubMedCrossRefGoogle Scholar
  277. Ringsdorf, H. 1975. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Symp. 51: 135–153.Google Scholar
  278. Robbins, J., Dilworth, S.M., Laskey, R.A., and Dingwall, C. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615–623.PubMedCrossRefGoogle Scholar
  279. Rodrigues, P.C., Beyer, U., Schumacher, P., Roth, T., Fiebig, H.H., Unger, C., Messori, L., Orioli, P., Paper, D.H., Mülhaupt, R., Kratz, F. 1999. Acid-sensitive polyethylene glycol conjugates of doxorubicin: preparation, in vitro efficacy and intracellular distribution. Bioorg. Med. Chem. 7: 2517–2524.PubMedCrossRefGoogle Scholar
  280. Rodrigues, P.C, Scheuermann, K., Stockmar, C., Maier, G., Fiebig, H., Unger, C., Mülhaupt, R., and Kratz, F. 2003. Synthesis and in vitro efficacy of acid-sensitive poly(ethylene glycol) paclitaxel conjugates. Bioorg. Med. Chem. Lett. 13: 355–360.PubMedCrossRefGoogle Scholar
  281. Rodrigues, P.C., Roth, T., Fiebig, H.H., Unger, C., Mülhaupt, R., and Kratz, F. 2006. Correlation of the acid-sensitivity of polyethylene glycol daunorubicin conjugates with their in vitro antiproliferative activity. Bioorg. Med. Chem. 14: 4110–4117.PubMedCrossRefGoogle Scholar
  282. Rowinsky, E.K., Rizzo, J., Ochoa, L., Takimoto, C.H., Forouzesh, B., Schwartz, G., Hammond, L.A., Patnaik, A., Kwiatek, J., Goetz, A., Denis, L., McGuire, J., Tolcher, A.W. 2003. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J. Clin. Oncol. 21: 148–157.PubMedCrossRefGoogle Scholar
  283. Rusconi, C.P., Scardino, E., Layzer, J., Pitoc, G.A., Ortel, T.L., Monroe, D., and Sullenger, B.A. 2002. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419: 90–94.PubMedADSCrossRefGoogle Scholar
  284. Sabbatini, P., Aghajanian, C., Dizon, D., Anderson, S., Dupont, J., Brown, J.V., Peters, W.A., Jacobs, A., Mehdi, A., Rivkin, S., Eisenfeld, A.J., Spriggs, D. 2004. Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. J. Clin. Oncol. 22: 4523–4531.PubMedCrossRefGoogle Scholar
  285. Saito, G., Swanson, J.A., and Lee, K.D. 2003. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55: 199–215.PubMedCrossRefGoogle Scholar
  286. Sakuma, S., Lu, Z.R., Kopečková, P., and Kopeček, J. 2001. Biorecognizable HPMA copolymerdrug conjugates for colon-specific delivery of 9-aminocamptothecin. J. Control. Release 75: 365–379.PubMedCrossRefGoogle Scholar
  287. Sarapa, N., Britto, M.R., Speed, W., Jannuzzo, M., Breda, M., James, C.A., Porro, M., Rocchetti, M., Wanders, A., Mahteme, H., and Nygren, P. 2003. Assessment of normal and tumor tissue uptake of MAG-CPT, a polymer-bound prodrug of camptothecin, in patients undergoing elective surgery for colorectal carcinoma. Cancer Chemother. Pharmacol. 52: 424–430.PubMedCrossRefGoogle Scholar
  288. Saraste, J., Palade, G.E., and Farquhar, M.G. 1986. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc. Natl. Acad. Sci. USA 83: 6425–6429.PubMedADSCrossRefGoogle Scholar
  289. Satchi-Fainaro, R., Connors, T.A., and Duncan, R. 2001. PDEPT: polymer-directed enzyme prodrug therapy. I. HPMA copolymer-cathepsin B and PK1 as a model combination. Br. J. Cancer 85: 1070–1076.CrossRefGoogle Scholar
  290. Satchi , R., Hailu, H., Davies, J.W., Summerford, C., and Duncan, R. 2003. PDEPT: polymer-directed enzyme prodrug therapy. 2. HPMA copolymer-beta-lactamase and HPMA copolymer-C-Dox as a model combination. Bioconjug. Chem. 14: 797–804.CrossRefGoogle Scholar
  291. Satchi-Fainaro, R., Puder, M., Davies, J.W., Tran, H.T., Sampson, D.A., Greene, A.K., Corfas, G., and Folkman, J. 2004. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med. 10: 255–261.PubMedCrossRefGoogle Scholar
  292. Satchi-Fainaro, R., Mamluk, R., Wang, L., Short, S.M., Nagy, J.A., Feng, D., Dvorak, A.M., Dvorak, H.F., Puder, M., Mukhopadhyay, D., and Folkman, J. 2005. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 7: 251–261.PubMedCrossRefGoogle Scholar
  293. Satchi-Fainaro, R., Duncan, R., and Barnes, C.M. 2006. Polymer therapeutics for cancer: current status and future challenges. Adv. Polym. Sci. 193: 1–65.CrossRefGoogle Scholar
  294. Scales, C.W., Vasilieva, Y.A., Convertine, A.J., Lowe, A.B., and McCormick, C.L. 2005. Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl) methacrylamide) via RAFT in aqueous media. Biomacromolecules 6: 1846–1850.PubMedCrossRefGoogle Scholar
  295. Scales, C.W., Huang, F.Q., Li, N., Vasilieva, Y.A., Ray, J., Convertine, A.J., and McCormick, C.L. 2006. Corona-stabilized interpolyelectrolyte complexes of SiRNA with nonimmunogenic, hydrophilic/cationic block copolymers prepared by aqueous RAFT polymerization. Macromolecules 39: 6871–6881.ADSCrossRefGoogle Scholar
  296. Schechter, I. and Berger, A. 1967. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27: 157–162.PubMedCrossRefGoogle Scholar
  297. Schiavon, O., Pasut, G., Moro, S., Orsolini, P., Guiotto, A., and Veronese, F.M. 2004. PEG-Ara-C conjugates for controlled release. Eur. J. Med. Chem. 39: 123–133.PubMedCrossRefGoogle Scholar
  298. Schneider, H., Harbottle, R.P., Yokosaki, Y., Kunde, J., Sheppard, D., and Coutelle, C. 1998. A novel peptide, PLAEIDGIELTY, for the targeting of alpha9betal-integrins. FEBS Lett. 429: 269–273.PubMedCrossRefGoogle Scholar
  299. Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J., and Czaja, A.D. 2002. Laser–Raman imagery of Earth’s earliest fossils. Nature 416: 73–76.PubMedADSCrossRefGoogle Scholar
  300. Schousboe, I., Thomsen, P., and van Deurs, B. 2004. Factor XII binding to endothelial cells depends on caveolae. Eur. J. Biochem. 271: 2998–3005.PubMedCrossRefGoogle Scholar
  301. Seib, F.P., Jones, A.T., and Duncan, R. 2006. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer–doxorubicin. J. Drug Target. 14: 375–390.PubMedCrossRefGoogle Scholar
  302. Service, R.F. 1996. Combinatorial chemistry hits the drug market. Science 272: 1266–1268.PubMedADSCrossRefGoogle Scholar
  303. Seymour, L.W., Duncan, R., Strohalm, J., and Kopeček, J. 1987. Effect of molecular weight (Mw) of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J. Biomed. Mater. Res. 21: 1341–1358.PubMedCrossRefGoogle Scholar
  304. Seymour, L.W., Ferry, D.R., Anderson, D., Hesslewood, S., Julyan, P.J., Poyner, R., Doran, J., Young, A.M., Burtles, S., and Kerr, D.J. 2002. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol. 20: 1668–1676.PubMedCrossRefGoogle Scholar
  305. Shen, W.C. and Ryser, H.J. 1981. cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem. Biophys. Res. Commun. 102: 1048–1054.PubMedCrossRefGoogle Scholar
  306. Shiah, J.-G., Koňák, Č., Spikes, J.D., and Kopeček, J. 1997. Solution and photoproperties of N-(2-hydroxypropyl) methacrylamide copolymer–meso-chlorin e6 conjugates. J. Phys. Chem. B 101: 6803–6809.CrossRefGoogle Scholar
  307. Shiah, J.-G., Koňák, Č., Spikes, J.D., and Kopeček, J. 1998. Influence of pH on solubility and photoproperties of N-(2-hydroxypropyl) methacrylamide copolymer–meso-chlorin e6 conjugates. Drug Deliv. 5: 119–126.PubMedCrossRefGoogle Scholar
  308. Shiah, J.-G., Sun, Y., Peterson, C.M., Kopeček, J. 1999. Biodistribution of free and N-(2-hydroxy-propyl) methacrylamide copolymer-bound meso chlorin e6 and adriamycin in nude mice bearing human ovarian carcinoma OVCAR-3 xenografts. J. Control. Release 61: 145–157.PubMedCrossRefGoogle Scholar
  309. Shiah, J.G., Sun, Y., Peterson, C.M., Straight, R.C., and Kopeček, J. 2000. Antitumor activity of N-(2-hydroxypropyl) methacrylamide copolymer-mesochlorin e6 and adriamycin conjugates in combination treatments. Clin. Cancer Res. 6: 1008–1015.PubMedGoogle Scholar
  310. Shiah, J.G., Dvořák, M., Kopečková, P., Sun, Y., Peterson, C.M., and Kopeček, J. 2001a. Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl) methacrylamide copolymer–doxorubicin conjugates in nude mice. Eur. J. Cancer 37: 131–139.PubMedCrossRefGoogle Scholar
  311. Shiah, J.G., Sun, Y., Kopečková, P., Peterson, C.M., Straight, R.C., and Kopeček, J. 2001b. Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin/mesochlorin e6-OV-TL 16 antibody immunoconjugates. J. Control. Release 74: 249–253.PubMedCrossRefGoogle Scholar
  312. Simoes, S., Slepushkin, V., Pires, P., Gaspar, R., de Lima, M.P., and Duzgunes, N. 1999. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther. 6: 1798–1807.PubMedCrossRefGoogle Scholar
  313. Singer, J.W., Shaffer, S., Baker, B., Bernareggi, A., Stromatt, S., Nienstedt, D., and Besman, M. 2005. Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anticancer Drugs 16: 243–254.PubMedCrossRefGoogle Scholar
  314. Smith, G.P. and Petrenko, V.A. 1997. Phage display. Chem. Rev. 97: 391–410.PubMedCrossRefGoogle Scholar
  315. Smith, R.A., Porteous, C.M., Coulter, C.V., and Murphy, M.P. 1999. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 263: 709–716.PubMedCrossRefGoogle Scholar
  316. Smith, R.A., Kelso, G.F., James, A.M., and Murphy, M.P. 2004. Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol. 382: 45–67.PubMedCrossRefGoogle Scholar
  317. Soldati, T. and Schliwa, M. 2006. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol. 7: 897–908.PubMedCrossRefGoogle Scholar
  318. Solovskij, M.V., Ulbrich, K., and Kopeček, J. 1983. Synthesis of N-(2-hydroxypropyl) methacrylamide copolymers with antimicrobial activity. Biomaterials 4: 44–48.PubMedCrossRefGoogle Scholar
  319. Sparr, E., Ash, W.L., Nazarov, P.V., Rijkers, D.T.S., Hemminga, M.A., Tieleman, D.P., and Killian, J.A. 2005. Self-association of transmembrane alpha-helices in model membranes–Importance of helix orientation and role of hydrophobic mismatch. J. Biol. Chem. 280: 39324–39331.PubMedCrossRefGoogle Scholar
  320. Št’astný, M., Strohalm, J., Plocová, D., Ulbrich, K., and Říhová, B. 1999. A possibility to overcome P-glycoprotein (PGP)-mediated multidrug resistance by antibody-targeted drugs conjugated to N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer carrier. Eur. J. Cancer 35: 459–466.PubMedCrossRefGoogle Scholar
  321. Strohalm, J. and Kopeček, J. 1978. Poly[N-(2-hydroxypropyl) methacrylamide]. IV. Heterogeneous polymerization. Angew. Makromol. Chem. 70: 109–118.CrossRefGoogle Scholar
  322. Šubr, V. and Ulbrich, K. 2006. Synthesis and properties of new N-(2-hydroxypropyl) methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 66: 1525–1538.CrossRefGoogle Scholar
  323. Šubr, V., Koňák, Č., Laga, R., and Ulbrich, K. 2006. Coating of DNA/poly(L-lysine) complexes by covalent attachment of poly[N-(2-hydroxypropyl) methacrylamide]. Biomacromolecules 7: 122–130.PubMedCrossRefGoogle Scholar
  324. Swanson, J.A. and Watts, C. 1995. Macropinocytosis. Trends Cell. Biol. 5: 424–428.PubMedCrossRefGoogle Scholar
  325. Tang, A. and Kopeček, J. 2002. Presentation of epitopes on genetically engineered peptides and selection of lymphoma-targeting moieties based on epitope biorecognition. Biomacromolecules 3: 421–431.PubMedCrossRefGoogle Scholar
  326. Tang, A., Kopečková, P., and Kopeček, J. 2003. Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes. Pharm. Res. 20: 360–367.PubMedCrossRefGoogle Scholar
  327. Teicher, B.A., Holden, S.A., Jacobs, J.L., Abrams, M.J., and Jones, A.G. 1986. Intracellular distribution of a platinum-rhodamine 123 complex in cis-platinum sensitive and resistant human squamous carcinoma cell lines. Biochem. Pharmacol. 35: 3365–3369.PubMedCrossRefGoogle Scholar
  328. Teicher, B.A., Varshney, A., Khandekar, V., and Herman, T.S. 1991. Effect of hypoxia and acidosis on the cytotoxicity of six metal(ligand) 4(rhodamine-123) 2 complexes at normal and hyperthermic temperatures. Int. J. Hyperthermia 7: 857–868.PubMedCrossRefGoogle Scholar
  329. Teodorescu, M. and Matyjaszewski, K. 1999. Atom transfer radical polymerization of (meth) acrylamides. Macromolecules 32: 4826–4831.ADSCrossRefGoogle Scholar
  330. Teodorescu, M. and Matyjaszewski, K. 2000. Controlled polymerization of (meth) acrylamides by atom transfer radical polymerization. Macromol. Rapid Commun. 21: 190–194.CrossRefGoogle Scholar
  331. Thomas, M. and Klibanov, A.M. 2002. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA 99: 14640–14645.PubMedADSCrossRefGoogle Scholar
  332. Thomsen, P., Roepstorff, K., Stahlhut, M., and van Deurs, B. 2002. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13: 238–250.PubMedCrossRefGoogle Scholar
  333. Thomson, A.H., Vasey, P.A., Murray, L.S., Cassidy, J., Fraier, D., Frigerio, E., and Twelves, C. 1999. Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br. J. Cancer 81: 99–107.PubMedCrossRefGoogle Scholar
  334. Tijerina, M., Kopečková, P., and Kopeček, J. 2003a. Correlation of subcellular compartmentalization of HPMA copolymer-Mce6 conjugates with chemotherapeutic activity in human ovarian carcinoma cells. Pharm. Res. 20: 728–737.PubMedCrossRefGoogle Scholar
  335. Tijerina, M., Kopečková, P., and Kopeček, J. 2003b. Mechanisms of cytotoxicity in human ovarian carcinoma cells exposed to free Mce6 or HPMA copolymer-Mce6 conjugates. Photochem. Photobiol. 77: 645–652.PubMedCrossRefGoogle Scholar
  336. Toki, B.E., Cerveny, C.G., Wahl, A.F., and Senter, P.D. 2002. Protease-mediated fragmentation of p-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. J. Org. Chem. 67: 1866–1872.PubMedCrossRefGoogle Scholar
  337. Torchilin, V.P. 2006a. Multifunctional nanocarriers. Adv. Drug. Deliv. Rev. 58: 1532–1555.PubMedCrossRefGoogle Scholar
  338. Torchilin, V.P. 2006b. Recent approaches to intracellular deličvery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng. 8: 343–375.PubMedCrossRefGoogle Scholar
  339. Tsukioka, Y., Matsumura, Y., Hamaguchi, T., Koike, H., Moriyasu, F., and Kakizoe, T. 2002. Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn. J. Cancer Res. 93: 1145–1153.PubMedGoogle Scholar
  340. Tucker, C.E., Chen, L.S., Judkins, M.B., Farmer, J.A., Gill, S.C., and Drolet, D.W. 1999. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B Biomed. Sci. Appl. 732: 203–212.PubMedCrossRefGoogle Scholar
  341. Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510.PubMedADSCrossRefGoogle Scholar
  342. Twaites, B., Alarcon, C.D., and Alexander, C. 2005. Synthetic polymers as drugs and therapeutics. J. Mater. Chem. 15: 441–455.CrossRefGoogle Scholar
  343. Ulbrich, K. and Šubr, V. 2004. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev. 56: 1023–1050.PubMedCrossRefGoogle Scholar
  344. Ulbrich, K., Zacharieva, E.I., Obereigner, B., and Kopeček, J. 1980. Polymers containing enzymatically degradable bonds. 5. Hydrophilic polymers degradable by papain. Biomaterials 1:199–204.PubMedCrossRefGoogle Scholar
  345. Ulbrich, K., Strohalm, J., and Kopeček, J. 1981. Polymers containing enzymatically degradable bonds. 3. Poly[N-(2-hydroxypropyl) methacrylamide] chains connected by oligopeptide sequences cleavable by trypsin. Makromol. Chem. 182: 1917–1928.CrossRefGoogle Scholar
  346. Ulbrich, K., Koňák, Č., Tuzar, Z., and Kopeček, J. 1987. Solution properties of drug carriers based on poly[N-(2-hydroxypropyl) methacrylamide] containing biodegradable bonds. Makromol. Chem. 188: 1261–1272.CrossRefGoogle Scholar
  347. Ulbrich, K., Etrych, T., Chytil, P., Jelínková, M., and Říhová, B. 2003. HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J. Control. Release 87: 33–47.PubMedCrossRefGoogle Scholar
  348. van der Aa, M.A., Huth, U.S., Hafele, S.Y., Schubert, R., Oosting, R.S., Mastrobattista, E., Hennink, W.E., Peschka-Suss, R., Koning, G.A., and Crommelin, D.J. 2007. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm. Res. 24: 1590–1598.PubMedCrossRefGoogle Scholar
  349. Vasey, P.A., Kaye, S.B., Morrison, R., Twelves, C., Wilson, P., Duncan, R., Thomson, A.H., Murray, L.S., Hilditch, T.E., Murray, T., Burtles, S., Fraier, D., Frigerio, E., Cassidy, J., and on behalf of the Cancer Research Campaign Phase I/II Committee. 1999. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin. Cancer Res. 5: 83–94.PubMedGoogle Scholar
  350. Vasir, J.K. and Labhasetwar, V. 2005. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat. 4: 363–374.PubMedGoogle Scholar
  351. Vasir, J.K., Reddy, M.K., and Labhasetwar, V.D. 2005. Nanosystems in drug targeting: opportunities and challenges. Curr. Nanosci. 1: 47–64.ADSCrossRefGoogle Scholar
  352. Vega, J., Ke, S., Fan, Z., Wallace, S., Charsangavej, C., and Li, C. 2003. Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(L-glutamic acid) through a polyethylene glycol spacer. Pharm. Res. 20: 826–832.PubMedCrossRefGoogle Scholar
  353. Vercauteren, R., Schacht, E., and Duncan, R. 1992. Effect of the chemical modification of dextran on the degradation by rat liver lysosomal enzymes. J. Bioact. Compat. Polym. 7: 346–357.CrossRefGoogle Scholar
  354. Vives, E., Brodin, P., and Lebleu, B. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010–16017.PubMedCrossRefGoogle Scholar
  355. Wachters, F.M., Groen, H.J., Maring, J.G., Gietema, J.A., Porro, M., Dumez, H., de Vries, E.G., and van Oosterom, A.T. 2004. A phase I study with MAG-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours. Br. J. Cancer 90: 2261–2267.PubMedGoogle Scholar
  356. Wadia, J.S. and Dowdy, S.F. 2005. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev. 57: 579–596.PubMedCrossRefGoogle Scholar
  357. Wadia, J.S., Stan, R.V., and Dowdy, S.F. 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10: 310–315.PubMedCrossRefGoogle Scholar
  358. Wagner, E., Plank, C., Zatloukal, K., Cotten, M., and Birnstiel, M.L. 1992. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89: 7934–7938.PubMedADSCrossRefGoogle Scholar
  359. Wang, Y.S., Youngster, S., Grace, M., Bausch, J., Bordens, R., and Wyss, D.F. 2002. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev. 54: 547–570.PubMedCrossRefGoogle Scholar
  360. Wang, D., Miller, S., Sima, M., Kopečková, P., and Kopeček, J. 2003. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems. Bioconjug. Chem. 14: 853–859.PubMedCrossRefGoogle Scholar
  361. Wang, W., Qu, X., Gray, A.I., Tetley, L., and Uchegbu, I.F. 2004a. Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles. Macromolecules 37: 9114–9122.ADSCrossRefGoogle Scholar
  362. Wang, X., Zhang, J., Song, A., Lebrilla, C.B., and Lam, K.S. 2004b. Encoding method for OBOC small molecule libraries using a biphasic approach for ladder-synthesis of coding tags. J. Am. Chem. Soc. 126: 5740–5749.PubMedCrossRefGoogle Scholar
  363. Wang, D., Miller, S.C., Kopečková, P., and Kopeček, J. 2005. Bone-targeting macromolecular therapeutics. Adv. Drug Deliv. Rev. 57: 1049–1076.PubMedCrossRefGoogle Scholar
  364. Wang, D., Miller, S.C., Shlyakhtenko, L.S., Portillo, A.M., Liu, X.M., Papangkorn, K., Kopečková, P., Lyubchenko, Y., Higuchi, W.I., Kopeček, J., 2007. Osteotropic Peptide that differentiates functional domains of the skeleton.Bioconjug. Chem. 18: 1375–1378.PubMedCrossRefGoogle Scholar
  365. Wang, D., Sima, M., Mosley, R.L., Davda, J.P., Tietze, N., Miller, S.C., Gwilt, P.R., Kopečková, P., and Kopeček, J. 2006. Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl) methacrylamide copolymers. Mol. Pharm. 3: 717–725.PubMedCrossRefGoogle Scholar
  366. Weissig, V. 2005. Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin. Drug Deliv. 2: 89–102.PubMedCrossRefGoogle Scholar
  367. Westerlund-Wikstrom, B. 2000. Peptide display on bacterial flagella: principles and applications. Int. J. Med. Microbiol. 290: 223–230.PubMedGoogle Scholar
  368. Willhite, S.L., Goebel, S.R., and Scoggin, J.A. 1998. Raloxifene provides an alternative for osteoporosis prevention. Ann. Pharmacother. 32: 834–837.PubMedCrossRefGoogle Scholar
  369. Willis, M.C., Collins, B.D., Zhang, T., Green, L.S., Sebesta, D.P., Bell, C., Kellogg, E., Gill, S.C., Magallanez, A., Knauer, S., Bendele, R.A., Gill, P.S., Janjic, N. 1998. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug. Chem. 9: 573–582 (erratum, 633).PubMedCrossRefGoogle Scholar
  370. Wilson, C. and Szostak, J.W. 1998. Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem. Biol. 5: 609–617.PubMedCrossRefGoogle Scholar
  371. Wiwattanapatapee, R., Carreno-Gomez, B., Malik, N., and Duncan, R. 2000. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17: 991–998.PubMedCrossRefGoogle Scholar
  372. Yanjarappa, M.J., Gujraty, K.V., Joshi, A., Saraph, A., and Kane, R.S. 2006. Synthesis of copolymers containing an active ester of methacrylic acid by RAFT: controlled molecular weight scaffolds for biofunctionalization. Biomacromolecules 7: 1665–1670.PubMedCrossRefGoogle Scholar
  373. Yu, D., Peng, P., Dharap, S.S., Wang, Y., Mehlig, M., Chandna, P., Zhao, H., Filpula, D., Yang, K., Borowski, V., Zhang, Z., and Minko, T. 2005. Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J. Control. Release 110: 90–102.PubMedCrossRefGoogle Scholar
  374. Zanta, M.A., Belguise-Valladier, P., and Behr, J.P. 1999. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96: 91–96.PubMedADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Huaizhong Pan
    • 1
  • Jindrich Kopecek
    • 1
  1. 1.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations