Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery

  • Padmaja Magadala
  • Lilian E. van Vlerken
  • Aliasgar Shahiwala
  • Mansoor M. Amiji
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

Cancer is the second leading cause of morbidity and mortality in the United States, with occurrences portraying an upward trend for the future. In 2007, approximately 10 million cases of cancer will occur globally, with a total of around 1.5 million new cancer cases and over 560,000 deaths expected in the United States (U.S. National Institute of Health, 2006). Strikingly, remarkable advances in diagnosis and therapy of cancer have been made over the past few decades resulting from significant advances in fundamental cancer biology. What lacks in this case is clinical translation of these advances into effective therapies. A major hurdle in cancer diagnosis and therapy is the targeted and efficacious delivery of agents to the tumor site, while avoiding adverse damage resulting from systemic administration. While systemic drug delivery already hinges largely on physicochemical properties of the drug, such as size, diffusivity, and plasma protein binding affinity, tumors possess a dense, heterogeneous vasculature and an outward net convective flow that act as hurdles to efficient drug deposition at the target site (Jang et al., 2003). Nanocarriermediated delivery has emerged as a successful strategy to enhance delivery of therapeutics and imaging agents to tumors, thereby increasing the potential for diagnosis at an earlier stage or for therapeutic success (or both). Based on the initial observation by Maeda and Matsumura that tumors possess a fenestrated vasculature, with pores on average ranging between 200 and 800 nm, and a lack of lymphatic drainage, together termed the enhanced permeability and retention (EPR) effect, it was found that colloidal carriers in the nanometer size range could target tumors passively, by specific extravasation through these fenestrations, and are retained at the site for prolonged time because of lack of lymphatic drainage (Matsumura and Meada, 1986). This physiological advantage has been used successfully to enhance delivery of diagnostic and therapeutic agents, leading to the U.S. Food and Drug Administration (FDA) approval of nanoparticle formulations such as Feridex® for diagnostic applications and Doxil® and Abraxane® for cancer therapy (U.S. Food and Drug Administration, 2006).


Photodynamic Therapy Iron Oxide Nanoparticles Solid Lipid Nanoparticles PLGA Nanoparticles Magnetic Resonance Imaging Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaron, F. H. L., A. B. Mark, A. D. Paul, et al. (2006). “Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles.” J Contr Release. 111: 128–34.CrossRefGoogle Scholar
  2. Ahmed, M., A. N. Lukyanov, V. Torchilin, et al. (2005). Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. Journal of vascular and interventional radiology. 16(10): 1365–71.PubMedGoogle Scholar
  3. Aime, S., A. Barge, C. Cabella, et al. (2004). “Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates.” Curr Pharmaceut Biotechnol. 5: 509–18.CrossRefGoogle Scholar
  4. Alyautdin, R. N., E. B. Tezikov, P. Ramge, et al. (1998). “Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study.” J Microencapsul. 15(1): 67–74.PubMedCrossRefGoogle Scholar
  5. Alyaudtin, R. N., A. Reichel, R. Lobenberg, et al. (2001). “Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro.” J Drug Target. 9(3): 209–21.PubMedCrossRefGoogle Scholar
  6. Amiji, M. (2006). “Polymeric delivery - Engineered nanosystems for targeted delivery of drugs and genes.” Future Drug Delivery. (Accessed August 09, 2006).
  7. Anderson, S. A., R. K. Rader, W. F. Westlin, et al. (2000). “Magnetic resonance contrast enhancement of neovasculature with αvβ3-targeted nanoparticles.” Magn Reson Med. 44(3): 433–9.PubMedCrossRefGoogle Scholar
  8. Bakalova, R., H. Ohba, Z. Zhelev, et al. (2004). “Quantum dots as photosensitizers?” Nat Biotech. 22(11): 1360–1.CrossRefGoogle Scholar
  9. Bargoni, A., R. Cavalli, G. P. Zara, et al. (2001). “Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II—tissue distribution.” Pharmacol Res. 43(5): 497–502.PubMedCrossRefGoogle Scholar
  10. Barth, R. F. and A. H. Soloway (1994). “Boron neutron capture therapy of primary and metastatic brain tumors.” Mol Chem Neuropathol. 21: 139–54.PubMedCrossRefGoogle Scholar
  11. Becker-Hapak, M., S. S. McAllister and S. F. Dowdy (2001). “TAT-mediated protein transduction into mammalian cells.” Methods. 24(3): 247–56.PubMedCrossRefGoogle Scholar
  12. Bellocq, N. C., S. H. Pun, G. S. Jensen, et al. (2003). “Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery.” Bioconjugate Chem. 14(6): 1122–32.CrossRefGoogle Scholar
  13. Bidwell, G. L., III, I. Fokt, W. Priebe, et al. (2007). “Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin.” Biochem Pharmacol. 73(5): 620–31.PubMedCrossRefGoogle Scholar
  14. Blanchette, J and N. A. Peppas (2005). Oral chemotherapeutic delivery: design and cellular response. Ann Biomed Eng., 33(2):142–9.PubMedCrossRefGoogle Scholar
  15. Brade, A. M., D. Ngo, P. Szmitco, et al. (2000). Heat-directed gene targeting of adenoviral vectors to tumor cells. Cancer Gene Ther. 7(12):1566–74.PubMedCrossRefGoogle Scholar
  16. Bradley, G., P. F. Juranka and V. Ling (1988). Mechanism of multidrug resitance. Biochem Biophys Acta. 948: 87–128.PubMedGoogle Scholar
  17. Brown, S. B. and K. J. Mellish (2001). “Verteporfin: a milestone in opthalmology and photodynamic therapy.” Expert Opin Pharmacother. 2(2): 351–61.PubMedCrossRefGoogle Scholar
  18. Calvo, P., B. Gouritin, H. Chacun, et al. (2001a). “Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery.” Pharm Res. 18(8): 1157–66.PubMedCrossRefGoogle Scholar
  19. Calvo, P., B. Gouritin, I. Brigger, et al. (2001b). “PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases.” J Neurosci Methods. 111(2): 151–5.PubMedCrossRefGoogle Scholar
  20. Calvo, P., B. Gouritin, H. Villarroya, et al. (2002). “Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat.” Eur J Neurosci. 15(8): 1317–26.PubMedCrossRefGoogle Scholar
  21. Cegnar, M., J. Kristl and J. Kos (2005). Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours. Expert Opinion Biologicy and Therapeutics. 5(12): 1557–69.CrossRefGoogle Scholar
  22. Chan, W. C. W., D. J. Maxwell, X. Gao, et al. (2002). “Luminescent quantum dots for multiplexed biological detection and imaging.” Curr Opin Biotechnol. 13(1): 40–6.PubMedCrossRefGoogle Scholar
  23. Chang, I. (2003). Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity. BioMedical Engineering Online, 2: 12.PubMedADSCrossRefGoogle Scholar
  24. Chen, B., Y. Xu, T. Roskams, et al. (2001). “Efficacy of antitumoral photodynamic therapy with hypericin: relationship between biodistribution and photodynamic effects in the RIF-1 mouse tumor model.” Int J Cancer. 93(2): 275–82.PubMedCrossRefGoogle Scholar
  25. Chen, Q., Z. Huang, D. Luck, et al. (2002a). “Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers.” Photochem Photobiol. 76(4): 438–45.PubMedCrossRefGoogle Scholar
  26. Chen, B., T. Roskams and P. A. de Witte (2002b). “Enhancing the antitumoral effect of hypericin-mediated photodynamic therapy by hyperthermia.” Lasers Surg Med. 31(3): 158–63.PubMedCrossRefGoogle Scholar
  27. Chen, J., F. Saeki, B. J. Wiley, et al. (2005). “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents.” Nano Lett. 5(3): 473–7.PubMedADSCrossRefGoogle Scholar
  28. Chiellini, E. E., F. Chiellini and R. Solaro (2006). Bioerodible polymeric nanoparticles for targeted delivery of proteic drugs. Journal of Nanoscience and Nanotechnology. 6(9–10): 3040–7.PubMedCrossRefGoogle Scholar
  29. Cinteza, L. O., T. Y. Ohulchanskyy, Y. Sahoo, et al. (2006). “Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy.” Mol Pharm. 3(4): 415–23.PubMedCrossRefGoogle Scholar
  30. Ciocca, D. R. and Calderwood, S. K. (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones., Summer, 10(2): 86–103.CrossRefGoogle Scholar
  31. Cole, S. P., G. Bhardwaj, J. H. Gerlach, et al. (1992). “Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line.” Science. 258(5088): 1650–4.PubMedADSCrossRefGoogle Scholar
  32. Crowder, K. C., M. S. Hughes, J. N. Marsh, et al. (2005). “Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery.” Ultrasound Med Biol. 31(12): 1693–700.PubMedCrossRefGoogle Scholar
  33. Cyrus, T., P. M. Winter, S. D. Caruthers, et al. (2005). “Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy.” Expert Rev Cardiovasc Ther. 3(4): 705–15.PubMedCrossRefGoogle Scholar
  34. Dayton, P., A. Klibanov, G. Brandenburger, et al. (1999). “Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles.” Ultrasound Med Biol. 25(8): 1195–201.PubMedCrossRefGoogle Scholar
  35. Devalapally, H., D. Shenoy, S. Little, et al. (2007). Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer chemotherapy and pharmacology. 59(4): 477–84.PubMedCrossRefGoogle Scholar
  36. Dolmans, D. E., D. Fukumura and R. K. Jain (2003). “Photodynamic therapy for cancer.” Nat Rev Cancer. 3(5): 380–7.PubMedCrossRefGoogle Scholar
  37. Dougherty, T. J., C. J. Gomer, B. W. Henderson, et al. (1998). “Photodynamic therapy.” J Natl Cancer Inst. 90(12): 889–905.PubMedCrossRefGoogle Scholar
  38. Elbayoumi T. A. and V. P. Torchilin (2006). “Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: b-imaging studies.” Eur J Nucl Med Mol Imag. 33(10): 1196–1205.CrossRefGoogle Scholar
  39. Emerich, D. F. and C. G. Thanos (2006). “The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis.” Biomol Eng. 23(4): 171–84.PubMedCrossRefGoogle Scholar
  40. Fang, J., T. Sawa, H. Maeda (2003). Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Advances in experimental medicine and biology. 519: 29–49.PubMedCrossRefGoogle Scholar
  41. Farokhzad, O. C., S. Jon, A. Khademhosseini, et al. (2004). Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Research. 64(21): 7668–72.PubMedCrossRefGoogle Scholar
  42. Farokhzad, O. C., J. Cheng, B. A. Teply, et al. (2006a). “Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo.” PNAS. 103(16): 6315–20.PubMedADSCrossRefGoogle Scholar
  43. Farokhzad O. C., J. M. Karp and R. Langer (2006b). Nanoparticle-aptamer bioconjugates for cancer targeting. Expert opinion on drug delivery. 3(3): 311–24.PubMedCrossRefGoogle Scholar
  44. Fayette, J., J.-C. Soria and J.-P. Armand (2005). “Use of angiogenesis inhibitors in tumour treatment.” Eur J Canc. 41(8): 1109–16.CrossRefGoogle Scholar
  45. Fellner, S., B. Bauer, D. S. Miller, et al. (2002). “Transport of paclitaxel (Taxol) across the blood–brain barrier in vitro and in vivo.” J Clin Invest. 110(9): 1309–18.PubMedGoogle Scholar
  46. Fenart, L., A. Casanova, B. Dehouck, et al. (1999). “Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood–brain barrier.” J Pharmacol Exp Ther. 291(3): 1017–22.PubMedGoogle Scholar
  47. Fenske, D. B., I. MacLachlan and P. R. Cullis (2001). “Long-circulating vectors for the systemic delivery of genes.” Curr Opin Mol Ther. 3(2): 153–8.PubMedGoogle Scholar
  48. Folkman, J. (1972). “Anti-angiogenesis: new concept for therapy of solid tumors.” Ann Surg. 175(3): 409–16.PubMedCrossRefGoogle Scholar
  49. Frei, E., III, J. F. Holland, M. A. Schneiderman, et al. (1958). “A comparative study of two regimens of combination chemotherapy in acute leukemia.” Blood. 13(12): 1126–48.PubMedGoogle Scholar
  50. Gabizon, A. A., H. Shmeeda, S. Zalipsky (2006). Pros and cons of the liposome platform in cancer drug targeting. Journal of liposome research. 16(3): 175–83.PubMedCrossRefGoogle Scholar
  51. Gao, X., Y. Cui, R. M. Levenson, et al. (2004). “In vivo cancer targeting and imaging with semiconductor quantum dots.” Nat Biotechnol. 22(8): 969–76.PubMedCrossRefGoogle Scholar
  52. Gao, X., L. Yang, J. A. Petros, et al. (2005). “In vivo molecular and cellular imaging with quantum dots.” Curr Opin Biotechnol. 16(1): 63–72.PubMedCrossRefGoogle Scholar
  53. Gao, X., W. Tao, W. Lu, et al. (2006). “Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration.” Biomaterials. 27(18): 3482–90.PubMedCrossRefGoogle Scholar
  54. Genentech Biotechnology. Avastin®, Bevacizumab. Product Information Guide. (Accessed September 28, 2006).
  55. Genentech Biotechnology. Herceptin®, Transtuzumab. Product Information Guide. (Accessed September 28, 2006).
  56. Gomez-Lopera, S. A., R. C. Plaza and A. V. Delgado (2001). “Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles.” J Colloid Interface Sci. 240(1): 40–7.PubMedCrossRefGoogle Scholar
  57. Gottesman, M. M., Fojo, T. and Bates, S. E. (2002). “Multidrug resistance in cancer: role of ATP-dependent transporters.” Nat Rev Cancer. 2: 48–58.PubMedCrossRefGoogle Scholar
  58. Gudgin Dickson, E. F., R. L. Goyan and R. H. Pottier (2002). “New directions in photodynamic therapy.” Cell Mol Biol (Noisy-le-grand). 48(8): 939–54.Google Scholar
  59. Gulyaev, A. E., S. E. Gelperina, I. N. Skidan, et al. (1999). “Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles.” Pharm Res. 16(10): 1564–9.PubMedCrossRefGoogle Scholar
  60. Gupta, B. and V. P. Torchilin (2006). “Transactivating transcriptional activator-mediated drug delivery.” Expert Opin Drug Deliv. 3(2): 177–90.PubMedCrossRefGoogle Scholar
  61. Gupta, B., T. S. Levchenko and V. P. Torchilin (2005). “Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides.” Adv Drug Deliv Rev. 57(4): 637–51.PubMedCrossRefGoogle Scholar
  62. Hainfeld, J. F., D. N. Slatkin and H. M. Smilowitz (2004). “The use of gold nanoparticles to enhance radiotherapy in mice.” Phys Med Biol. 49(18): N309–N315.PubMedCrossRefGoogle Scholar
  63. Hall, C. S., J. N. Marsh, M. J. Scott, et al. (2000). “Time evolution of enhanced ultrasonic reflection using a fibrin-targeted nanoparticulate contrast agent.” J Acoust Soc Am. 108(6): 3049–57.PubMedADSCrossRefGoogle Scholar
  64. Hall, C. S., J. N. Marsh, M. J. Scott, et al. (2001). “Temperature dependence of ultrasonic enhancement with a site-targeted contrast agent.” J Acoust Soc Am. 110(3, Pt 1): 1677–84.PubMedADSCrossRefGoogle Scholar
  65. Harisinghani, M. G., J. Barentsz, P. F. Hahn, et al. (2003). “Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.” N Engl J Med. 348(25): 2491–9.PubMedCrossRefGoogle Scholar
  66. Harris, A. L. and D. Hochhauser (1992). Mechanisms of multidrug resistance in cancer treatment. Acta Oncol. 31(2): 205–13.PubMedCrossRefGoogle Scholar
  67. Hayes, M. E., D. C. Drummond, K. Hong, et al. (2006). “Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation.” Mol Pharm. 3(6): 726–36.PubMedCrossRefGoogle Scholar
  68. Helm, C. W., C. R. Toler, R. S. Martin, III, et al. (2007). “Cytoreduction and intraperitoneal heated chemotherapy for the treatment of endometrial carcinoma recurrent within the peritoneal cavity.” Int J Gynecol Cancer. 17(1): 204–9.PubMedCrossRefGoogle Scholar
  69. Henderson, B. W. and S. O. Gollnick (2003). Mechanistic principles of photodynamic therapy. Boca Raton, CRC Press.Google Scholar
  70. Hildebrandt, B., P. Wust, O. Ahlers, et al. (2002). “The cellular and molecular basis of hyperthermia.” Crit Rev Oncol Hematol. 43(1): 33–56.PubMedCrossRefGoogle Scholar
  71. Hines-Peralta, A., V. Sukhatme, M. Regan, et al. (2006). “Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models.” Radiology. 240(1): 82–9.PubMedCrossRefGoogle Scholar
  72. Hirsch, L. R., R. J. Stafford, J. A. Bankson, et al. (2003). “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.” PNAS. 100(23): 13549–54.PubMedADSCrossRefGoogle Scholar
  73. Hopper, C. (2000). “Photodynamic therapy: a clinical reality in the treatment of cancer.” Lancet Oncol. 1: 212–19.PubMedCrossRefGoogle Scholar
  74. Huwyler, J. and W. M. Pardridge (1998). “Examination of blood–brain barrier transferrin receptor by confocal fluorescent microscopy of unfixed isolated rat brain capillaries.” J Neurochem. 70(2): 883–6.PubMedGoogle Scholar
  75. Huwyler, J., A. Cerletti, G. Fricker, et al. (2002). “By-passing of p-glycoprotein using immunoliposomes.” J Drug Target. 10(1): 73–9.PubMedCrossRefGoogle Scholar
  76. Iinuma, S., K. T. Schomacker, G. Wagnieres, et al. (1999). “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model.” Cancer Res. 59(24): 6164–70.PubMedGoogle Scholar
  77. Illum, L., L. O. Jacobsen, R. H. Muller, et al. (1987). “Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages.” Biomaterials. 8(2): 113–17.PubMedCrossRefGoogle Scholar
  78. Isomoto, H., A. Ohtsuru, V. Braiden, et al. (2006). “Heat-directed suicide gene therapy mediated by heat shock protein promoter for gastric cancer.” Oncol Rep. 15(3): 629–35.PubMedGoogle Scholar
  79. Jain, S., V. Mishra, P. Singh, et al. (2003). “RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting.” Int J Pharm. 261(1–2): 43–55.PubMedCrossRefGoogle Scholar
  80. Jang, S. H., M. G. Wientjes, D. Lu, et al. (2003). “Drug delivery and transport to solid tumors.” Pharm Res. 20(9): 1337–50.PubMedCrossRefGoogle Scholar
  81. Jeon, S. I., J. H. L. Andrade and P. G. de Gennes (1991). “Protein-surface interactions in the presence of polyethylene oxide: Simplified theory.” J Colloid Interface Sci. 142: 149–58.CrossRefGoogle Scholar
  82. Jeong, Y. I., S. J. Seo, I. K. Park, et al. (2005). “Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(g-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety.” Int J Pharm. 296(1–2): 151–61.PubMedCrossRefGoogle Scholar
  83. Jiang, C., N. Koyabu, Y. Yonemitsu, et al. (2003). “In vivo delivery of glial cell-derived neurotrophic factor across the blood–brain barrier by gene transfer into brain capillary endothelial cells.” Hum Gene Ther. 14(12): 1181–91.PubMedCrossRefGoogle Scholar
  84. Johannsen, M., U. Gneveckow, L. Eckelt, et al. (2005). “Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.” Int J Hyperthermia. 21(7): 637–47.PubMedCrossRefGoogle Scholar
  85. Kakinuma, K., R. Tanaka, H. Takahashi, et al. (1996). “Drug delivery to the brain using thermosensitive liposome and local hyperthermia.” Int J Hyperthermia. 12(1): 157–65.PubMedCrossRefGoogle Scholar
  86. Kawashita, M., K. Sadaoka, T. Kokubo, et al. (2006). “Enzymatic preparation of hollow magnetite microspheres for hyperthermic treatment of cancer.” J Mater Sci Mater Med. 17(7): 605–10.PubMedCrossRefGoogle Scholar
  87. Kim, S. H., D. W. Kim, Y. H. Shim, et al. (2001). “In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy.” J Contr Release. 72(1–3): 191–202.CrossRefGoogle Scholar
  88. Kim, S. H., J. H. Jeong, K. W. Chun, et al. (2005). “Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)–poly(ethylene glycol)-folate conjugate.” Langmuir. 21(19): 8852–7.PubMedCrossRefGoogle Scholar
  89. Kleiter, M. M., D. Yu, L. A. Mohammadian, et al. (2006). A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clinical cancer research. 12(22): 6800–7.PubMedCrossRefGoogle Scholar
  90. Kobayashi, H., S. Kawamoto, M. Bernardo, et al. (2006). “Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: Comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging.” J Contr Release. 111(3): 343–51.CrossRefGoogle Scholar
  91. Kohler, N., C. Sun, J. Wang, et al. (2005). “Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells.” Langmuir. 21: 8858–64.PubMedCrossRefGoogle Scholar
  92. Kommareddy, S. and M. Amiji (2007). “Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors.” Cancer Gene Ther. 14(5): 488–98.PubMedCrossRefGoogle Scholar
  93. Kong, G., R. D. Braun and M. W. Dewhirst (2000). “Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size.” Cancer Res. 60(16): 4440–5.PubMedGoogle Scholar
  94. Kong, G., R. D. Braun and M. W. Dewhirst (2001). “Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature.” Cancer Res. 61(7): 3027–32.PubMedGoogle Scholar
  95. Koudinova, N. V., J. H. Pinthus, A. Brandis, et al. (2003). “Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts.” Int J Cancer. 104(6): 782–9.PubMedCrossRefGoogle Scholar
  96. Koziara, J. M., P. R. Lockman, D. D. Allen, et al. (2004). “Paclitaxel nanoparticles for the potential treatment of brain tumors.” J Contr Release. 99(2): 259–69.CrossRefGoogle Scholar
  97. Kreuter, J. (1994). “Drug targeting with nanoparticles.” Eur J Drug Metab Pharmacokinet. 19(3): 253–6.PubMedCrossRefGoogle Scholar
  98. Kreuter, J. (2001). “Nanoparticulate systems for brain delivery of drugs.” Adv Drug Deliv Rev. 47(1): 65–81.PubMedCrossRefGoogle Scholar
  99. Kreuter, J. (2004). “Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain.” J Nanosci Nanotechnol. 4(5): 484–8.PubMedCrossRefGoogle Scholar
  100. Kreuter, J., R. N. Alyautdin, D. A. Kharkevich, et al. (1995). “Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles).” Brain Res. 674(1): 171–4.PubMedCrossRefGoogle Scholar
  101. Kreuter, J., P. Ramge, V. Petrov, et al. (2003). “Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles.” Pharm Res. 20(3): 409–16.PubMedCrossRefGoogle Scholar
  102. Lammers, T., P. Peschke, R. Kuhnlein, et al. (2007). “Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems.” J Contr Release. 117(3): 333–41.CrossRefGoogle Scholar
  103. Lanza, G. M. and S. A. Wickline (2001). “Targeted ultrasonic contrast agents for molecular imaging and therapy.” Prog Cardiovasc Dis. 44(1): 13–31.PubMedCrossRefGoogle Scholar
  104. Lanza, G. M. and S. A. Wickline (2003). “Targeted ultrasonic contrast agents for molecular imaging and therapy.” Curr Probl Cardiol. 28(12): 625–53.PubMedCrossRefGoogle Scholar
  105. Lanza, G. M., D. R. Abendschein, X. Yu, et al. (2002). “Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology.” Acad Radiol. 9 Suppl 2: S330–1.PubMedCrossRefGoogle Scholar
  106. Lanza, G. M., P. M. Winter, S. D. Caruthers, et al. (2004). “Magnetic resonance molecular imaging with nanoparticles.” J Nucl Cardiol. 11(6): 733–43.PubMedCrossRefGoogle Scholar
  107. Larina, I. V., B. M. Evers, T. V. Ashitkov, et al. (2005). “Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation.” Technol Cancer Res Treat. 4(2): 217–26.PubMedGoogle Scholar
  108. Li, J., X. Wang, C. Wang, et al. (2007). “The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells.” ChemMedChem. 2(3): 374–8.PubMedCrossRefGoogle Scholar
  109. Liu, W., M. R. Dreher, D. Y. Furgeson, et al. (2006). “Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice.” J Contr Release. 116(2): 170–8.CrossRefGoogle Scholar
  110. Lockman, P. R., M. O. Oyewumi, J. M. Koziara, et al. (2003). “Brain uptake of thiamine-coated nanoparticles.” J Contr Release. 93(3): 271–82.CrossRefGoogle Scholar
  111. Loo, C., A. Lin, L. Hirsch, et al. (2004). “Nanoshell-enabled photonics-based imaging and therapy of cancer.” Technol Cancer Res Treat. 3(1): 33–40.PubMedADSGoogle Scholar
  112. Loo, C., A. Lowery, N. Halas, et al. (2005). “Immunotargeted nanoshells for integrated cancer imaging and therapy.” Nano Lett. 5(4): 709–11.PubMedADSCrossRefGoogle Scholar
  113. Lukyanov, A. N., T. A. Elbayoumi, A. R. Chakilam and V. P. Torchilin (2004). Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release. 100(1): 135–44.PubMedCrossRefGoogle Scholar
  114. Lum, A. F., M. A. Borden, P. A. Dayton, et al. (2006). “Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles.” J Contr Release. 111(1–2): 128–34.CrossRefGoogle Scholar
  115. Maeda, H. (2001). “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.” Adv Enzyme Regul. 41: 189–207.PubMedCrossRefGoogle Scholar
  116. Maier-Hauff, K., R. Rothe, R. Scholz, et al. (2007). “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme.” J Neurooncol. 81(1): 53–60.PubMedCrossRefGoogle Scholar
  117. Marsh, J. N., M. S. Hughes, C. S. Hall, et al. (1998). “Frequency and concentration dependence of the backscatter coefficient of the ultrasound contrast agent Albunex (R).” J Acoust Soc Am. 104: 1654–66.ADSCrossRefGoogle Scholar
  118. Marsh, J. N., C. S. Hall, M. J. Scott, et al. (2002a). “Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model.” IEEE Trans Ultrason Ferroelectr Freq Contr. 49(1): 29–38.CrossRefGoogle Scholar
  119. Marsh, J. N., C. S. Hall, S. A. Wickline, et al. (2002b). “Temperature dependence of acoustic impedance for specific fluorocarbon liquids.” J Acoust Soc Am. 112(6): 2858–62.PubMedADSCrossRefGoogle Scholar
  120. Matsumura, Y. and H. Maeda (1986). “A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS.” Canc Res. 46: 6387–92.Google Scholar
  121. Matsuo, H., T. Okamura, J. Chen, et al. (2000). “Efficient introduction of macromolecules and oligonucleotides into brain capillary endothelial cells using HVJ-liposomes.” J Drug Target. 8(4): 207–16.PubMedCrossRefGoogle Scholar
  122. Medintz, I. L., H. T. Uyeda, E. R. Goldman, et al. (2005). “Quantum dot bioconjugates for imaging, labelling and sensing.” Nat Mater. 4(6): 435–46.PubMedADSCrossRefGoogle Scholar
  123. Meyer, D. E., B. C. Shin, G. A. Kong, et al. (2001). Drug targeting using thermally responsive polymers and local hyperthermia. Journal of controlled release. 74(1–3): 213–24.PubMedCrossRefGoogle Scholar
  124. Morawski, A. M., P. M. Winter, K. C. Crowder, et al. (2004). “Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI.” Magn Reson Med. 51(3): 480–6.PubMedCrossRefGoogle Scholar
  125. Morel, S., E. Terreno, E. Ugazio, et al. (1998). “NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes.” Eur J Pharm Biopharm. 45(2): 157–63.PubMedCrossRefGoogle Scholar
  126. Mukherjee, P., R. Bhattacharya, P. Wang, et al. (2005). “Antiangiogenic properties of gold nanoparticles.” Clin Cancer Res. 11(9): 3530–4.PubMedCrossRefGoogle Scholar
  127. Murray, C. B., D. J. Norris and M. G. Bawendi (1993). “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites.” J Am Chem Soc. 115(19): 8706–15.CrossRefGoogle Scholar
  128. Nasongkla, N., E. Bey, J. Ren, et al. (2006). “Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.” Nano Lett. 6(11): 2427–30.PubMedADSCrossRefGoogle Scholar
  129. National Cancer Institute (2004). Hyperthermia in cancer treatment: questions and answers (FS 7.3). Accessed on February 27, 2007 from
  130. National Cancer Institute (2005). “Hyperthermia in cancer treatment: questions and answers (FS 7.3).” (Accessed April 3, 2007).
  131. Nielsen, U. B., D. B. Kirpotin, E. M. Pickering, et al. (2002). “Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis.” Biochem Biophys Acta. 1591(1–3): 109–18.PubMedGoogle Scholar
  132. Ningaraj, N. S. (2006). Drug delivery to brain tumours: challenges and progress. Expert opinion on drug delivery. 3(4): 499–509.PubMedCrossRefGoogle Scholar
  133. Nsereko, S. and M. Amiji (2002). “Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations.” Biomaterials. 23(13): 2723–31.PubMedCrossRefGoogle Scholar
  134. Ojeda, R., J. L. de Paz, A. G. Barrientos, et al. (2007). “Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines.” Carbohydr Res. 342(3–4): 448–59.PubMedCrossRefGoogle Scholar
  135. Olbrich, C., A. Gessner, O. Kayser, et al. (2002). “Lipid–drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate.” J Drug Target. 10(5): 387–96.PubMedCrossRefGoogle Scholar
  136. Oldenburg, S. J., J. B. Jackson, S. L. Westcott, et al. (1999). “Infrared extinction properties of gold nanoshells.” Appl Phys Lett. 75(19): 2897–9.ADSCrossRefGoogle Scholar
  137. Olivier, J. C., L. Fenart, R. Chauvet, et al. (1999). “Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity.” Pharm Res. 16(12): 1836–42.PubMedCrossRefGoogle Scholar
  138. Oupicky, D., K. A. Howard, C. Konak, et al. (2000). “Steric stabilization of poly-L-lysine/DNA complexes by the covalent attachment of semitelechelic poly(N-(2-hydroxypropyl) methacrylamide).” Bioconjugate Chem. 11(4): 492–501.CrossRefGoogle Scholar
  139. Oyewumi, M. O. and R. J. Mumper (2002). “Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy.” Bioconjugate Chem. 13(6): 1328–35.CrossRefGoogle Scholar
  140. Oyewumi, M. O., S. Liu, J. A. Moscow, et al. (2003). “Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters.” Bioconjugate Chem. 14(2): 404–11.CrossRefGoogle Scholar
  141. Oyewumi, M. O., R. A. Yokel, M. Jay, et al. (2004). “Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor- bearing mice.” J Contr Release. 95(3): 613–26.CrossRefGoogle Scholar
  142. Paciotti, G. F., L. Myer, D. Weinreich, et al. (2004). “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery.” Drug Deliv. 11(3): 169–83.PubMedCrossRefGoogle Scholar
  143. Pamujula, S., R. A. Graves, T. Freeman, et al. (2004). Oral delivery of spray dried PLGA/amifostine nanoparticles. The Journal of Pharmacy and Pharmacology. 56(9): 1119–25.PubMedCrossRefGoogle Scholar
  144. Panyam, J. and V. Labhasetwar (2003). “Biodegradable nanoparticles for drug and gene delivery to cells and tissue.” Adv Drug Deliv Rev. 55(3): 329–47.PubMedCrossRefGoogle Scholar
  145. Pedley, R. B., S. A. Hill, G. M. Boxer, et al. (2001). “Eradication of colorectal xenografts by combined radioimmunotherapy and combretastatin a-4 3-O-phosphate.” Cancer Res. 61(12): 4716–22.PubMedGoogle Scholar
  146. Peira, E., P. Marzola, V. Podio, et al. (2003). “In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide.” J Drug Target. 11(1): 19–24.PubMedCrossRefGoogle Scholar
  147. Pelz, J. O., J. Doerfer, W. Hohenberger, et al. (2005). “A new survival model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing rats in the treatment of peritoneal carcinomatosis.” BMC Canc. 5(1): 56.CrossRefGoogle Scholar
  148. Ponce, A. M., B. L. Viglianti, D. Yu, et al. (2007). Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. Journal of the National Cancer Institute. 99(1): 53–63.PubMedCrossRefGoogle Scholar
  149. Qing, S. H., L. Y. Li, X. H. Sheng, et al. (2006). “Photosensitizer nanoparticles photodynamic therapy on LOVO human colon cancer xenografts in athymic mice.” Zhonghua Wei Chang Wai Ke Za Zhi. 9(6): 530–3.PubMedGoogle Scholar
  150. Ramge, P., J. Kreuter and B. Lemmer (1999). “Circadian phase-dependent antinociceptive reaction in mice determined by the hot-plate test and the tail-flick test after intravenous injection of dalargin-loaded nanoparticles.” Chronobiol Int. 16(6): 767–77.PubMedCrossRefGoogle Scholar
  151. Ranney, D., P. Antich, E. Dadey, et al. (2005). “Dermatan carriers for neovascular transport targeting, deep tumor penetration and improved therapy.” J Contr Release. 109(1–3): 222–35.CrossRefGoogle Scholar
  152. Reddy, G. R., M. S. Bhojani, P. McConville, et al. (2006). “Vascular targeted nanoparticles for imaging and treatment of brain tumors.” Clin Cancer Res. 12(22): 6677–86.PubMedCrossRefGoogle Scholar
  153. Reichardt, W., D. Hu-Lowe, D. Torres, et al. (2005). “Imaging of VEGF receptor kinase inhibitorinduced antiangiogenic effects in Drug-Resistant Human Adenocarcinoma Model.” Neoplasia. 7: 847–53.PubMedCrossRefGoogle Scholar
  154. Ricci-Junior, E. and J. M. Marchetti (2006). “Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use.” J Microencapsul. 23(5): 523–38.PubMedCrossRefGoogle Scholar
  155. Rychak, J. J., A. L. Klibanov and J. A. Hossack (2005). “Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification.” IEEE Trans Ultrason Ferroelectr Freq Contr. 52(3): 421–33.CrossRefGoogle Scholar
  156. Sadeque, A. J., C. Wandel, H. He, et al. (2000). “Increased drug delivery to the brain by p-glycoprotein inhibition.” Clin Pharmacol Ther. 68(3): 231–7.PubMedCrossRefGoogle Scholar
  157. Samia, A. C. S., S. Dayal and C. Burda (2006). Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy. Photochemistry and Photobiology. 82(3): 617–625.PubMedCrossRefGoogle Scholar
  158. Sauer, I., I. R. Dunay, K. Weisgraber, et al. (2005). “An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells.” Biochemistry. 44(6): 2021–9.PubMedCrossRefGoogle Scholar
  159. Savolainen, J., J. E. Edwards, M. E. Morgan, et al. (2002). “Effects of a p-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats.” Drug Metabol Dispos. 30(5): 479–82.CrossRefGoogle Scholar
  160. Schiffelers, R. M., A. Ansari, J. Xu, et al. (2004). “Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle.” Nucleic Acids Res. 32(19): e149.PubMedCrossRefGoogle Scholar
  161. Schmidt-Erfurth, U., T. Hasan, E. Gragoudas, et al. (1994). “Vascular targeting in photodynamic occlusion of subretinal vessels.” Ophthalmology. 101(12): 1953–61.PubMedGoogle Scholar
  162. Schmieder, A. H., P. M. Winter, S. D. Caruthers, et al. (2005). “Molecular MR imaging of melanoma angiogenesis with SSSSSSSSSSSSSS3-targeted paramagnetic nanoparticles.” Magn Reson Med. 53(3): 621–7.PubMedCrossRefGoogle Scholar
  163. Schroeder, U. and B. A. Sabel (1996). “Nanoparticles, a drug carrier system to pass the blood–brain barrier, permit central analgesic effects of i.v. dalargin injections.” Brain Res. 710(1–2): 121–4.CrossRefGoogle Scholar
  164. Schroeder, U., P. Sommerfeld and B. A. Sabel (1998). “Efficacy of oral dalargin-loaded nanoparticle delivery across the blood–brain barrier.” Peptides. 19(4): 777–80.PubMedCrossRefGoogle Scholar
  165. Schwarze, S. R. and S. F. Dowdy (2000). “In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA.” Trends Pharmacol Sci. 21(2): 45–8.PubMedCrossRefGoogle Scholar
  166. Sekhar, K. R., V. N. Sonar, V. Muthusamy, et al. (2007). Novel chemical enhancers of heat shock increase thermal radiosensitization through a mitotic catastrophe pathway. Cancer research. 67(2): 695–701.PubMedCrossRefGoogle Scholar
  167. Sengupta, S., D. Eavarone, I. Capila, et al. (2005). “Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system.” Nature. 436(7050): 568–72.PubMedADSCrossRefGoogle Scholar
  168. Shenoy, D. B. and M. M. Amiji (2005). Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamox ifen in breast cancer. International journal of pharmaceutics. 293(1–2):261–70.PubMedCrossRefGoogle Scholar
  169. Shenoy, D., S. Little, R. Langer and M. Amiji (2005). Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharmaceutical research. 22(12): 2107–14.PubMedCrossRefGoogle Scholar
  170. Shi, N., Y. Zhang, C. Zhu, et al. (2001). “Brain-specific expression of an exogenous gene after i.v. administration.” Proc Natl Acad Sci U S A. 98(22): 12754–9.PubMedADSCrossRefGoogle Scholar
  171. Shikata, F., H. Tokumitsu, H. Ichikawa, et al. (2002). “In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer.” Eur J Pharm Biopharm. 53(1): 57–63.PubMedCrossRefGoogle Scholar
  172. Shortencarier, M. J., P. A. Dayton, S. H. Bloch, et al. (2004). “A method for radiation-force localized drug delivery using gas-filled lipospheres.” IEEE Trans Ultrason Ferroelectr Freq Contr. 51(7): 822–31.CrossRefGoogle Scholar
  173. Siddiqui, F., C. Y. Li, S. M. Larue, et al. (2007). “A phase I trial of hyperthermia-induced interleukin-12 gene therapy in spontaneously arising feline soft tissue sarcomas.” Mol Cancer Ther. 6(1): 380–9.PubMedCrossRefGoogle Scholar
  174. Simberg, D., T. Duza, J. H. Park, et al. (2007). “Biomimetic amplification of nanoparticle homing to tumors.” PNAS. 104(3): 932–6.PubMedADSCrossRefGoogle Scholar
  175. Soma, E. C., C. Dubernet, D. Bentolila, et al. (2000). “Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles.” Biomaterials. 21(1): 1–7.PubMedCrossRefGoogle Scholar
  176. Somogyi, G., L. Prokai and N. Bodor (1998). “Targeted drug delivery to the brain via phosphonate derivatives II. Anionic chemical delivery system for zidovudine (AZT).” Int J Pharm. 166: 27–35.CrossRefGoogle Scholar
  177. Stewart, F., P. Baas and W. Star (1998). “What does photodynamic therapy have to offer radiation oncologists (or their cancer patients)?” Radiother Oncol. 48(3): 233–48.PubMedCrossRefGoogle Scholar
  178. Storm G., T. Daemen and D. D. Lasic (1995). “Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system.” Adv Drug Deliv Rev. 17: 31–48.CrossRefGoogle Scholar
  179. Sukhanova, A., J. Devy, L. Venteo, et al. (2004). “Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells.” Anal Biochem. 324(1): 60–7.PubMedCrossRefGoogle Scholar
  180. Sun, C., R. Sze and M. Zhang (2006). “Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI.” J Biomed Mater Res 78(3): 550–7.CrossRefGoogle Scholar
  181. Szymanski-Exner, A., N. T. Stowe, R. S. Lazebnik, et al. (2002). “Noninvasive monitoring of local drug release in a rabbit radiofrequency (RF) ablation model using X-ray computed tomography.” J Contr Release. 83(3): 415–25.CrossRefGoogle Scholar
  182. Taylor, E. M. (2002). “The impact of efflux transporters in the brain on the development of drugs for CNS disorders.” Clin Pharmacokinet. 41(2): 81–92.PubMedCrossRefGoogle Scholar
  183. Thomas, H. and H. M. Coley (2003). Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer control. 10(2): 159–65.PubMedGoogle Scholar
  184. Tokes, Z. A., A. K. St Peteri and J. A. Todd (1980). “Availability of liposome content to the nervous system. Liposomes and the blood–brain barrier.” Brain Res. 188(1): 282–6.PubMedCrossRefGoogle Scholar
  185. Tokumitsu, H., J. Hiratsuka, Y. Sakurai, T. Kobayashi, H. Ichikawa and Y. Fukumori (2000). “Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor.” Canc Lett. 150(2): 177–82.CrossRefGoogle Scholar
  186. Torchilin, V. P. (1996). “How do polymers prolong circulation time of liposomes?” J Liposome Res. 6: 99–116.CrossRefGoogle Scholar
  187. Torchilin, V. P., T. S. Levchenko, A. N. Lukyanov, et al. (2001). p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta. 1511(2): 397–411.PubMedCrossRefGoogle Scholar
  188. Torchilin, V. P. (2002). “TAT peptide-modified liposomes for intracellular delivery of drugs and DNA.” Cell Mol Biol Lett. 7(2): 265–7.PubMedGoogle Scholar
  189. Torchilin, V. P. and T. S. Levchenko (2003). “TAT-liposomes: a novel intracellular drug carrier.” Curr Protein Pept Sci. 4(2): 133–40.PubMedCrossRefGoogle Scholar
  190. Tran, J., Z. Master, J. L. Yu, et al. (2002). “A role for survivin in chemoresistance of endothelial cells mediated by VEGF.” PNAS. 99: 4349–54.PubMedADSCrossRefGoogle Scholar
  191. Tusji, A., Ed. (2000). The blood–brain barrier and drug delivery to the CNS. New York, Marcel Dekker.Google Scholar
  192. Uehara, M., T. Inokuchi, K. Sano, et al. (1998). “The anti-tumor effect of photodynamic therapy evaluated by bromodeoxyuridine immunohistochemistry.” Int J Oral Maxillofac Surg. 27(3): 204–8.PubMedCrossRefGoogle Scholar
  193. U.S. Food and Drug Administration, “Center for Drug Evaluation and Research.” (Accessed April 25, 2006).
  194. U.S. National Institute of Health, “Cancer Statistics” (Accessed September 15, 2006).
  195. van der Zee, J. (2002). Heating the patient: a promising approach? Ann Oncol. 13:1173–84.PubMedCrossRefGoogle Scholar
  196. van Vlerken, L. E. and M. M. Amiji (2006). Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert opinion on drug delivery. 3(2): 205–16.PubMedCrossRefGoogle Scholar
  197. van Vlerken, L. E., Z. Duan, M. V. Seiden, et al. (2007). “Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer.” Canc Res. 67(10): 4843–50.CrossRefGoogle Scholar
  198. Veenhuizen, R., H. Oppelaar, M. Ruevekamp, et al. (1997). “Does tumour uptake of Foscan determine PDT efficacy?” Int J Cancer. 73(2): 236–9.PubMedCrossRefGoogle Scholar
  199. Vinogradov, S. V. (2006). Colloidal microgels in drug delivery applications. Current Pharmaceutical Design. 2006;12(36): 4703–12.PubMedCrossRefGoogle Scholar
  200. Visaria, R. K., R. J. Griffin, B. W. Williams (2006). Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Molecular cancer therapeutics. 5(4): 1014–20.PubMedCrossRefGoogle Scholar
  201. Voura, E. B., J. K. Jaiswal, H. Mattoussi, et al. (2004). “Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy.” Nat Med. 10(9): 993–8.PubMedCrossRefGoogle Scholar
  202. Wachsberger, P., R. Burd and A. P. Dicker (2003). “Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction.” Clin Cancer Res. 9(6): 1957–71.PubMedGoogle Scholar
  203. Wani, M. C., H. L. Taylor, M. E. Wall, et al. (1971). “Plant antitumor agents VI. The isolation and structure of Taxol, a novel antitumor and anitleukemic agent from Taxus brevifolia.” J Am Chem Soc. 18(3): 242–60.Google Scholar
  204. Weinberg, B. D., E. Blanco, S. F. Lempka, et al. (2007). “Combined radiofrequency ablation and doxorubicin-eluting polymer implants for liver cancer treatment.” J Biomed Mater Res A. 81(1): 205–13.PubMedGoogle Scholar
  205. Weissig, V. 2005. Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin Drug Deliv. 2(1): 89–102.PubMedCrossRefGoogle Scholar
  206. Weissig, V., S. V. Boddapati, S. M. Cheng and G. G. D’Souza (2006). Liposomes and liposome-like vesicles for drug and DNA delivery to mitochondria.J Liposome Res. 16(3): 249–64.PubMedCrossRefGoogle Scholar
  207. Wickline, S. A. and G. M. Lanza (2003). “Nanotechnology for molecular imaging and targeted therapy.” Circulation. 107(8): 1092–5.PubMedCrossRefGoogle Scholar
  208. Winter, P. M., S. D. Caruthers, A. Kassner, et al. (2003a). “Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αVβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging.” Canc Res. 63(18): 5838–43.Google Scholar
  209. Winter, P. M., A. M. Morawski, S. D. Caruthers, et al. (2003b). “Molecular imaging of angiogenesis in early-stage atherosclerosis with αVβ3-integrin-targeted nanoparticles.” Circulation. 108(18): 2270–4.PubMedCrossRefGoogle Scholar
  210. Wong, H. L., R. Bendayan, A. M. Rauth, et al. (2006). “Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer.” J Contr Release. 116(3): 275–84.CrossRefGoogle Scholar
  211. Wood, B. J., J. K. Locklin, A. Viswanathan, et al. (2007). Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. Journal of vascular and interventional radiology. 18(1 Pt 1): 9–24.PubMedCrossRefGoogle Scholar
  212. Wu, X., H. Liu, J. Liu, et al. (2003). “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.” Nat Biotechnol. 21(1): 41–6.PubMedCrossRefGoogle Scholar
  213. Wust, P., B. Hildebrandt, G. Sreenivasa, et al. (2002). “Hyperthermia in combined treatment of cancer.” Lancet Oncol. 3(8): 487–97.PubMedCrossRefGoogle Scholar
  214. Wust, P., U. Gneveckow, M. Johannsen, et al. (2006). “Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures.” Int J Hyperther. 22(8): 673–85.CrossRefGoogle Scholar
  215. Yang, S. C., L. F. Lu, Y. Cai, et al. (1999a). “Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain.” J Contr Release. 59(3): 299–307.CrossRefGoogle Scholar
  216. Yang, S., J. Zhu, Y. Lu, et al. (1999b). “Body distribution of camptothecin solid lipid nanoparticles after oral administration.” Pharmaceut Res. 16(5): 751–7.CrossRefGoogle Scholar
  217. Zara, G. P., R. Cavalli, A. Bargoni, et al. (2002a). “Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues.” J Drug Target. 10(4): 327–35.PubMedCrossRefGoogle Scholar
  218. Zara, G. P., A. Bargoni, R. Cavalli, et al. (2002b). “Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats.” J Pharmaceut Sci. 91(5): 1324–33.CrossRefGoogle Scholar
  219. Zhang, X., J. Xie, S. Li, et al. (2003). “The study on brain targeting of the amphotericin B liposomes.” J Drug Target. 11(2): 117–22.MATHPubMedCrossRefGoogle Scholar
  220. Zhao, M., D. A. Beauregard, L. Loizou, et al. (2001). “Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent.” Natl Med. 1: 1241–1244.CrossRefGoogle Scholar
  221. Zhao, S., M. Borden, S. H. Bloch, et al. (2004). “Radiation-force assisted targeting facilitates ultrasonic molecular imaging.” Mol Imag. 3(3): 135–48.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Padmaja Magadala
    • 1
  • Lilian E. van Vlerken
    • 1
  • Aliasgar Shahiwala
    • 1
  • Mansoor M. Amiji
    • 1
  1. 1.Department of Pharmaceutical SciencesNortheastern UniversityBostonUSA

Personalised recommendations