Long-Circulating Liposomes with Attached Diagnostic Moieties: Application for Gamma and MR Imaging

  • William Phillips
  • Beth Goins
  • Ande Bao
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

Liposomes, spontaneously forming lipid nanoparticles, have long been recognized to have great potential as carriers for diagnostic and therapeutic agents since their initial discovery more than 40 years ago (Gregoriadis and Ryman 1971; Bangham 1993). In the last 30 years, remarkable progress in liposome technology has been accomplished in the following areas (1) methods of large-scale manufacture, (2) methods of stably encapsulating sufficient quantities of therapeutic agents within the liposomes, (3) methods of producing homogeneously sized liposomes, (4) effective methods of noninvasively tracking the distribution of liposomes in the body, and (5) development of methodology to prolong the circulation time of liposomes in the blood (Allen et al. 1991; Phillips et al. 1999; Torchilin and Papisov 1994).


Single Photon Emission Compute Tomography Iron Oxide Nanoparticles Liposome Formulation Magnetic Resonance Contrast Gamma Photon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Wahab, O. I., Grubbs, E., Viglianti, B. L., Cheng, T. Y., Ueno, T., Ko, S., Rabbani, Z., Curtis, S., Pruitt, S. K., Dewhirst, M. W. and Tyler, D. S. 2004. The role of hyperthermia in regional alkylating agent chemotherapy. Clin Cancer Res 10:5919–5929.PubMedCrossRefGoogle Scholar
  2. Alex, J. C. 2004. The application of sentinel node radiolocalization to solid tumors of the head and neck: a 10-year experience. Laryngoscope 114:2–19.PubMedCrossRefGoogle Scholar
  3. Allen, T. M., Hansen, C., Martin, F., Redemann, C. and Yau-Young, A. 1991. Liposomes containing synthetic lipid derivative of poly(ethylene) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36.PubMedCrossRefGoogle Scholar
  4. Bacic, G., Niesman, M. R., Bennett, H. F., Magin, R. L. and Swartz, H. M. 1988. Modulation of water proton relaxation rates by liposomes containing paramagnetic materials. Magn Reson Med 6:445–458.PubMedCrossRefGoogle Scholar
  5. Bangham, A. D. 1993. Liposomes: the Babraham connection. Chem Phys Lipids 64:275–285.PubMedCrossRefGoogle Scholar
  6. Bao, A., Goins, B., Klipper, R., Negrete, G., Mahindaratne, M. and Phillips, W. T. 2003a. A novel liposome radiolabeling method using 99mTc-“SNS/S” complexes: in vitro and in vivo evaluation. J Pharm Sci 92:1893–1904.PubMedCrossRefGoogle Scholar
  7. Bao, A., Goins, B., Klipper, R., Negrete, G. and Phillips, W. T. 2003b. 186Re-liposome labeling using 186Re-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. J Nucl Med 44:1992–1999.PubMedGoogle Scholar
  8. Bao, A., Goins, B., Klipper, R., Negrete, G. and Phillips, W. T. 2004. Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther 308:419–425.PubMedCrossRefGoogle Scholar
  9. Bao, A., Phillips, W. T., Goins, B., Zheng, X., Sabour, S., Natarajan, M., Ross Woolley, F., Zavaleta, C. and Otto, R. A. 2006. Potential use of drug carried-liposomes for cancer therapy via direct intratumoral injection. Int J Pharm 316:162–169.PubMedCrossRefGoogle Scholar
  10. Bao, A., Zhao, X., Phillips, W. T., Woolley, F. R., Otto, R. A., Goins, B. and Hevezi, J. M. 2005. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution. Med Phys 32:200–208.PubMedCrossRefGoogle Scholar
  11. Barsky, D., Putz, B., Schulten, K. and Magin, R. L. 1992. Theory of paramagnetic contrast agents in liposome systems. Magn Reson Med 24:1–13.PubMedCrossRefGoogle Scholar
  12. Bendas, G., Krause, A., Bakowsky, U., Vogel, J. and Rothe, U. 1999. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int J Pharm 181:79–93.PubMedCrossRefGoogle Scholar
  13. Bos, C., Lepetit-Coiffe, M., Quesson, B. and Moonen, C. T. 2005. Simultaneous monitoring of temperature and T1: methods and preliminary results of application to drug delivery using thermosensitive liposomes. Magn Reson Med 54:1020–1024.PubMedCrossRefGoogle Scholar
  14. Caruthers, S. D., Winter, P. M., Wickline, S. A. and Lanza, G. M. 2006. Targeted magnetic resonance imaging contrast agents. Meth Mol Med 124:387–400.Google Scholar
  15. Catana, C., Wu, Y., Judenhofer, M. S., Qi, J., Pichler, B. J. and Cherry, S. R. 2006. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976.PubMedGoogle Scholar
  16. Chan, T. W., Eley, C., Liberti, P., So, A. and Kressel, H. Y. 1992. Magnetic resonance imaging of abscesses using lipid-coated iron oxide particles. Invest Radiol 27:443–449.PubMedCrossRefGoogle Scholar
  17. Corvo, M. L., Boerman, O. C., Oyen, W. J., Van Bloois, L., Cruz, M. E., Crommelin, D. J. and Storm, G. 1999. Intravenous administration of superoxide dismutase entrapped in long circulating liposomes. II. In vivo fate in a rat model of adjuvant arthritis. Biochim Biophys Acta 1419:325–334.PubMedCrossRefGoogle Scholar
  18. Dams, E. T., Laverman, P., Oyen, W. J., Storm, G., Scherphof, G. L., van Der Meer, J. W., Corstens, F. H. and Boerman, O. C. 2000. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079.PubMedGoogle Scholar
  19. Devoisselle, J. M., Vion-Dury, J., Galons, J. P., Confort-Gouny, S., Coustaut, D., Canioni, P. and Cozzone, P. J. 1988. Entrapment of gadolinium-DTPA in liposomes. Characterization of vesicles by P-31 NMR spectroscopy. Invest Radiol 23:719–724.PubMedCrossRefGoogle Scholar
  20. Elbayoumi, T. A. and Torchilin, V. P. 2006. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 33:1196–1205.PubMedCrossRefGoogle Scholar
  21. Erdogan, S., Roby, A., Sawant, R., Hurley, J. and Torchilin, V. P. 2006a. Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes. J Liposome Res 16:45–55.PubMedCrossRefGoogle Scholar
  22. Erdogan, S., Roby, A. and Torchilin, V. P. 2006b. Enhanced tumor visualization by gamma-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes. Mol Pharmacol 3:525–530.CrossRefGoogle Scholar
  23. Fossheim, S. L., Il’yasov, K. A., Hennig, J. and Bjornerud, A. 2000. Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia: in vitro feasibility studies. Acad Radiol 7:1107–1115.PubMedCrossRefGoogle Scholar
  24. Frich, L., Bjornerud, A., Fossheim, S., Tillung, T. and Gladhaug, I. 2004. Experimental application of thermosensitive paramagnetic liposomes for monitoring magnetic resonance imaging guided thermal ablation. Magn Reson Med 52:1302–1309.PubMedCrossRefGoogle Scholar
  25. Fujimoto, Y., Okuhata, Y., Tyngi, S., Namba, Y. and Oku, N. 2000. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol Pharm Bull 23:97–100.PubMedGoogle Scholar
  26. Gabizon, A., Huberty, J., Straubinger, R. M., Price, D. C. and Papahadjpulos, D. 1989. An improved method for in vivo tracing and imaging of liposomes using a gallium-67-deferoxamine complex. J Liposome Res 1:123–135.CrossRefGoogle Scholar
  27. Gabizon, A., Shmeeda, H., Barenholz, Y. 2003. Pharmacokinetics of pegylated liposomal Doxirubicin: Review of animal and human studies. Clinical Pharmacokinetics 42:418–436.CrossRefGoogle Scholar
  28. Gaspar, M. M., Boerman, O. C., Laverman, P., Corvo, M. L., Storm, G. and Cruz, M. E. 2007. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis. J Control Release 117:186–195.PubMedCrossRefGoogle Scholar
  29. Ghaghada, K. B., Bockhorst, K. H., Mukundan, S., Jr., Annapragada, A. V. and Narayana, P. A. 2007. High-resolution vascular imaging of the rat spine using liposomal blood pool MR agent. Am J Neuroradiol 28:48–53.PubMedGoogle Scholar
  30. Goins, B., Klipper, R., Rudolph, A. S. and Phillips, W. T. 1994. Use of technetium-99m-liposomes in tumor imaging. J Nucl Med 35:1491–1498.PubMedGoogle Scholar
  31. Goins, B. A. 2008. Radiolabeled lipid nanoparticles for cancer diagnosis and treatment. Handbook of Particulate Drug Delivery. Ed. M. N. V. R. Kumar, American Scientific Publishers, Stevenson Ranch, CA (in press).Google Scholar
  32. Goins, B. A. and Phillips, W. T. 2003. Radiolabelled liposomes for imaging and biodistribution studies. Liposomes: A Practical Approach. Eds. V. P. Torchilin and V. Weissig. Oxford University Press, Oxford, pp. 319–336.Google Scholar
  33. Goins, B. A. and Phillips, W. T. 2007. Methods for tracking radiolabeled after injection in the body. Liposome Technology, vol. 3. Ed. G. Gregoriadis. Informa Healthcare, New York, pp. 191–209.Google Scholar
  34. Grant, C. W., Barber, K. R., Florio, E. and Karlik, S. 1987. A phospholipid spin label used as a liposome-associated MRI contrast agent. Magn Reson Med 5:371–376.PubMedCrossRefGoogle Scholar
  35. Gregoriadis, G. and Ryman, B. E. 1971. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 124:58P.PubMedGoogle Scholar
  36. Gupta, H. and Weissleder, R. 1996. Targeted contrast agents in MR imaging. Magn Reson Imaging Clin N Am 4:171–184.PubMedGoogle Scholar
  37. Harrington, K. J., Mohammadtaghi, S., Uster, P. S., Glass, D., Peters, A. M., Vile, R. G. and Stewart, J. S. 2001. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7:243–254.PubMedGoogle Scholar
  38. Hnatowich, D. J., Friedman, B., Clancy, B. and Novak, M. 1981. Labeling of preformed liposomes with Ga-67 and Tc-99m by chelation. J Nucl Med 22:810–814.PubMedGoogle Scholar
  39. Hwang, K. J., Merriam, J. E., Beaumier, P. L. and Luk, K. F. 1982. Encapsulation, with high efficiency, of radioactive metal ions in liposomes. Biochim Biophys Acta 716:101–109.PubMedGoogle Scholar
  40. Ishida, T., Atobe, K., Wang, X. and Kiwada, H. 2006a. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release 115:251–258.PubMedCrossRefGoogle Scholar
  41. Ishida, T., Harada, M., Wang, X. Y., Ichihara, M., Irimura, K. and Kiwada, H. 2005. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release 105:305–317.PubMedCrossRefGoogle Scholar
  42. Ishida, T., Ichihara, M., Wang, X., Yamamoto, K., Kimura, J., Majima, E. and Kiwada, H. 2006b. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112:15–25.PubMedCrossRefGoogle Scholar
  43. Kabalka, G., Buonocore, E., Hubner, K., Moss, T., Norley, N. and Huang, L. 1987. Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen. Radiology 163:255–258.PubMedGoogle Scholar
  44. Karlik, S., Florio, E. and Grant, C. W. 1991. Comparative evaluation of two membrane-based liposomal MRI contrast agents. Magn Reson Med 19:56–66.PubMedCrossRefGoogle Scholar
  45. Keana, J. F. and Pou, S. 1985. Nitroxide-doped liposomes containing entrapped oxidant: an approach to the “reduction problem” of nitroxides as MRI contrast agents. Physiol Chem Phys Med NMR 17:235–240.PubMedGoogle Scholar
  46. Kleiter, M. M., Yu, D., Mohammadian, L. A., Niehaus, N., Spasojevic, I., Sanders, L., Viglianti, B. L., Yarmolenko, P. S., Hauck, M., Petry, N. A., Wong, T. Z., Dewhirst, M. W. and Thrall, D. E. 2006. A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 12:6800–6807.PubMedCrossRefGoogle Scholar
  47. Krynyckyi, B. R., Kim, C. K., Goyenechea, M. R., Chan, P. T., Zhang, Z. Y. and Machac, J. 2004. Clinical breast lymphoscintigraphy: optimal techniques for performing studies, image atlas, and analysis of images. Radiographics 24:121–145 (discussion 139–145).PubMedCrossRefGoogle Scholar
  48. Laverman, P., Boerman, O. C., Oyen, W. J. G., Corstens, F. H. M. and Storm, G. 2001. In vivo applications of PEG liposomes: unexpected observations. Crit Rev Ther Drug Carrier Syst 18:551–566.PubMedGoogle Scholar
  49. Laverman, P., Boerman, O. C. and Storm, G. 2003. Radiolabeling of liposomes for scintigraphic imaging. Meth Enzymol 373:234–248.PubMedCrossRefGoogle Scholar
  50. Laverman, P., Boerman, O. C., Storm, G. and Oyen, W. J. 2002. (99m) Tc-labelled Stealth liposomal doxorubicin (Caelyx) in glioblastomas and metastatic brain tumours. Br J Cancer 86:659–661.PubMedCrossRefGoogle Scholar
  51. Laverman, P., Dams, E. T. M., Oyen, W. J. G., Storm, G., Koenders, E. B., Prevost, R., Corstens, F. H. M. and Storm, G. 1998. A novel method to label liposomes with Tc-99m via the hydrazino nicotinyl derivative. J Nucl Med 39:7P.Google Scholar
  52. Laverman, P., Storm, G., Phillips, W. T., Bao, A. and Goins, B. 2007. Radiolabeling of liposome for scintigraphic imaging. Liposome Technology, vol. 3. Ed. G. Gregoriadis. Informa Healthcare, New York, pp. 169–185.Google Scholar
  53. Leander, P. 1995. Liver-specific contrast media for MRI and CT experimental studies. Acta Radiol Suppl 396:1–36.PubMedGoogle Scholar
  54. Leclercq, F., Cohen-Ohana, M., Mignet, N., Sbarbati, A., Herscovici, J., Scherman, D. and Byk, G. 2003. Design, synthesis, and evaluation of gadolinium cationic lipids as tools for biodistribution studies of gene delivery complexes. Bioconjug Chem 14:112–119.PubMedCrossRefGoogle Scholar
  55. Lindner, L. H., Reinl, H. M., Schlemmer, M., Stahl, R. and Peller, M. 2005. Paramagnetic thermosensitive liposomes for MR-thermometry. Int J Hyperther 21:575–588.CrossRefGoogle Scholar
  56. Lokling, K. E., Fossheim, S. L., Skurtveit, R., Bjornerud, A. and Klaveness, J. 2001. pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Magn Reson Imaging 19:731–738.PubMedCrossRefGoogle Scholar
  57. Love, W. G., Amos, N., Williams, B. D. and Kellaway, I. W. 1989. Effect of liposome surface charge on the stability of technetium (99mTc) radiolabelled liposomes. Ann Rheum Dis 6:105–113.Google Scholar
  58. Marik, J., Tartis, M. S., Zhang, H., Fung, J. Y., Kheirolomoom, A., Sutcliffe, J. L. and Ferrara, K. W. 2007. Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). Nucl Med Biol 34:165–171.PubMedCrossRefGoogle Scholar
  59. Mauk, M. R. and Gamble, R. C. 1979. Preparation of lipid vesicles containing high levels of entrapped radioactive cations. Anal Biochem 94:302–307.PubMedCrossRefGoogle Scholar
  60. McDannold, N., Fossheim, S. L., Rasmussen, H., Martin, H., Vykhodtseva, N. and Hynynen, K. 2004. Heat-activated liposomal MR contrast agent: initial in vivo results in rabbit liver and kidney. Radiology 230:743–752.PubMedCrossRefGoogle Scholar
  61. Medina, L. A., Calixto, S. M., Klipper, R., Phillips, W. T. and Goins, B. 2004a. Avidin/biotin-liposome system injected in the pleural space for drug delivery to mediastinal lymph nodes. J Pharm Sci 93:2595–2608.PubMedCrossRefGoogle Scholar
  62. Medina, L. A., Klipper, R., Phillips, W. T. and Goins, B. 2004b. Pharmacokinetics and biodistribution of [111In]-avidin and [99mTc]-biotin-liposomes injected in the pleural space for the targeting of mediastinal nodes. Nucl Med Biol 31:41–51.PubMedCrossRefGoogle Scholar
  63. Metselaar, J. M., Wauben, M. H., Wagenaar-Hilbers, J. P., Boerman, O. C. and Storm, G. 2003. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 48:2059–2066.PubMedCrossRefGoogle Scholar
  64. Misselwitz, B. and Sachse, A. 1997. Interstitial MR lymphography using Gd-carrying liposomes. Acta Radiol Suppl 412:51–55.PubMedGoogle Scholar
  65. Moghimi, S. M., Hamad, I., Andresen, T. L., Jorgensen, K. and Szebeni, J. 2006. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J 20:2591–2593.PubMedCrossRefGoogle Scholar
  66. Moghimi, S. M. and Szebeni, J. 2003. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478.PubMedCrossRefGoogle Scholar
  67. Mougin-Degraef, M., Jestin, E., Bruel, D., Remaud-Le Saec, P., Morandeau, L., Faivre-Chauvet, A. and Barbet, J. 2006. High-activity radio-iodine labeling of conventional and stealth liposomes. J Liposome Res 16:91–102.PubMedCrossRefGoogle Scholar
  68. Mulder, W. J., van der Schaft, D. W., Hautvast, P. A., Strijkers, G. J., Koning, G. A., Storm, G., Mayo, K. H., Griffioen, A. W. and Nicolay, K. 2007. Early in vivo assessment of angiostatic therapy efficacy by molecular MRI. FASEB J 21:378–383.PubMedCrossRefGoogle Scholar
  69. Mulder, W. J., Strijkers, G. J., Griffioen, A. W., van Bloois, L., Molema, G., Storm, G., Koning, G. A. and Nicolay, K. 2004. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem 15:799–806.PubMedCrossRefGoogle Scholar
  70. Mulder, W. J., Strijkers, G. J., Habets, J. W., Bleeker, E. J., van der Schaft, D. W., Storm, G., Koning, G. A., Griffioen, A. W. and Nicolay, K. 2005. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19:2008–2010.PubMedGoogle Scholar
  71. Mulder, W. J., Strijkers, G. J., van Tilborg, G. A., Griffioen, A. W. and Nicolay, K. 2006. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164.PubMedCrossRefGoogle Scholar
  72. Niesman, M. R., Bacic, G. G., Wright, S. M., Swartz, H. J. and Magin, R. L. 1990. Liposome encapsulated MnCl2 as a liver specific contrast agent for magnetic resonance imaging. Invest Radiol 25:545–551.PubMedCrossRefGoogle Scholar
  73. Oussoren, C., Storm, G. 2001. Liposomes to target the lymphatics by subcutaneous administration. Advanced Drug Delivery Reviews. 50:143–156.PubMedCrossRefGoogle Scholar
  74. Papahadjopoulos, D., Allen, T. M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S. K., Lee, K. D., Woodle, M. C., Lasic, D. D., Redemann, C. et al. 1991. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464.PubMedADSCrossRefGoogle Scholar
  75. Pauser, S., Reszka, R., Wagner, S., Wolf, K. J., Buhr, H. J. and Berger, G. 1997. Liposome-encapsulated superparamagnetic iron oxide particles as markers in an MRI-guided search for tumor-specific drug carriers. Anticancer Drug Des 12:125–135.PubMedGoogle Scholar
  76. Phillips, W. T., Klipper, R. W., Awasthi, V. D., Rudolph, A. S., Cliff, R., Kwasiborski, V., Goin, B. A. 1999. Polyethylene glycol-modified liposome-encapsulated hemoglobin: a long circulating red cell substitute. 288:655–670.Google Scholar
  77. Phillips, W. T. and Goins, B. 2002. Assessment of liposome delivery using scintigraphic imaging. J Liposome Res 12:71–80.PubMedCrossRefGoogle Scholar
  78. Phillips, W. T., Klipper, R. and Goins, B. 2001. Use of (99m) Tc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med 42:446–451.PubMedGoogle Scholar
  79. Phillips, W. T., Medina, L. A., Klipper, R. and Goins, B. 2002. A novel approach for the increased delivery of pharmaceutical agents to peritoneum and associated lymph nodes. J Pharmacol Exp Ther 303:11–16.PubMedCrossRefGoogle Scholar
  80. Phillips, W. T., Rudolph, A. S., Goins, B., Timmons, J. H., Klipper, R. and Blumhardt, R. 1992. A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Nucl Med Biol 19:539–547.Google Scholar
  81. Pirollo, K. F., Dagata, J., Wang, P., Freedman, M., Vladar, A., Fricke, S., Ileva, L., Zhou, Q. and Chang, E. H. 2006. A tumor-targeted nanodelivery system to improve early MRI detection of cancer. Mol Imaging 5:41–52.PubMedGoogle Scholar
  82. Ponce, A. M., Viglianti, B. L., Yu, D., Yarmolenko, P. S., Michelich, C. R., Woo, J., Bally, M. B. and Dewhirst, M. W. 2007. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 99:53–63.PubMedCrossRefGoogle Scholar
  83. Port, R. E., Schuster, C., Port, C. R. and Bachert, P. 2006. Simultaneous sustained release of fludarabine monophosphate and Gd-DTPA from an interstitial liposome depot in rats: potential for indirect monitoring of drug release by magnetic resonance imaging. Cancer Chemother Pharmacol 58:607–617.PubMedCrossRefGoogle Scholar
  84. Romberg, B., Metselaar, J. M., Baranyi, L., Snel, C. J., Bunger, R., Hennink, W. E., Szebeni, J. and Storm, G. 2007a. Poly(amino acid) s: promising enzymatically degradable stealth coatings for liposomes. Int J Pharm 331:186–189.PubMedCrossRefGoogle Scholar
  85. Romberg, B., Oussoren, C., Snel, C. J., Carstens, M. G., Hennink, W. E. and Storm, G. 2007b. Pharmacokinetics of poly(hydroxyethyl-L-asparagine)-coated liposomes is superior over that of PEG-coated liposomes at low lipid dose and upon repeated administration. Biochim Biophys Acta 1768:737–743.PubMedCrossRefGoogle Scholar
  86. Rubesova, E., Berger, F., Wendland, M. F., Hong, K., Stevens, K. J., Gooding, C. A. and Lang, P. 2002. Gd-labeled liposomes for monitoring liposome-encapsulated chemotherapy: quantification of regional uptake in tumor and effect on drug delivery. Acad Radiol 9 Suppl 2:S525–S527.PubMedCrossRefGoogle Scholar
  87. Shapiro, E. M., Sharer, K., Skrtic, S. and Koretsky, A. P. 2006. In vivo detection of single cells by MRI. Magn Reson Med 55:242–249.PubMedCrossRefGoogle Scholar
  88. Sou, K., Goins, B., Takeoka, S., Tsuchida, E. and Phillips, W. T. 2007. Selective uptake of surface-modified phospholipid vesicles by bone marrow macrophages in vivo. Biomaterials 28:2655–2666.PubMedCrossRefGoogle Scholar
  89. Sroda, K., Rydlewski, J., Langner, M., Kozubek, A., Grzybek, M. and Sikorski, A. F. 2005. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell Mol Biol Lett 10:37–47.PubMedGoogle Scholar
  90. Storrs, R. W., Tropper, F. D., Li, H. Y., Song, C. K., Sipkins, D. A., Kuniyoshi, J. K., Bednarski, M. D., Strauss, H. W. and Li, K. C. 1995. Paramagnetic polymerized liposomes as new recirculating MR contrast agents. J Magn Reson Imaging 5:719–724.PubMedCrossRefGoogle Scholar
  91. Strijkers, G. J., Mulder, W. J., van Heeswijk, R. B., Frederik, P. M., Bomans, P., Magusin, P. C. and Nicolay, K. 2005. Relaxivity of liposomal paramagnetic MRI contrast agents. MAGMA 18:186–192.PubMedCrossRefGoogle Scholar
  92. Suga, K., Mikawa, M., Ogasawara, N., Okazaki, H. and Matsunaga, N. 2001. Potential of Gd-DTPA-mannan liposome particles as a pulmonary perfusion MRI contrast agent: an initial animal study. Invest Radiol 36:136–145.PubMedCrossRefGoogle Scholar
  93. Szebeni, J., Baranyi, L., Savay, S., Bodo, M., Milosevits, J., Alving, C. R. and Bunger, R. 2006. Complement activation-related cardiac anaphylaxis in pigs: role of C5a anaphylatoxin and adenosine in liposome-induced abnormalities in ECG and heart function. Am J Physiol Heart Circ Physiol 290:H1050–H1058.PubMedCrossRefGoogle Scholar
  94. Szebeni, J., Baranyi, L., Savay, S., Milosevits, J., Bodo, M., Bunger, R. and Alving, C. R. 2003. The interaction of liposomes with the complement system: in vitro and in vivo assays. Meth Enzymol 373:136–154.PubMedCrossRefGoogle Scholar
  95. Tilcock, C., Ahkong, Q. F. and Fisher, D. 1994. 99mTc-labeling of lipid vesicles containing the lipophilic chelator PE-DTTA: effect of tin-to-chelate ratio, chelate content and surface polymer on labeling efficiency and biodistribution behavior. Nucl Med Biol 21:89–96.PubMedCrossRefGoogle Scholar
  96. Tilcock, C., Ahkong, Q. F., Koenig, S. H., Brown, R. D., III, Davis, M. and Kabalka, G. 1992. The design of liposomal paramagnetic MR agents: effect of vesicle size upon the relaxivity of surface-incorporated lipophilic chelates. Magn Reson Med 27:44–51.PubMedCrossRefGoogle Scholar
  97. Torchilin, V. and Trubetskoy, V. 1995. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16:141–155.CrossRefGoogle Scholar
  98. Torchilin, V. P. 2000. Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol 1:183–215.PubMedCrossRefGoogle Scholar
  99. Torchilin, V. P. and Papisov, M. I. 1994. Why do polyethylene glycol-coated liposomes circulate so long? J Liposome Res 4:725–739.CrossRefGoogle Scholar
  100. Torchilin, V. P., Weissig, V., Martin, F. J. and Heath, T. D. 2003. Surface modification of liposomes. Liposomes: A Practical Approach. Eds. V. P. Torchilin and V. Weissig. Oxford University Press, Oxford, p. 193.Google Scholar
  101. Trubetskoy, V. S., Cannillo, J. A., Milshtein, A., Wolf, G. L. and Torchilin, V. P. 1995. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson Imaging 13:31–37.PubMedCrossRefGoogle Scholar
  102. Turski, P. A., Cordes, D., Mock, B., Wendt, G., Sorenson, J. A., Fitzurka-Quigley, M., Strother, C. and Dempsey, R. 1998. Basic concepts of functional magnetic resonance imaging and arteriovenous malformations. Magn Reson Imaging Clin N Am 6:801–810.PubMedGoogle Scholar
  103. Unger, E., Needleman, P., Cullis, P. and Tilcock, C. 1988. Gadolinium-DTPA liposomes as a potential MRI contrast agent. Work in progress. Invest Radiol 23:928–932.PubMedCrossRefGoogle Scholar
  104. van Tilborg, G. A., Mulder, W. J., Deckers, N., Storm, G., Reutelingsperger, C. P., Strijkers, G. J. and Nicolay, K. 2006. Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis. Bioconjug Chem 17:741–749.PubMedCrossRefGoogle Scholar
  105. Venkatesh, A. K., Zhao, L., Balamore, D., Jolesz, F. A. and Albert, M. S. 2000. Evaluation of carrier agents for hyperpolarized xenon MRI. NMR Biomed 13:245–252.PubMedCrossRefGoogle Scholar
  106. Venkatesh, A. K., Zhao, L., Balamore, D., Jolesz, F. A. and Albert, M. S. 2002. Hyperpolarized 129Xe MRI using gas-filled liposomes. Acad Radiol 9 Suppl 1:S270–S274.PubMedCrossRefGoogle Scholar
  107. Viglianti, B. L., Abraham, S. A., Michelich, C. R., Yarmolenko, P. S., MacFall, J. R., Bally, M. B. and Dewhirst, M. W. 2004. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med 51:1153–1162.PubMedCrossRefGoogle Scholar
  108. Viglianti, B. L., Ponce, A. M., Michelich, C. R., Yu, D., Abraham, S. A., Sanders, L., Yarmolenko, P. S., Schroeder, T., MacFall, J. R., Barboriak, D. P., Colvin, O. M., Bally, M. B. and Dewhirst, M. W. 2006. Chemodosimetry of in vivo tumor liposomal drug concentration using MRI. Magn Reson Med 56:1011–1018.PubMedCrossRefGoogle Scholar
  109. Weissig, V. V., Babich, J. and Torchilin, V. V. 2000. Long-circulating gadolinium-loaded liposomes: potential use for magnetic resonance imaging of the blood pool. Colloids Surf B Biointerfaces 18:293–299.PubMedCrossRefGoogle Scholar
  110. Zavaleta, C. L., Phillips, W. T., Bradley, Y. C., McManus, L. M., Jerabek, P. A. and Goins, B. A. 2007a. Characterization of an intraperitoneal ovarian cancer xenograft model in nude rats using noninvasive microPET imaging. Int J Gynecol Cancer 17:407–417.PubMedCrossRefGoogle Scholar
  111. Zavaleta, C. L., Phillips, W. T., Soundararajan, A. and Goins, B. A. 2007b. Use of avidin/biotin-liposome system for enhanced peritoneal drug delivery in an ovarian cancer model. Int J Pharm 337:316–328.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • William Phillips
    • 1
  • Beth Goins
    • 1
  • Ande Bao
    • 1
  1. 1.Department of RadiologyThe University of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations