Multifunctional Magnetic Nanosystems for Tumor Imaging, Targeted Delivery, and Thermal Medicine

  • Dattatri Nagesha
  • Harikrishna Devalapally
  • Srinivas Sridhar
  • Mansoor M. Amiji
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

Cancer remains one of the leading causes of death in most regions of the world, including the United States (Beardsley 1994). According to the American Cancer Society (ACS 2007), 1.5 million new cases of cancer are expected to be diagnosed in the year 2007 with approximately 560,000 projected deaths. The current treatment options are not sufficient to deal with this influx. Therefore, there is a need for a paradigm shift in the approach to cancer prevention, diagnosis, and therapy. One approach that has shown significant promise is the field of nanotechnology (Brigger et al. 2002; Davis 1997).

Nanotechnology is the science of materials, in the size range of approximately 1–100 nm in diameter, that have unique physical, chemical, and biological properties. A variety of biological and medical processes occur in the nanometer length scales and nanotechnology offers a unique approach to probe and control these processes (Sridhar et al. 2005).

Nanoparticles can be made from organic molecules, such as biodegradable and nondegradable polymers as in polymeric nanoparticles and phospholipids as in liposomes. They can also be synthesized from inorganic materials such as metals and alloys as well as semiconductors, as in iron oxide, gold, and silver nanoparticles and quantum dots, respectively. One property that is common to all of the nanoparticles, irrespective of their chemical composition, is their ability to form multifunctional nanosystems that can be used for diagnosis, imaging, and therapeutic applications. These multifunctional nanoparticle-based approaches are, therefore, expected to make significant impacts in the field of cancer nanomedicine.

This chapter will discuss magnetic nanoparticle-based systems that have been used to improve diagnostics through better tumor imaging, for enhanced drug delivery, and in magnetothermal therapy.


Magnetic Nanoparticles Atomic Transfer Radical Polymerization Atomic Transfer Radical Polymerization Reverse Micelle Iron Oxide Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ai, H., Flask, C., Weinberg, B., Shuai, X., Pagel, M. D., Farrell, D., Duerk, J., and Gao, J. 2005. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes, Adv. Mater. (Weinheim, Germany) 17:1949–1952.CrossRefGoogle Scholar
  2. Alexiou, C., Arnold, W., Klein, R. J., Parak, F. G., Hulin, P., Bergemann, C., Erhardt, W., Wagenpfeil, S., and Lubbe, A. S. 2000. Locoregional cancer treatment with magnetic drug targeting, Cancer Res. 60:6641–6648.PubMedGoogle Scholar
  3. Allen, T. M. 2002. Ligand-targeted therapeutics in anticancer therapy, Nat. Rev. Cancer 2:750–763.PubMedCrossRefGoogle Scholar
  4. Allen, T. M. and Chonn, A. 1987. Large unilamellar liposomes with low uptake into the reticuloendothelial system, FEBS Lett. 223:42–46.PubMedCrossRefGoogle Scholar
  5. Allen, T. M., Hansen, C., and Rutledge, J. 1989. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues, Biochim. Biophys. Acta 981:27–35.PubMedCrossRefGoogle Scholar
  6. Allport, J. R. and Weissleder, R. 2001. In vivo imaging of gene and cell therapies, Exp. Hematol. 29:1237–1246.PubMedCrossRefGoogle Scholar
  7. Amiji, M. and Park, K. 1992. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers, Biomaterials 13:682–692.PubMedCrossRefGoogle Scholar
  8. Artemov, D., Mori, N., Okollie, B., and Bhujwalla, Z. M. 2003. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles, Magn. Reson. Med. 49:403–408.PubMedCrossRefGoogle Scholar
  9. Atkinson, W. J., Brezovich, I. A., and Chakraborty, D. P. 1984. Usable frequencies in hyperthermia with thermal seeds, IEEE Trans. Biomed. Eng. 31:70–75.CrossRefGoogle Scholar
  10. Ban, Z., Barnakov, Y. A., Li, F., Golub, V. O., and O’Connor, C. J. 2005. The synthesis of core–shell iron@gold nanoparticles and their characterization, J. Mater. Chem. 15:4660–4662.CrossRefGoogle Scholar
  11. Beardsley, T. 1994. A war not won. Sci. Am. 270:130–138.PubMedCrossRefGoogle Scholar
  12. Bee, A., Massart, R., and Neveu, S. 1995. Synthesis of very fine maghemite particles, J. Magn. Magn. Mater. 149:6–9.ADSCrossRefGoogle Scholar
  13. Berret, J.-F., Schonbeck, N., Gazeau, F., El Kharrat, D., Sandre, O., Vacher, A., and Airiau, M. 2006. Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging, J. Am. Chem. Soc. 128:1755–1761.PubMedCrossRefGoogle Scholar
  14. Bertorelle, F., Wilhelm, C., Roger, J., Gazeau, F., Menager, C., and Cabuil, V. 2006. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging, Langmuir 22:5385–5391.PubMedCrossRefGoogle Scholar
  15. Blankenberg, F. G. and Strauss, H. W. 2001. Noninvasive strategies to image cardiovascular apoptosis, Cardiol. Clin. 19:165–172.PubMedCrossRefGoogle Scholar
  16. Brigger, I., Dubernet, C., and Couvreur, P. 2002. Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev. 54:631–651.PubMedCrossRefGoogle Scholar
  17. Butterworth, M. D., Bell, S. A., Armes, S. P., and Simpson, A. W. 1996. Synthesis and characterization of polypyrrole–magnetite–silica particles, J. Colloid Interface Sci. 183:91–99.CrossRefGoogle Scholar
  18. Caruntu, D., Caruntu, G., Chen, Y., O’Connor, C. J., Goloverda, G., and Kolesnichenko, V. L. 2004. Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity, Chem. Mater. 16:5527–5534.CrossRefGoogle Scholar
  19. Caruntu, D., Remond, Y., Chou, N. H., Jun, M. J., Caruntu, G., He, J., Goloverda, G., O’Connor, C., and Kolesnichenko, V. 2002. Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions, Inorg. Chem. 41:6137–6146.PubMedCrossRefGoogle Scholar
  20. Caruso, F. 2001. Nanoengineering of particle surfaces, Adv. Mater. 13:11–22.CrossRefGoogle Scholar
  21. Chen, M., Yamamuro, S., Farrell, D., and Majetich, S. A. 2003. Gold-coated iron nanoparticles for biomedical applications, J. Appl. Phys. 93:7551–7553.ADSCrossRefGoogle Scholar
  22. Chung, S. H., Hoffmann, A., Bader, S. D., Liu, C., Kay, B., Makowski, L., and Chen, L. 2004. Biological sensors based on Brownian relaxation of magnetic nanoparticles, Appl. Phys. Lett. 85:2971–2973.ADSCrossRefGoogle Scholar
  23. Dandamudi, S. and Campbell, R. B. 2007. Development and characterization of magnetic cationic liposomes for targeting tumor microvasculature, Biochim. Biophys. Acta 1768:427–438.PubMedCrossRefGoogle Scholar
  24. Davis, S. S. 1997. Biomedical applications of nanotechnology–implications for drug targeting and gene therapy, Trends Biotechnol. 15:217–224.PubMedCrossRefGoogle Scholar
  25. Decuzzi, P., Lee, S., Bhushan, B., and Ferrari, M. 2005. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33:179–190.PubMedCrossRefGoogle Scholar
  26. DeNardo, S. J., DeNardo, G. L., Miers, L. A., Natarajan, A., Foreman, A. R., Gruettner, C., Adamson, G. N., and Ivkov, R. 2005. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy, Clin. Cancer Res. 11:7087–7092.CrossRefGoogle Scholar
  27. DePalma, R., Peeters, S., VanBael, M. J., VandenRul, H., Bonroy, K., Laureyn, W., Mullens, J., Borghs, G., and Maes, G. 2007. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible, Chem. Mater. 19:1821–1831.CrossRefGoogle Scholar
  28. Dinega, D. P. and Bawendi, M. G. 1999. A solution-phase chemical approach to a new crystal structure of cobalt, Angew. Chem. Int. Ed. 38:1788–1791.CrossRefGoogle Scholar
  29. Duncan, R. 2003. The dawning era of polymer therapeutics, Nat. Rev. Drug Discov. 2:347–360.PubMedCrossRefGoogle Scholar
  30. Engin, K. 1996. Biological rationale and clinical experience with hyperthermia, Control Clin. Trials 17:316–342.PubMedCrossRefGoogle Scholar
  31. Euliss, L. E., Grancharov, S. G., O’Brien, S., Deming, T. J., Stucky, G. D., Murray, C. B., and Held, G. A. 2003. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media, Nano Lett. 3:1489–1493.ADSCrossRefGoogle Scholar
  32. Farrell, D., Cheng, Y., McCallum, R. W., Sachan, M., and Majetich, S. A. 2005. Magnetic interactions of iron nanoparticles in arrays and dilute dispersions, J. Phys. Chem. B 109: 13409–13419.PubMedCrossRefGoogle Scholar
  33. Farrell, D., Majetich, S. A., and Wilcoxon, J. P. 2003. Preparation and characterization of monodisperse Fe nanoparticles, J. Phys. Chem. B 107:11022–11030.CrossRefGoogle Scholar
  34. Flacke, S., Fischer, S., Scott, M. J., Fuhrhop, R. J., Allen, J. S., McLean, M., Winter, P., Sicard, G. A., Gaffney, P. J., Wickline, S. A., and Lanza, G. M. 2001. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques, Circulation 104:1280–1285.PubMedCrossRefGoogle Scholar
  35. Furlani, E. J. and Furlani, E. P. 2007. A model for predicting magnetic targeting of multifunctional particles in the microvasculature, J. Magn. Magn. Mater. 312:187–193.ADSCrossRefGoogle Scholar
  36. Gabizon, A. and Papahadjopoulos, D. 1988. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl Acad. Sci. USA 85:6949–6953.PubMedADSCrossRefGoogle Scholar
  37. Gilchrist, R. K. 1960. Potential treatment of cancer by electromagnetic heating, Surg. Gynecol. Obstet. 110:499–500.PubMedGoogle Scholar
  38. Gilchrist, R. K., Shorey, W. D., Hanselman, R. C., Depeyster, F. A., Yang, J., and Medal, R. 1965. Effects of electromagnetic heating on internal viscera: a preliminary to the treatment of human tumors, Ann. Surg. 161:890–896.PubMedCrossRefGoogle Scholar
  39. Goodwin, S., Peterson, C., Hoh, C., and Bittner, C. 1999. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy, J. Magn. Magn. Mater. 194:132–139.ADSCrossRefGoogle Scholar
  40. Gordon, R. T., Hines, J. R., and Gordon, D. 1979. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Med. Hypotheses 5:915–936.PubMedCrossRefGoogle Scholar
  41. Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., and Muller, R. H. 2000. ‘Stealth’ corona–core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids Surf. B Biointerfaces 18:301–313.CrossRefGoogle Scholar
  42. Gupta, P. K., Hung, C. T., and Perrier, D. G. 1987. Quantitation of the release of doxorubicin from colloidal dosage forms using dynamic dialysis, J. Pharm. Sci. 76:141–145.PubMedCrossRefGoogle Scholar
  43. Hafeli, U. 2001. Radioactive magnetic microspheres. In: Microspheres, Microcapsules & Liposomes (Arshady, R. ed.), Citus Books, London, pp. 559–584.Google Scholar
  44. Hafeli, U. O. 2004. Magnetically modulated therapeutic systems, Int. J. Pharm. 277:19–24.PubMedCrossRefGoogle Scholar
  45. Haukanes, B. I. and Kvam, C. 1993. Application of magnetic beads in bioassays, Biotechnology 11:60–63.PubMedCrossRefGoogle Scholar
  46. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., and Riess, H. 2002. The cellular and molecular basis of hyperthermia, Crit. Rev. Oncol. Hematol. 43:33–56.PubMedCrossRefGoogle Scholar
  47. Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., and West, J. L. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl Acad. Sci. USA 100:13549–13554.PubMedADSCrossRefGoogle Scholar
  48. Hyeon, T., Lee, S. S., Park, J., Chung, Y., and Na, H. B. 2001. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process, J. Am. Chem. Soc. 123:12798–12801.PubMedCrossRefGoogle Scholar
  49. Ito, I., Ji, L., Tanaka, F., Saito, Y., Gopalan, B., Branch, C. D., Xu, K., Atkinson, E. N., Bekele, B. N., Stephens, L. C., Minna, J. D., Roth, J. A., and Ramesh, R. 2004. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo, Cancer Gene Ther. 11:733–739.PubMedCrossRefGoogle Scholar
  50. Ivkov, R., DeNardo, S. J., Daum, W., Foreman, A. R., Goldstein, R. C., Nemkov, V. S., and DeNardo, G. L. 2005. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer, Clin. Cancer Res. 11:7093–7103.CrossRefGoogle Scholar
  51. Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L., and Labhasetwar, V. 2005. Iron oxide nanoparticles for sustained delivery of anticancer agents, Mol. Pharm. 2:194–205.PubMedCrossRefGoogle Scholar
  52. Jeong, U., Teng, X., Wang, Y., Yang, H., and Xia, Y. 2007. Superparamagnetic colloids: controlled synthesis and niche applications, Adv. Mater. 19:33–60.CrossRefGoogle Scholar
  53. Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M. Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W., and Felix, R. 2001. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, J. Magn. Magn. Mater. 225:118–126.ADSCrossRefGoogle Scholar
  54. Josephson, L., Perez, J. M., and Weissleder, R. 2001. Magnetic nanosensors for the detection of oligonucleotide sequences, Angew. Chem. Int. Ed. 40:3204–3206.CrossRefGoogle Scholar
  55. Jun, Y. W., Huh, Y. M., Choi, J. S., Lee, J. H., Song, H. T., Kim, S., Yoon, S., Kim, K. S., Shin, J. S., Suh, J. S., and Cheon, J. 2005. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging, J. Am. Chem. Soc. 127:5732–5733.PubMedCrossRefGoogle Scholar
  56. Jung, C. 1995. Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil, Magn. Reson. Imaging 13:675–691.PubMedCrossRefGoogle Scholar
  57. Kim, B. S., Qiu, J. M., Wang, J. P., and Taton, T. A. 2005. Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers, Nano Lett. 5:1987–1991.PubMedADSCrossRefGoogle Scholar
  58. Kirby, C. and Gregoriadis, G. 1980. The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vitro, Life Sci. 27:2223–2230.PubMedCrossRefGoogle Scholar
  59. Klibanov, A. L., Maruyama, K., Beckerleg, A. M., Torchilin, V. P., and Huang, L. 1991. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target, Biochim. Biophys. Acta 1062:142–148.PubMedCrossRefGoogle Scholar
  60. Koh, I., Wang, X., Varughese, B., Isaacs, L., Ehrman, S. H., and English, D. S. 2006. Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity, J. Phys. Chem. B 110:1553–1558.PubMedCrossRefGoogle Scholar
  61. Kohler, N., Sun, C., Wang, J., and Zhang, M. 2005. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells, Langmuir 21:8858–8864.PubMedCrossRefGoogle Scholar
  62. Kreuter, J. 1994. Nanoparticles, Dekker, New York, pp. 165–190.Google Scholar
  63. Lanza, G. M., Yu, X., Winter, P. M., Abendschein, D. R., Karukstis, K. K., Scott, M. J., Chinen, L. K., Fuhrhop, R. W., Scherrer, D. E., and Wickline, S. A. 2002. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis, Circulation 106:2842–2847.PubMedCrossRefGoogle Scholar
  64. Lasic, D. D., Martin, F. J., Gabizon, A., Huang, S. K., and Papahadjopoulos, D. 1991. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times, Biochim. Biophys. Acta 1070:187–192.PubMedCrossRefGoogle Scholar
  65. Lee, A. S., Weissleder, R., Brady, T. J., and Wittenberg, J. 1991. Lymph nodes: microstructural anatomy at MR imaging, Radiology 178:519–522.PubMedGoogle Scholar
  66. Lee, J.-H., Huh, Y.-M., Jun, Y.-W., Seo, J.-W., Jang, J.-T., Song, H.-T., Kim, S., Cho, E.-J., Yoon, H.-G., Suh, J.-S., and Cheon, J. 2007. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med. 13:95–99.PubMedCrossRefGoogle Scholar
  67. Lee, S. Y. and Harris, M. T. 2006. Surface modification of magnetic nanoparticles capped by oleic acids: characterization and colloidal stability in polar solvents, J. Colloid Interface Sci. 293:401–408.PubMedCrossRefGoogle Scholar
  68. Lee, Y., Lee, J., Bae, C. J., Park, J.-G., Noh, H.-J., Park, J.-H., and Hyeon, T. 2005. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions, Adv. Funct. Mater. 15:2036.CrossRefGoogle Scholar
  69. Li, G., Fan, J., Jiang, R., and Gao, Y. 2004. Cross-linking the linear polymeric chains in the ATRP synthesis of iron oxide/polystyrene core/shell nanoparticles, Chem. Mater. 16:1835–1837.CrossRefGoogle Scholar
  70. Li, Y., Afzaal, M., and O’Brien, P. 2006. The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility, J. Mater. Chem. 16:2175–2180.CrossRefGoogle Scholar
  71. Liu, Q., Xu, Z., Finch, J. A., and Egerton, R. 1998. A novel two-step silica-coating process for engineering magnetic nanocomposites, Chem. Mater. 10:3936–3940.CrossRefGoogle Scholar
  72. Lockman, P. R., Mumper, R. J., Khan, M. A., and Allen, D. D. 2002. Nanoparticle technology for drug delivery across the blood–brain barrier, Drug Dev. Ind. Pharm. 28:1–13.PubMedCrossRefGoogle Scholar
  73. Lu, A.-H., Salabas, E. L., and Schüth, F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46:1222–1244.CrossRefGoogle Scholar
  74. Lu, Y., Yin, Y., Mayers, B. T., and Xia, Y. 2002. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach, Nano Lett. 2:183–186.ADSCrossRefGoogle Scholar
  75. Lubbe, A. S., Bergemann, C., Brock, J., and McClure, D. G. 1999. Physiological aspects in magnetic drug-targeting, J. Magn. Magn. Mater. 194:149–155.ADSCrossRefGoogle Scholar
  76. Lubbe, A. S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J. W., and Huhn, D. 1996a. Preclinical experiences with magnetic drug targeting: tolerance and efficacy, Cancer Res. 56:4694–4701.PubMedGoogle Scholar
  77. Lubbe, A. S., Bergemann, C., Riess, H., Schriever, F., Reichardt, P., Possinger, K., Matthias, M., Dorken, B., Herrmann, F., Gurtler, R., Hohenberger, P., Haas, N., Sohr, R., Sander, B., Lemke, A. J., Ohlendorf, D., Huhnt, W., and Huhn, D. 1996b. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors, Cancer Res. 56:4686–4693.PubMedGoogle Scholar
  78. Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P., and Williams, M. E. 2004. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding, Nano Lett. 4:719–723.ADSCrossRefGoogle Scholar
  79. Ma, M., Zhang, Y., Yu, W., Shen, H. Y., Zhang, H. Q., and Gu, N. 2003. Preparation and characterization of magnetite nanoparticles coated by amino silane, Colloids Surf. A: Physicochem. Eng. Asp. 212:219–226.CrossRefGoogle Scholar
  80. Massart, R., Dubois, E., Cabuil, V., and Hasmonay, E. 1995. Preparation and properties of monodisperse magnetic fluids, J. Magn. Magn. Mater. 149:1–5.ADSCrossRefGoogle Scholar
  81. Mikhaylova, M., Kim, D. K., Berry, C. C., Zagorodni, A., Toprak, M., Curtis, A. S. G., and Muhammed, M. 2004. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles, Chem. Mater. 16:2344–2354.CrossRefGoogle Scholar
  82. Mizukoshi, Y., Seino, S., Okitsu, K., Kinoshita, T., Otome, Y., Nakagawa, T., and Yamamoto, T. A. 2005. Sonochemical preparation of composite nanoparticles of Au/g-Fe2O3 and magnetic separation of glutathione, Ultrason. Sonochem. 12:191–195.PubMedCrossRefGoogle Scholar
  83. Moeser, G. D., Roach, K. A., Green, W. H., Hatton, T. A., and Laibinis, P. E. 2004. High-gradient magnetic separation of coated magnetic nanoparticles, AIChE J. 50:2835–2848.CrossRefGoogle Scholar
  84. Moghimi, S. M. and Hunter, A. C. 2000. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine, Trends Biotechnol. 18:412–420.PubMedCrossRefGoogle Scholar
  85. Moghimi, S. M., Hunter, A. C., and Murray, J. C. 2001. Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev. 53:283–318.PubMedGoogle Scholar
  86. Morais, P. C., Santos, R. L., Pimenta, A. C. M., Azevedo, R. B., and Lima, E. C. D. 2006. Preparation and characterization of ultra-stable biocompatible magnetic fluids using citrate-coated cobalt ferrite nanoparticles, Thin Solid Films 515:266–270.ADSCrossRefGoogle Scholar
  87. Moroz, P., Jones, S. K., and Gray, B. N. 2002. Magnetically mediated hyperthermia: current status and future directions, Int. J. Hyperthermia 18:267–284.CrossRefGoogle Scholar
  88. Nashat, A. H., Moronne, M., and Ferrari, M. 1998. Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy, Biotechnol. Bioeng. 60:137–146.PubMedCrossRefGoogle Scholar
  89. Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., and von Rechenberg, B. 2005. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293:483–496.ADSCrossRefGoogle Scholar
  90. Ngo, A. T. and Pileni, M. P. P. 2000. Nanoparticles of cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties, Adv. Mater. 12:276–279.CrossRefGoogle Scholar
  91. O’Handley, R. C. 2000, Modern Magnetic Materials: Principles and Applications, Wiley, New York.Google Scholar
  92. Ohmori, M. and Matijevic, E. 1993. Preparation and properties of uniform coated inorganic colloidal particles: 8. Silica on iron, J. Colloid Interface Sci. 160:288–292.CrossRefGoogle Scholar
  93. Otsuka, H., Nagasaki, Y., and Kataoka, K. 2003. PEGylated nanoparticles for biological and pharmaceutical applications, Adv. Drug Deliv. Rev. 55:403–419.PubMedCrossRefGoogle Scholar
  94. Oyewumi, M. O. and Mumper, R. J. 2004. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice, J. Control. Release 24:613–626.CrossRefGoogle Scholar
  95. Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J. 2003. Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36:R167–R181.ADSCrossRefGoogle Scholar
  96. Papahadjopoulos, D. and Gabizon, A. 1987. Targeting of liposomes to tumor cells in vivo, Ann. NY Acad. Sci. 507:64–74.PubMedADSCrossRefGoogle Scholar
  97. Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., Park, J.-H., Hwang, N.-M., and Hyeon, T. 2004. Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater. 3:891–895.PubMedADSCrossRefGoogle Scholar
  98. Park, J. W. 2002. Liposome-based drug delivery in breast cancer treatment, Breast Cancer Res. 4:95–99.PubMedCrossRefGoogle Scholar
  99. Park, S. J., Kim, S., Lee, S., Khim, Z. G., Char, K., and Hyeon, T. 2000. Synthesis and magnetic studies of uniform iron nanorods and nanospheres, J. Am. Chem. Soc. 122:8581–8582.CrossRefGoogle Scholar
  100. Reimer, P., Weissleder, R., Wittenberg, J., and Brady, T. J. 1992. Receptor-directed contrast agents for MR imaging: preclinical evaluation with affinity assays, Radiology 182:565–569.PubMedGoogle Scholar
  101. Reynolds, C. H., Annan, N., Beshah, K., Huber, J. H., Shaber, S. H., Lenkinski, R. E., and Wortman, J. A. 2000. Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging, J. Am. Chem. Soc. 122:8940–8945.CrossRefGoogle Scholar
  102. Schellenberger, E. A., Bogdanov, A., Jr., Hogemann, D., Tait, J., Weissleder, R., and Josephson, L. 2002. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI, Mol. Imaging 1:102–107.PubMedCrossRefGoogle Scholar
  103. Seneterre, E., Weissleder, R., Jaramillo, D., Reimer, P., Lee, A. S., Brady, T. J., and Wittenberg, J. 1991. Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging, Radiology 179:529–533.PubMedGoogle Scholar
  104. Shen, L., Laibinis, P. E., and Hatton, T. A. 1999. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces, Langmuir 15:447–453.CrossRefGoogle Scholar
  105. Shevchenko, E. V., Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M., and Weller, H. 2002. Colloidal synthesis and self-assembly of CoPt3 nanocrystals, J. Am. Chem. Soc. 124:11480–11485.PubMedCrossRefGoogle Scholar
  106. Shevchenko, E. V., Talapin, D. V., Schnablegger, H., Kornowski, A., Festin, O., Svedlindh, P., Haase, M., and Weller, H. 2003. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals, J. Am. Chem. Soc. 125:9090–9101.PubMedCrossRefGoogle Scholar
  107. Song, Q. and Zhang, Z. J. 2004. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Chem. Soc. 126:6164–6168.PubMedCrossRefGoogle Scholar
  108. Sonvico, F., Dubernet, C., Colombo, P., and Couvreur, P. 2005. Metallic colloid nanotechnology, applications in diagnosis and therapeutics, Curr. Pharm. Des. 11:2095–2105.PubMedCrossRefGoogle Scholar
  109. Sousa, M. H., Tourinho, F. A., Depeyrot, J., da Silva, G. J., and Lara, M. C. F. L. 2001. New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures, J. Phys. Chem. B 105:1168–1175.CrossRefGoogle Scholar
  110. Sridhar, S., Amiji, M., Shenoy, D., Nagesha, D., Weissig, V., and Fu, W. 2005. Nanomedicine: a new paradigm in diagnosis and therapy, Proc. SPIE Int. Soc. Opt. Eng. 6008, 600816.Google Scholar
  111. Stoeva, S. I., Huo, F., Lee, J.-S., and Mirkin, C. A. 2005. Three-layer composite magnetic nanoparticle probes for DNA, J. Am. Chem. Soc. 127:15362–15363.PubMedCrossRefGoogle Scholar
  112. Stoltenburg, R., Reinemann, C., and Strehlitz, B. 2005. FluMag-SELEX as an advantageous method for DNA aptamer selection, Anal. Bioanal. Chem. 383:83–91.PubMedCrossRefGoogle Scholar
  113. Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., and Letsinger, R. L. 1998. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes, J. Am. Chem. Soc. 120:1959–1964.CrossRefGoogle Scholar
  114. Sun, S. and Murray, C. B. 1999. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited), J. Appl. Phys. 85:4325–4330.ADSCrossRefGoogle Scholar
  115. Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A. 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287:1989–1992.PubMedADSCrossRefGoogle Scholar
  116. Sun, S. and Zeng, H. 2002. Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124:8204–8205.PubMedCrossRefGoogle Scholar
  117. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G. 2004. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 126:273–279.PubMedCrossRefGoogle Scholar
  118. Suslick, K. S., Fang, M., and Hyeon, T. 1996. Sonochemical synthesis of iron colloids, J. Am. Chem. Soc. 118:11960–11961.CrossRefGoogle Scholar
  119. Tan, J. S., Butterfield, D. E., Voycheck, C. L., Caldwell, K. D., and Li, J. T. 1993. Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats, Biomaterials 14:823–833.PubMedCrossRefGoogle Scholar
  120. Tartaj, P., Morales, M. D. P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., and Serna, C. J. 2003. The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D: Appl. Phys. 36:182–197.ADSCrossRefGoogle Scholar
  121. Tartaj, P. and Serna, C. J. 2002. Microemulsion-assisted synthesis of tunable superparamagnetic composites, Chem. Mater. 14:4396–4402.CrossRefGoogle Scholar
  122. Tartaj, P. and Serna, C. J. 2003. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites, J. Am. Chem. Soc. 125:15754–15755.PubMedCrossRefGoogle Scholar
  123. Teng, X. and Yang, H. 2004. Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles, J. Mater. Chem. 14:774–779.CrossRefGoogle Scholar
  124. Thunemann Andreas, F., Schutt, D., Kaufner, L., Pison, U., and Mohwald, H. 2006. Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid), Langmuir 22:2351–2357.PubMedCrossRefGoogle Scholar
  125. Vestal, C. R. and Zhang, Z. J. 2002. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles, J. Am. Chem. Soc. 124:14312–14313.PubMedCrossRefGoogle Scholar
  126. Vestal, C. R. and Zhang, Z. J. 2003. Synthesis and magnetic characterization of Mn and Co spinel ferrite–silica nanoparticles with tunable magnetic core, Nano Lett. 3:1739–1743.ADSCrossRefGoogle Scholar
  127. Wang, G.-P., Song, E.-Q., Xie, H. Y., Zhang, Z. L., Tian, Z. Q., Zuo, C., Pang, D. W., Wu, D. C., and Shi, Y. B. 2005. Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications, Chem. Commun. 34:4276–4278.CrossRefGoogle Scholar
  128. Wang, Y., Teng, X., Wang, J. S., and Yang, H. 2003. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core–shell nanoparticles, Nano Lett. 3:789–793.ADSCrossRefGoogle Scholar
  129. Widder, K., Flouret, G., and Senyei, A. 1979. Magnetic microspheres: synthesis of a novel parenteral drug carrier, J. Pharm. Sci. 68:79–82.PubMedCrossRefGoogle Scholar
  130. Widder, K. J., Senyei, A. E., and Ranney, D. F. 1980. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres, Cancer Res. 40:3512–3517.PubMedGoogle Scholar
  131. Wunderbaldinger, P., Josephson, L., and Weissleder, R. 2002. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles, Bioconjug. Chem. 13:264–268.PubMedCrossRefGoogle Scholar
  132. Yi, D. K., Selvan, S. T., Lee, S. S., Papaefthymiou, G. C., Kundaliya, D., and Ying, J. Y. 2005. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots, J. Am. Chem. Soc. 127:4990–4991.PubMedCrossRefGoogle Scholar
  133. van der Zee, J. 2002. Heating the patient: a promising approach? Ann. Oncol. 13:1173–1184.PubMedCrossRefGoogle Scholar
  134. Zhang, Y., Kohler, N., and Zhang, M. 2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23:1553–1561.PubMedCrossRefGoogle Scholar
  135. Zhang, Y., Sun, C., Kohler, N., and Zhang, M. 2004. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake, Biomed. Microdevices 6:33–40.PubMedCrossRefGoogle Scholar
  136. Zhang, Y. and Zhang, J. 2005. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells, J. Colloid Interface Sci. 283:352–357.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dattatri Nagesha
    • 1
  • Harikrishna Devalapally
    • 2
  • Srinivas Sridhar
    • 1
  • Mansoor M. Amiji
    • 2
  1. 1.Department of PhysicsNortheastern UniversityBostonUSA
  2. 2.Department of Pharmaceutical SciencesNortheastern UniversityBostonUSA

Personalised recommendations