Skip to main content

Multifunctional Magnetic Nanosystems for Tumor Imaging, Targeted Delivery, and Thermal Medicine

  • Chapter
Multifunctional Pharmaceutical Nanocarriers

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 4))

Cancer remains one of the leading causes of death in most regions of the world, including the United States (Beardsley 1994). According to the American Cancer Society (ACS 2007), 1.5 million new cases of cancer are expected to be diagnosed in the year 2007 with approximately 560,000 projected deaths. The current treatment options are not sufficient to deal with this influx. Therefore, there is a need for a paradigm shift in the approach to cancer prevention, diagnosis, and therapy. One approach that has shown significant promise is the field of nanotechnology (Brigger et al. 2002; Davis 1997).

Nanotechnology is the science of materials, in the size range of approximately 1–100 nm in diameter, that have unique physical, chemical, and biological properties. A variety of biological and medical processes occur in the nanometer length scales and nanotechnology offers a unique approach to probe and control these processes (Sridhar et al. 2005).

Nanoparticles can be made from organic molecules, such as biodegradable and nondegradable polymers as in polymeric nanoparticles and phospholipids as in liposomes. They can also be synthesized from inorganic materials such as metals and alloys as well as semiconductors, as in iron oxide, gold, and silver nanoparticles and quantum dots, respectively. One property that is common to all of the nanoparticles, irrespective of their chemical composition, is their ability to form multifunctional nanosystems that can be used for diagnosis, imaging, and therapeutic applications. These multifunctional nanoparticle-based approaches are, therefore, expected to make significant impacts in the field of cancer nanomedicine.

This chapter will discuss magnetic nanoparticle-based systems that have been used to improve diagnostics through better tumor imaging, for enhanced drug delivery, and in magnetothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACS. 2007. http://www.cancer.org/downloads/STT/CAFF2007PWSecured.pdf

  • Ai, H., Flask, C., Weinberg, B., Shuai, X., Pagel, M. D., Farrell, D., Duerk, J., and Gao, J. 2005. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes, Adv. Mater. (Weinheim, Germany) 17:1949–1952.

    Article  CAS  Google Scholar 

  • Alexiou, C., Arnold, W., Klein, R. J., Parak, F. G., Hulin, P., Bergemann, C., Erhardt, W., Wagenpfeil, S., and Lubbe, A. S. 2000. Locoregional cancer treatment with magnetic drug targeting, Cancer Res. 60:6641–6648.

    PubMed  CAS  Google Scholar 

  • Allen, T. M. 2002. Ligand-targeted therapeutics in anticancer therapy, Nat. Rev. Cancer 2:750–763.

    Article  PubMed  CAS  Google Scholar 

  • Allen, T. M. and Chonn, A. 1987. Large unilamellar liposomes with low uptake into the reticuloendothelial system, FEBS Lett. 223:42–46.

    Article  PubMed  CAS  Google Scholar 

  • Allen, T. M., Hansen, C., and Rutledge, J. 1989. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues, Biochim. Biophys. Acta 981:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Allport, J. R. and Weissleder, R. 2001. In vivo imaging of gene and cell therapies, Exp. Hematol. 29:1237–1246.

    Article  PubMed  CAS  Google Scholar 

  • Amiji, M. and Park, K. 1992. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers, Biomaterials 13:682–692.

    Article  PubMed  CAS  Google Scholar 

  • Artemov, D., Mori, N., Okollie, B., and Bhujwalla, Z. M. 2003. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles, Magn. Reson. Med. 49:403–408.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson, W. J., Brezovich, I. A., and Chakraborty, D. P. 1984. Usable frequencies in hyperthermia with thermal seeds, IEEE Trans. Biomed. Eng. 31:70–75.

    Article  CAS  Google Scholar 

  • Ban, Z., Barnakov, Y. A., Li, F., Golub, V. O., and O’Connor, C. J. 2005. The synthesis of core–shell iron@gold nanoparticles and their characterization, J. Mater. Chem. 15:4660–4662.

    Article  CAS  Google Scholar 

  • Beardsley, T. 1994. A war not won. Sci. Am. 270:130–138.

    Article  PubMed  CAS  Google Scholar 

  • Bee, A., Massart, R., and Neveu, S. 1995. Synthesis of very fine maghemite particles, J. Magn. Magn. Mater. 149:6–9.

    Article  ADS  CAS  Google Scholar 

  • Berret, J.-F., Schonbeck, N., Gazeau, F., El Kharrat, D., Sandre, O., Vacher, A., and Airiau, M. 2006. Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging, J. Am. Chem. Soc. 128:1755–1761.

    Article  PubMed  CAS  Google Scholar 

  • Bertorelle, F., Wilhelm, C., Roger, J., Gazeau, F., Menager, C., and Cabuil, V. 2006. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging, Langmuir 22:5385–5391.

    Article  PubMed  CAS  Google Scholar 

  • Blankenberg, F. G. and Strauss, H. W. 2001. Noninvasive strategies to image cardiovascular apoptosis, Cardiol. Clin. 19:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Brigger, I., Dubernet, C., and Couvreur, P. 2002. Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev. 54:631–651.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth, M. D., Bell, S. A., Armes, S. P., and Simpson, A. W. 1996. Synthesis and characterization of polypyrrole–magnetite–silica particles, J. Colloid Interface Sci. 183:91–99.

    Article  CAS  Google Scholar 

  • Caruntu, D., Caruntu, G., Chen, Y., O’Connor, C. J., Goloverda, G., and Kolesnichenko, V. L. 2004. Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity, Chem. Mater. 16:5527–5534.

    Article  CAS  Google Scholar 

  • Caruntu, D., Remond, Y., Chou, N. H., Jun, M. J., Caruntu, G., He, J., Goloverda, G., O’Connor, C., and Kolesnichenko, V. 2002. Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions, Inorg. Chem. 41:6137–6146.

    Article  PubMed  CAS  Google Scholar 

  • Caruso, F. 2001. Nanoengineering of particle surfaces, Adv. Mater. 13:11–22.

    Article  CAS  Google Scholar 

  • Chen, M., Yamamuro, S., Farrell, D., and Majetich, S. A. 2003. Gold-coated iron nanoparticles for biomedical applications, J. Appl. Phys. 93:7551–7553.

    Article  ADS  CAS  Google Scholar 

  • Chung, S. H., Hoffmann, A., Bader, S. D., Liu, C., Kay, B., Makowski, L., and Chen, L. 2004. Biological sensors based on Brownian relaxation of magnetic nanoparticles, Appl. Phys. Lett. 85:2971–2973.

    Article  ADS  CAS  Google Scholar 

  • Dandamudi, S. and Campbell, R. B. 2007. Development and characterization of magnetic cationic liposomes for targeting tumor microvasculature, Biochim. Biophys. Acta 1768:427–438.

    Article  PubMed  CAS  Google Scholar 

  • Davis, S. S. 1997. Biomedical applications of nanotechnology–implications for drug targeting and gene therapy, Trends Biotechnol. 15:217–224.

    Article  PubMed  CAS  Google Scholar 

  • Decuzzi, P., Lee, S., Bhushan, B., and Ferrari, M. 2005. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33:179–190.

    Article  PubMed  CAS  Google Scholar 

  • DeNardo, S. J., DeNardo, G. L., Miers, L. A., Natarajan, A., Foreman, A. R., Gruettner, C., Adamson, G. N., and Ivkov, R. 2005. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy, Clin. Cancer Res. 11:7087–7092.

    Article  Google Scholar 

  • DePalma, R., Peeters, S., VanBael, M. J., VandenRul, H., Bonroy, K., Laureyn, W., Mullens, J., Borghs, G., and Maes, G. 2007. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible, Chem. Mater. 19:1821–1831.

    Article  CAS  Google Scholar 

  • Dinega, D. P. and Bawendi, M. G. 1999. A solution-phase chemical approach to a new crystal structure of cobalt, Angew. Chem. Int. Ed. 38:1788–1791.

    Article  CAS  Google Scholar 

  • Duncan, R. 2003. The dawning era of polymer therapeutics, Nat. Rev. Drug Discov. 2:347–360.

    Article  PubMed  CAS  Google Scholar 

  • Engin, K. 1996. Biological rationale and clinical experience with hyperthermia, Control Clin. Trials 17:316–342.

    Article  PubMed  CAS  Google Scholar 

  • Euliss, L. E., Grancharov, S. G., O’Brien, S., Deming, T. J., Stucky, G. D., Murray, C. B., and Held, G. A. 2003. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media, Nano Lett. 3:1489–1493.

    Article  ADS  CAS  Google Scholar 

  • Farrell, D., Cheng, Y., McCallum, R. W., Sachan, M., and Majetich, S. A. 2005. Magnetic interactions of iron nanoparticles in arrays and dilute dispersions, J. Phys. Chem. B 109: 13409–13419.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, D., Majetich, S. A., and Wilcoxon, J. P. 2003. Preparation and characterization of monodisperse Fe nanoparticles, J. Phys. Chem. B 107:11022–11030.

    Article  CAS  Google Scholar 

  • Flacke, S., Fischer, S., Scott, M. J., Fuhrhop, R. J., Allen, J. S., McLean, M., Winter, P., Sicard, G. A., Gaffney, P. J., Wickline, S. A., and Lanza, G. M. 2001. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques, Circulation 104:1280–1285.

    Article  PubMed  CAS  Google Scholar 

  • Furlani, E. J. and Furlani, E. P. 2007. A model for predicting magnetic targeting of multifunctional particles in the microvasculature, J. Magn. Magn. Mater. 312:187–193.

    Article  ADS  CAS  Google Scholar 

  • Gabizon, A. and Papahadjopoulos, D. 1988. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl Acad. Sci. USA 85:6949–6953.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gilchrist, R. K. 1960. Potential treatment of cancer by electromagnetic heating, Surg. Gynecol. Obstet. 110:499–500.

    PubMed  CAS  Google Scholar 

  • Gilchrist, R. K., Shorey, W. D., Hanselman, R. C., Depeyster, F. A., Yang, J., and Medal, R. 1965. Effects of electromagnetic heating on internal viscera: a preliminary to the treatment of human tumors, Ann. Surg. 161:890–896.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, S., Peterson, C., Hoh, C., and Bittner, C. 1999. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy, J. Magn. Magn. Mater. 194:132–139.

    Article  ADS  CAS  Google Scholar 

  • Gordon, R. T., Hines, J. R., and Gordon, D. 1979. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Med. Hypotheses 5:915–936.

    Article  PubMed  CAS  Google Scholar 

  • Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., and Muller, R. H. 2000. ‘Stealth’ corona–core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids Surf. B Biointerfaces 18:301–313.

    Article  CAS  Google Scholar 

  • Gupta, P. K., Hung, C. T., and Perrier, D. G. 1987. Quantitation of the release of doxorubicin from colloidal dosage forms using dynamic dialysis, J. Pharm. Sci. 76:141–145.

    Article  PubMed  CAS  Google Scholar 

  • Hafeli, U. 2001. Radioactive magnetic microspheres. In: Microspheres, Microcapsules & Liposomes (Arshady, R. ed.), Citus Books, London, pp. 559–584.

    Google Scholar 

  • Hafeli, U. O. 2004. Magnetically modulated therapeutic systems, Int. J. Pharm. 277:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Haukanes, B. I. and Kvam, C. 1993. Application of magnetic beads in bioassays, Biotechnology 11:60–63.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., and Riess, H. 2002. The cellular and molecular basis of hyperthermia, Crit. Rev. Oncol. Hematol. 43:33–56.

    Article  PubMed  Google Scholar 

  • Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., and West, J. L. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl Acad. Sci. USA 100:13549–13554.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hyeon, T., Lee, S. S., Park, J., Chung, Y., and Na, H. B. 2001. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process, J. Am. Chem. Soc. 123:12798–12801.

    Article  PubMed  CAS  Google Scholar 

  • Ito, I., Ji, L., Tanaka, F., Saito, Y., Gopalan, B., Branch, C. D., Xu, K., Atkinson, E. N., Bekele, B. N., Stephens, L. C., Minna, J. D., Roth, J. A., and Ramesh, R. 2004. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo, Cancer Gene Ther. 11:733–739.

    Article  PubMed  CAS  Google Scholar 

  • Ivkov, R., DeNardo, S. J., Daum, W., Foreman, A. R., Goldstein, R. C., Nemkov, V. S., and DeNardo, G. L. 2005. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer, Clin. Cancer Res. 11:7093–7103.

    Article  Google Scholar 

  • Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L., and Labhasetwar, V. 2005. Iron oxide nanoparticles for sustained delivery of anticancer agents, Mol. Pharm. 2:194–205.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, U., Teng, X., Wang, Y., Yang, H., and Xia, Y. 2007. Superparamagnetic colloids: controlled synthesis and niche applications, Adv. Mater. 19:33–60.

    Article  CAS  Google Scholar 

  • Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M. Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W., and Felix, R. 2001. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, J. Magn. Magn. Mater. 225:118–126.

    Article  ADS  CAS  Google Scholar 

  • Josephson, L., Perez, J. M., and Weissleder, R. 2001. Magnetic nanosensors for the detection of oligonucleotide sequences, Angew. Chem. Int. Ed. 40:3204–3206.

    Article  CAS  Google Scholar 

  • Jun, Y. W., Huh, Y. M., Choi, J. S., Lee, J. H., Song, H. T., Kim, S., Yoon, S., Kim, K. S., Shin, J. S., Suh, J. S., and Cheon, J. 2005. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging, J. Am. Chem. Soc. 127:5732–5733.

    Article  PubMed  CAS  Google Scholar 

  • Jung, C. 1995. Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil, Magn. Reson. Imaging 13:675–691.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B. S., Qiu, J. M., Wang, J. P., and Taton, T. A. 2005. Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers, Nano Lett. 5:1987–1991.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kirby, C. and Gregoriadis, G. 1980. The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vitro, Life Sci. 27:2223–2230.

    Article  PubMed  CAS  Google Scholar 

  • Klibanov, A. L., Maruyama, K., Beckerleg, A. M., Torchilin, V. P., and Huang, L. 1991. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target, Biochim. Biophys. Acta 1062:142–148.

    Article  PubMed  CAS  Google Scholar 

  • Koh, I., Wang, X., Varughese, B., Isaacs, L., Ehrman, S. H., and English, D. S. 2006. Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity, J. Phys. Chem. B 110:1553–1558.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, N., Sun, C., Wang, J., and Zhang, M. 2005. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells, Langmuir 21:8858–8864.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J. 1994. Nanoparticles, Dekker, New York, pp. 165–190.

    Google Scholar 

  • Lanza, G. M., Yu, X., Winter, P. M., Abendschein, D. R., Karukstis, K. K., Scott, M. J., Chinen, L. K., Fuhrhop, R. W., Scherrer, D. E., and Wickline, S. A. 2002. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis, Circulation 106:2842–2847.

    Article  PubMed  CAS  Google Scholar 

  • Lasic, D. D., Martin, F. J., Gabizon, A., Huang, S. K., and Papahadjopoulos, D. 1991. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times, Biochim. Biophys. Acta 1070:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. S., Weissleder, R., Brady, T. J., and Wittenberg, J. 1991. Lymph nodes: microstructural anatomy at MR imaging, Radiology 178:519–522.

    PubMed  CAS  Google Scholar 

  • Lee, J.-H., Huh, Y.-M., Jun, Y.-W., Seo, J.-W., Jang, J.-T., Song, H.-T., Kim, S., Cho, E.-J., Yoon, H.-G., Suh, J.-S., and Cheon, J. 2007. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med. 13:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. Y. and Harris, M. T. 2006. Surface modification of magnetic nanoparticles capped by oleic acids: characterization and colloidal stability in polar solvents, J. Colloid Interface Sci. 293:401–408.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y., Lee, J., Bae, C. J., Park, J.-G., Noh, H.-J., Park, J.-H., and Hyeon, T. 2005. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions, Adv. Funct. Mater. 15:2036.

    Article  CAS  Google Scholar 

  • Li, G., Fan, J., Jiang, R., and Gao, Y. 2004. Cross-linking the linear polymeric chains in the ATRP synthesis of iron oxide/polystyrene core/shell nanoparticles, Chem. Mater. 16:1835–1837.

    Article  CAS  Google Scholar 

  • Li, Y., Afzaal, M., and O’Brien, P. 2006. The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility, J. Mater. Chem. 16:2175–2180.

    Article  CAS  Google Scholar 

  • Liu, Q., Xu, Z., Finch, J. A., and Egerton, R. 1998. A novel two-step silica-coating process for engineering magnetic nanocomposites, Chem. Mater. 10:3936–3940.

    Article  CAS  Google Scholar 

  • Lockman, P. R., Mumper, R. J., Khan, M. A., and Allen, D. D. 2002. Nanoparticle technology for drug delivery across the blood–brain barrier, Drug Dev. Ind. Pharm. 28:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Lu, A.-H., Salabas, E. L., and Schüth, F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46:1222–1244.

    Article  CAS  Google Scholar 

  • Lu, Y., Yin, Y., Mayers, B. T., and Xia, Y. 2002. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach, Nano Lett. 2:183–186.

    Article  ADS  CAS  Google Scholar 

  • Lubbe, A. S., Bergemann, C., Brock, J., and McClure, D. G. 1999. Physiological aspects in magnetic drug-targeting, J. Magn. Magn. Mater. 194:149–155.

    Article  ADS  CAS  Google Scholar 

  • Lubbe, A. S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J. W., and Huhn, D. 1996a. Preclinical experiences with magnetic drug targeting: tolerance and efficacy, Cancer Res. 56:4694–4701.

    PubMed  CAS  Google Scholar 

  • Lubbe, A. S., Bergemann, C., Riess, H., Schriever, F., Reichardt, P., Possinger, K., Matthias, M., Dorken, B., Herrmann, F., Gurtler, R., Hohenberger, P., Haas, N., Sohr, R., Sander, B., Lemke, A. J., Ohlendorf, D., Huhnt, W., and Huhn, D. 1996b. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors, Cancer Res. 56:4686–4693.

    PubMed  CAS  Google Scholar 

  • Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P., and Williams, M. E. 2004. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding, Nano Lett. 4:719–723.

    Article  ADS  CAS  Google Scholar 

  • Ma, M., Zhang, Y., Yu, W., Shen, H. Y., Zhang, H. Q., and Gu, N. 2003. Preparation and characterization of magnetite nanoparticles coated by amino silane, Colloids Surf. A: Physicochem. Eng. Asp. 212:219–226.

    Article  CAS  Google Scholar 

  • Massart, R., Dubois, E., Cabuil, V., and Hasmonay, E. 1995. Preparation and properties of monodisperse magnetic fluids, J. Magn. Magn. Mater. 149:1–5.

    Article  ADS  CAS  Google Scholar 

  • Mikhaylova, M., Kim, D. K., Berry, C. C., Zagorodni, A., Toprak, M., Curtis, A. S. G., and Muhammed, M. 2004. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles, Chem. Mater. 16:2344–2354.

    Article  CAS  Google Scholar 

  • Mizukoshi, Y., Seino, S., Okitsu, K., Kinoshita, T., Otome, Y., Nakagawa, T., and Yamamoto, T. A. 2005. Sonochemical preparation of composite nanoparticles of Au/g-Fe2O3 and magnetic separation of glutathione, Ultrason. Sonochem. 12:191–195.

    Article  PubMed  CAS  Google Scholar 

  • Moeser, G. D., Roach, K. A., Green, W. H., Hatton, T. A., and Laibinis, P. E. 2004. High-gradient magnetic separation of coated magnetic nanoparticles, AIChE J. 50:2835–2848.

    Article  CAS  Google Scholar 

  • Moghimi, S. M. and Hunter, A. C. 2000. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine, Trends Biotechnol. 18:412–420.

    Article  PubMed  CAS  Google Scholar 

  • Moghimi, S. M., Hunter, A. C., and Murray, J. C. 2001. Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev. 53:283–318.

    PubMed  CAS  Google Scholar 

  • Morais, P. C., Santos, R. L., Pimenta, A. C. M., Azevedo, R. B., and Lima, E. C. D. 2006. Preparation and characterization of ultra-stable biocompatible magnetic fluids using citrate-coated cobalt ferrite nanoparticles, Thin Solid Films 515:266–270.

    Article  ADS  CAS  Google Scholar 

  • Moroz, P., Jones, S. K., and Gray, B. N. 2002. Magnetically mediated hyperthermia: current status and future directions, Int. J. Hyperthermia 18:267–284.

    Article  CAS  Google Scholar 

  • Nashat, A. H., Moronne, M., and Ferrari, M. 1998. Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy, Biotechnol. Bioeng. 60:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., and von Rechenberg, B. 2005. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293:483–496.

    Article  ADS  CAS  Google Scholar 

  • Ngo, A. T. and Pileni, M. P. P. 2000. Nanoparticles of cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties, Adv. Mater. 12:276–279.

    Article  CAS  Google Scholar 

  • O’Handley, R. C. 2000, Modern Magnetic Materials: Principles and Applications, Wiley, New York.

    Google Scholar 

  • Ohmori, M. and Matijevic, E. 1993. Preparation and properties of uniform coated inorganic colloidal particles: 8. Silica on iron, J. Colloid Interface Sci. 160:288–292.

    Article  CAS  Google Scholar 

  • Otsuka, H., Nagasaki, Y., and Kataoka, K. 2003. PEGylated nanoparticles for biological and pharmaceutical applications, Adv. Drug Deliv. Rev. 55:403–419.

    Article  PubMed  CAS  Google Scholar 

  • Oyewumi, M. O. and Mumper, R. J. 2004. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice, J. Control. Release 24:613–626.

    Article  CAS  Google Scholar 

  • Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J. 2003. Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36:R167–R181.

    Article  ADS  CAS  Google Scholar 

  • Papahadjopoulos, D. and Gabizon, A. 1987. Targeting of liposomes to tumor cells in vivo, Ann. NY Acad. Sci. 507:64–74.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., Park, J.-H., Hwang, N.-M., and Hyeon, T. 2004. Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater. 3:891–895.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Park, J. W. 2002. Liposome-based drug delivery in breast cancer treatment, Breast Cancer Res. 4:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. J., Kim, S., Lee, S., Khim, Z. G., Char, K., and Hyeon, T. 2000. Synthesis and magnetic studies of uniform iron nanorods and nanospheres, J. Am. Chem. Soc. 122:8581–8582.

    Article  CAS  Google Scholar 

  • Reimer, P., Weissleder, R., Wittenberg, J., and Brady, T. J. 1992. Receptor-directed contrast agents for MR imaging: preclinical evaluation with affinity assays, Radiology 182:565–569.

    PubMed  CAS  Google Scholar 

  • Reynolds, C. H., Annan, N., Beshah, K., Huber, J. H., Shaber, S. H., Lenkinski, R. E., and Wortman, J. A. 2000. Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging, J. Am. Chem. Soc. 122:8940–8945.

    Article  CAS  Google Scholar 

  • Schellenberger, E. A., Bogdanov, A., Jr., Hogemann, D., Tait, J., Weissleder, R., and Josephson, L. 2002. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI, Mol. Imaging 1:102–107.

    Article  PubMed  CAS  Google Scholar 

  • Seneterre, E., Weissleder, R., Jaramillo, D., Reimer, P., Lee, A. S., Brady, T. J., and Wittenberg, J. 1991. Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging, Radiology 179:529–533.

    PubMed  CAS  Google Scholar 

  • Shen, L., Laibinis, P. E., and Hatton, T. A. 1999. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces, Langmuir 15:447–453.

    Article  CAS  Google Scholar 

  • Shevchenko, E. V., Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M., and Weller, H. 2002. Colloidal synthesis and self-assembly of CoPt3 nanocrystals, J. Am. Chem. Soc. 124:11480–11485.

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko, E. V., Talapin, D. V., Schnablegger, H., Kornowski, A., Festin, O., Svedlindh, P., Haase, M., and Weller, H. 2003. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals, J. Am. Chem. Soc. 125:9090–9101.

    Article  PubMed  CAS  Google Scholar 

  • Song, Q. and Zhang, Z. J. 2004. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Chem. Soc. 126:6164–6168.

    Article  PubMed  CAS  Google Scholar 

  • Sonvico, F., Dubernet, C., Colombo, P., and Couvreur, P. 2005. Metallic colloid nanotechnology, applications in diagnosis and therapeutics, Curr. Pharm. Des. 11:2095–2105.

    Article  PubMed  Google Scholar 

  • Sousa, M. H., Tourinho, F. A., Depeyrot, J., da Silva, G. J., and Lara, M. C. F. L. 2001. New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures, J. Phys. Chem. B 105:1168–1175.

    Article  CAS  Google Scholar 

  • Sridhar, S., Amiji, M., Shenoy, D., Nagesha, D., Weissig, V., and Fu, W. 2005. Nanomedicine: a new paradigm in diagnosis and therapy, Proc. SPIE Int. Soc. Opt. Eng. 6008, 600816.

    Google Scholar 

  • Stoeva, S. I., Huo, F., Lee, J.-S., and Mirkin, C. A. 2005. Three-layer composite magnetic nanoparticle probes for DNA, J. Am. Chem. Soc. 127:15362–15363.

    Article  PubMed  CAS  Google Scholar 

  • Stoltenburg, R., Reinemann, C., and Strehlitz, B. 2005. FluMag-SELEX as an advantageous method for DNA aptamer selection, Anal. Bioanal. Chem. 383:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., and Letsinger, R. L. 1998. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes, J. Am. Chem. Soc. 120:1959–1964.

    Article  CAS  Google Scholar 

  • Sun, S. and Murray, C. B. 1999. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited), J. Appl. Phys. 85:4325–4330.

    Article  ADS  CAS  Google Scholar 

  • Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A. 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287:1989–1992.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sun, S. and Zeng, H. 2002. Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124:8204–8205.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G. 2004. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 126:273–279.

    Article  PubMed  CAS  Google Scholar 

  • Suslick, K. S., Fang, M., and Hyeon, T. 1996. Sonochemical synthesis of iron colloids, J. Am. Chem. Soc. 118:11960–11961.

    Article  CAS  Google Scholar 

  • Tan, J. S., Butterfield, D. E., Voycheck, C. L., Caldwell, K. D., and Li, J. T. 1993. Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats, Biomaterials 14:823–833.

    Article  PubMed  CAS  Google Scholar 

  • Tartaj, P., Morales, M. D. P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., and Serna, C. J. 2003. The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D: Appl. Phys. 36:182–197.

    Article  ADS  Google Scholar 

  • Tartaj, P. and Serna, C. J. 2002. Microemulsion-assisted synthesis of tunable superparamagnetic composites, Chem. Mater. 14:4396–4402.

    Article  CAS  Google Scholar 

  • Tartaj, P. and Serna, C. J. 2003. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites, J. Am. Chem. Soc. 125:15754–15755.

    Article  PubMed  CAS  Google Scholar 

  • Teng, X. and Yang, H. 2004. Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles, J. Mater. Chem. 14:774–779.

    Article  CAS  Google Scholar 

  • Thunemann Andreas, F., Schutt, D., Kaufner, L., Pison, U., and Mohwald, H. 2006. Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid), Langmuir 22:2351–2357.

    Article  PubMed  CAS  Google Scholar 

  • Vestal, C. R. and Zhang, Z. J. 2002. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles, J. Am. Chem. Soc. 124:14312–14313.

    Article  PubMed  CAS  Google Scholar 

  • Vestal, C. R. and Zhang, Z. J. 2003. Synthesis and magnetic characterization of Mn and Co spinel ferrite–silica nanoparticles with tunable magnetic core, Nano Lett. 3:1739–1743.

    Article  ADS  CAS  Google Scholar 

  • Wang, G.-P., Song, E.-Q., Xie, H. Y., Zhang, Z. L., Tian, Z. Q., Zuo, C., Pang, D. W., Wu, D. C., and Shi, Y. B. 2005. Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications, Chem. Commun. 34:4276–4278.

    Article  CAS  Google Scholar 

  • Wang, Y., Teng, X., Wang, J. S., and Yang, H. 2003. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core–shell nanoparticles, Nano Lett. 3:789–793.

    Article  ADS  CAS  Google Scholar 

  • Widder, K., Flouret, G., and Senyei, A. 1979. Magnetic microspheres: synthesis of a novel parenteral drug carrier, J. Pharm. Sci. 68:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Widder, K. J., Senyei, A. E., and Ranney, D. F. 1980. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres, Cancer Res. 40:3512–3517.

    PubMed  CAS  Google Scholar 

  • Wunderbaldinger, P., Josephson, L., and Weissleder, R. 2002. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles, Bioconjug. Chem. 13:264–268.

    Article  PubMed  CAS  Google Scholar 

  • Yi, D. K., Selvan, S. T., Lee, S. S., Papaefthymiou, G. C., Kundaliya, D., and Ying, J. Y. 2005. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots, J. Am. Chem. Soc. 127:4990–4991.

    Article  PubMed  CAS  Google Scholar 

  • van der Zee, J. 2002. Heating the patient: a promising approach? Ann. Oncol. 13:1173–1184.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Kohler, N., and Zhang, M. 2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23:1553–1561.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Sun, C., Kohler, N., and Zhang, M. 2004. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake, Biomed. Microdevices 6:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. and Zhang, J. 2005. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells, J. Colloid Interface Sci. 283:352–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nagesha, D., Devalapally, H., Sridhar, S., Amiji, M.M. (2008). Multifunctional Magnetic Nanosystems for Tumor Imaging, Targeted Delivery, and Thermal Medicine. In: Torchilin, V. (eds) Multifunctional Pharmaceutical Nanocarriers. Fundamental Biomedical Technologies, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76554-9_13

Download citation

Publish with us

Policies and ethics