Funtionalization of Pharmaceutical Nanocarriers for Mitochondria-Targeted Drug and DNA Delivery

  • Volkmar Weissig
  • Sarathi Boddapati
  • Gerard D'Souza
  • Richard W. Horobin
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

Every fifteen minutes, a child is born with a mitochondrial disease or will develop one by the age of five (Cohen, 2006). Mitochondrial diseases are characterized by a bewildering array of signs and symptoms (Naviaux, 2004). For example, one single-point mutation in mitochondrial DNA has been reported to contribute to over nine different disorders such as diabetes, congestive heart failure, chronic progressive external ophthalmoplegia (CPEO), schizophrenia, and kidney malfunction [reviewed in Naviaux (2004)]. Although mitochondrial involvement in the pathogenesis of human diseases had already been discussed as early as in 1962 (Luft et al., 1962), the causative link between mitochondrial defects and human diseases was identified for the first time only 26 years later. In 1988, Wallace et al. reported the association of a mitochondrial DNA mutation with Leber’s hereditary optic neuropathy, and Holt et al. (1988) identified mitochondrial DNA deletions in patients suffering from myopathies. Since then, the number of human diseases that have been recognized to be caused by mitochondrial malfunctions has exploded. So far, 347 mitochondrial disorders have been identified (Naviaux, 2004). The majority of them display either neurodegenerative or neuromuscular symptoms. Mitochondrial medicine is currently one of the fastest growing areas in biomedical research (Naviaux, 2004) that has also given rise to new sub-disciplines such as mitochondrial pharmacology (Szewczyk & Wojtczak, 2002) and mitochondrial pharmaceutics (Weissig et al., 2004). The identification of new molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will potentially launch new therapeutic approaches for the treatment of mitochondria-related diseases, based on the selective protection, or repair or eradication of cells.


Mitochondrial Disease Chronic Progressive External Ophthalmoplegia HPMA Copolymer Chronic Progressive External Ophthalmoplegia Microtubular Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azzazy HM, Mansour MM, Kazmierczak SC. 2006. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clin Chem 52: 1238–46.PubMedCrossRefGoogle Scholar
  2. Boddapati SV, Tongcharoensirikul P, Hanson RN, D’Souza GG, Torchilin VP, Weissig V. 2005. Mitochondriotropic liposomes. J Liposome Res 15: 49–58.PubMedGoogle Scholar
  3. Callahan J, Kopecek J. 2006. Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug carriers for membrane transduction and mitochondrial localization. Biomacromolecules 7: 2347–56.PubMedCrossRefGoogle Scholar
  4. Chan DC. 2006. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22: 79–99.PubMedCrossRefGoogle Scholar
  5. Chen H, Chan DC. 2005. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14 Spec No. 2: R283–9.PubMedCrossRefGoogle Scholar
  6. Cheng SM, Pabba, S., Torchilin, V.P., Fowle, W., Kimpfler, A., Schubert, R., Weissig, V. 2005. Towards mitochondria-specific delivery of apoptosis-inducing agents: DQAsomal incorporated paclitaxel. J Drug Deliv Sci Technol 15: 81–6.Google Scholar
  7. Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, et al. 2006. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5: 409–17.PubMedCrossRefADSGoogle Scholar
  8. Cohen BH. 2006. Incidence and prevalence rates of mitochondrial diseases. UMDF Mitochondrial News 11: 5–16.Google Scholar
  9. Costantini P, Jacotot, E., Decaudin, D., Kroemer, G. 2000. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Canc Inst 92: 1042–53.CrossRefGoogle Scholar
  10. Dauty E, Verkman AS. 2005. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem 280: 7823–8.PubMedCrossRefGoogle Scholar
  11. De Rosa M, Gambacorta A, Gliozi A. 1986. Structure, biosynthesis, and physicochemical properties of archaebacterial lipds. Microbiol Rev 50: 70–80.PubMedGoogle Scholar
  12. D’Souza GG, Boddapati SV, Weissig V. 2005. Mitochondrial leader sequence–plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5: 352–8.PubMedCrossRefGoogle Scholar
  13. D’Souza GG, Boddapati SV, Weissig V. 2007. Gene therapy of the other genome: the challenges of treating mitochondrial DNA defects. Pharm Res 24: 228–38.PubMedCrossRefGoogle Scholar
  14. D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V. 2003. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Contr Rel 92: 189–97.CrossRefGoogle Scholar
  15. D’Souza GGM, Weissig, V. 2004. Approaches to mitochondrial gene therapy. Curr Gene Ther 4: 317–28.PubMedGoogle Scholar
  16. Everts M. 2007. Thermal scalpel to target cancer. Expert Rev Med Devices 4: 131–6.PubMedCrossRefGoogle Scholar
  17. Gambacorta A, Gliozi A, De Rosa M. 1995. Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol 11: 115–31.CrossRefGoogle Scholar
  18. Gomes AJ, Faustino AS, Lunardi CN, Lunardi LO, Machado AE. 2007. Evaluation of nanoparticles loaded with benzopsoralen in rat peritoneal exudate cells. Int J Pharm 332: 153–60.PubMedCrossRefGoogle Scholar
  19. Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281: 1309–12.PubMedCrossRefGoogle Scholar
  20. Gregoriadis G. 1976a. The carrier potential of liposomes in biology and medicine (first of two parts). N Engl J Med 295: 704–10.PubMedCrossRefGoogle Scholar
  21. Gregoriadis G. 1976b. The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med 295: 765–70.PubMedCrossRefGoogle Scholar
  22. Gregoriadis G. 1988. Liposomes as drug carriers. Chichester, UK: Wiley.Google Scholar
  23. Gregoriadis G. 1993. Liposome technology. Boca Raton, FL.: CRC Press. 3 v. pp.Google Scholar
  24. Gregoriadis G. 2007. Liposome technology. New York: Informa Healthcare.Google Scholar
  25. Gulbins E, Dreschers S, Bock J. 2003. Role of mitochondria in apoptosis. Exp Physiol 88: 85–90.PubMedCrossRefGoogle Scholar
  26. Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, et al. 2003. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40: 1095–104.PubMedCrossRefGoogle Scholar
  27. Holt IJ, Harding AE, Morgan-Hughes JA. 1988. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–19.PubMedCrossRefADSGoogle Scholar
  28. Horobin RW. 2001. Uptake, distribution and accumulation of dyes and fluorescent probes within living cells: A structure–activity modelling approach. Adv Colour Sci Technol 4: 101–7.Google Scholar
  29. Horobin RW. 2002. Biological staining: mechanisms and theory. Biotech Histochem 77: 3–13.PubMedCrossRefGoogle Scholar
  30. Horobin RW, Trapp, S., Weissig, V. 2007. Mitochondriotropics: A review of their mode of action, and their application for drug and DNA delivery to mammalian mitochondria. J Cont Rel 121: 125–136.CrossRefGoogle Scholar
  31. Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, et al. 2004. Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48: 985–94.PubMedGoogle Scholar
  32. Janoff AS, NetLibrary Inc. 1999. Liposomes rational design. New York: M. Dekker. xxxi, 451 pp.Google Scholar
  33. Ju-Nam Y, Bricklebank N, Allen DW, Gardiner PH, Light ME, Hursthouse MB. 2006. Phosphon-ioalkylthiosulfate zwitterions–new masked thiol ligands for the formation of cationic functionalised gold nanoparticles. Org Biomol Chem 4: 4345–51.PubMedCrossRefGoogle Scholar
  34. Kaufmann SH, Gores GJ. 2000. Apoptosis in cancer: cause and cure. Bioessays 22: 1007–17.PubMedCrossRefGoogle Scholar
  35. Kaul Z, Yaguchi T, Kaul SC, Wadhwa R. 2006. Quantum dot-based protein imaging and functional significance of two mitochondrial chaperones in cellular senescence and carcinogenesis. Ann N Y Acad Sci 1067: 469–73.PubMedCrossRefADSGoogle Scholar
  36. Kostarelos K, Miller AD. 2005. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 34: 970–94.PubMedCrossRefGoogle Scholar
  37. Lasch J, Meye A, Taubert H, Koelsch R, Mansa-ard J, Weissig V. 1999. Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol Chem 380: 647–52.PubMedCrossRefGoogle Scholar
  38. Lasic DD. 1993. Liposomes: From physics to applications. Amsterdam, The Netherlands: Elsevier.Google Scholar
  39. Lasic DD, Martin FJ. 1995. Stealth liposomes. Boca Raton: CRC Press. 289 pp.Google Scholar
  40. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B. 1962. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 41: 1776–804.PubMedCrossRefGoogle Scholar
  41. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. 2000. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275: 1625–9.PubMedCrossRefGoogle Scholar
  42. Medda R, Jakobs S, Hell SW, Bewersdorf J. 2006. 4Pi microscopy of quantum dot-labeled cellular structures. J Struct Biol 156: 517–23.PubMedCrossRefGoogle Scholar
  43. Mesika A, Kiss V, Brumfeld V, Ghosh G, Reich Z. 2005. Enhanced intracellular mobility and nuclear accumulation of DNA plasmids associated with a karyophilic protein. Hum Gene Ther 16: 200–8.PubMedCrossRefGoogle Scholar
  44. Naviaux RK. 2004. Developing a systematic approach to the diagnosis and classification of mitochondrial disease. Mitochondrion 4: 351–61.PubMedCrossRefGoogle Scholar
  45. Niedermann G, Weissig V, Sternberg B, Lasch J. 1991. Carboxyacyl derivatives of cardiolipin as four-tailed hydrophobic anchors for the covalent coupling of hydrophilic proteins to liposomes. Biochim Biophys Acta 1070: 401–8.PubMedCrossRefGoogle Scholar
  46. Parfenov AS, Salnikov V, Lederer WJ, Lukyanenko V. 2006. Aqueous diffusion pathways as a part of the ventricular cell ultrastructure. Biophys J 90: 1107–19.PubMedCrossRefGoogle Scholar
  47. Paunesku T, Rajh, T., Wiederrecht, G., Maser, J., Vogt, S., Stojicevic, N., Protic, M., Lai, B., Oryhon, J., Thurnauer, M., Woloschak, G.E. 2003. Biology of TiO2-oligonucleotide nanocomposites. Nat Mater 2: 343–6.PubMedCrossRefADSGoogle Scholar
  48. Paunesku T, Vogt S, Lai B, Maser J, Stojicevic N, et al. 2007. Intracellular distribution of TiO(2)-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett.Google Scholar
  49. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M. 2005. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45: 715–26.PubMedCrossRefGoogle Scholar
  50. Philippot JR, Schuber F. 1995. Liposomes as tools in basic research and industry. Boca Raton: CRC Press. 277 pp.Google Scholar
  51. Polyakov VY, Soukhomlinova MY, Fais D. 2003. Fusion, fragmentation, and fission of mitochondria. Biochemistry (Mosc) 68: 838–49.CrossRefGoogle Scholar
  52. Rowe TC, Weissig V, Lawrence JW. 2001. Mitochondrial DNA metabolism targeting drugs. Adv Drug Deliv Rev 49: 175–87.PubMedCrossRefGoogle Scholar
  53. Salnikov V, Lukyanenko YO, Frederick CA, Lederer WJ, Lukyanenko V. 2007. Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys J 92: 1058–71.PubMedCrossRefGoogle Scholar
  54. Seksek O, Biwersi J, Verkman AS. 1997. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138: 131–42.PubMedCrossRefGoogle Scholar
  55. Sharma P, Brown S, Walter G, Santra S, Moudgil B. 2006. Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126: 471–85.PubMedCrossRefGoogle Scholar
  56. Sternberg B, Sorgi FL, Huang L. 1994. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett 356: 361–6.PubMedCrossRefGoogle Scholar
  57. Szewczyk A, Wojtczak L. 2002. Mitochondria as a pharmacological target. Pharmacol Rev 54: 101–27.PubMedCrossRefGoogle Scholar
  58. Takeuchi Y, Ichikawa K, Yonezawa S, Kurohane K, Koishi T, et al. 2004. Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J Contr Rel 97: 231–40.CrossRefGoogle Scholar
  59. Torchilin VP, Weissig V. 2003. Liposomes: a practical approach. Oxford: Oxford University Press. 396 pp.Google Scholar
  60. Torchilin VP, Weissig V, Martin FJ, Heath TD, New RRC. 2003. Surface modification of liposomes. In Liposomes–a practical approach, ed. VP Torchilin, V Weissig, pp. 193–230. Oxford: Oxford University press.Google Scholar
  61. Trapp S, Horobin RW. 2005. A predictive model for the selective accumulation of chemicals in tumor cells. Eur Biophys J 34: 959–66.PubMedCrossRefGoogle Scholar
  62. Vaughan EE, Dean DA. 2006. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther 13: 422–8.PubMedCrossRefGoogle Scholar
  63. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, et al. 1988. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242: 1427–30.PubMedCrossRefADSGoogle Scholar
  64. Waterhouse NJ, Goldstein JC, Kluck RM, Newmeyer DD, Green DR. 2001. The (Holey) study of mitochondria in apoptosis. Methods Cell Biol 66: 365–91.PubMedCrossRefGoogle Scholar
  65. Weissig V, Gregoriadis, G. 1993. Coupling of aminogroup-bearing ligands to liposomes. In Liposome technology, ed. G Gregoriadis, pp. 231–48. Boca Raton: CRC Press.Google Scholar
  66. Weissig V, Torchilin VP. 2000. Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol 1: 325–46.PubMedCrossRefGoogle Scholar
  67. Weissig V, Torchilin VP. 2001a. Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 49: 127–49.PubMedCrossRefGoogle Scholar
  68. Weissig V, Torchilin VP. 2001b. Towards mitochondrial gene therapy: DQAsomes as a strategy. J Drug Target 9: 1–13.PubMedCrossRefGoogle Scholar
  69. Weissig V, Lasch J, Klibanov AL, Torchilin VP. 1986. A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett 202: 86–90.PubMedCrossRefGoogle Scholar
  70. Weissig V, Lasch J, Gregoriadis G. 1989. Covalent coupling of sugars to liposomes. Biochim Biophys Acta 1003: 54–7.PubMedGoogle Scholar
  71. Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. 1998a. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res 15: 334–7.PubMedCrossRefGoogle Scholar
  72. Weissig V, Mogel HJ, Wahab M, Lasch J. 1998b. Computer simulations of DQAsomes. Proceed Intl Symp Control Rel Bioact Mater 25: 312.Google Scholar
  73. Weissig V, Lizano C, Torchilin VP. 2000. Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv 7: 1–5.PubMedCrossRefGoogle Scholar
  74. Weissig V, D’Souza GG, Torchilin VP. 2001a. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Contr Rel 75: 401–8.CrossRefGoogle Scholar
  75. Weissig V, Lizano C, Ganellin CR, Torchilin VP. 2001b. DNA binding cationic bolasomes with delocalized charge center: A structure–activity relationship study. S.T.P. Pharma Sciences 11: 91–6.Google Scholar
  76. Weissig V, Cheng SM, D’Souza GG. 2004. Mitochondrial pharmaceutics. Mitochondrion 3: 229–44.PubMedCrossRefGoogle Scholar
  77. Weissig V, Boddapati SV, Cheng SM, D’Souza GG. 2006. Liposomes and liposome-like vesicles for drug and DNA delivery to mitochondria. J Liposome Res 16: 249–64.PubMedCrossRefGoogle Scholar
  78. Weissig V, Boddapati SV, Jabre L, D’Souza GGM. 2007. Mitochondria-specific nanotechnology. Nanomedicine 2: 275–85.PubMedCrossRefGoogle Scholar
  79. Woodle MC, Storm G. 1998. Long circulating liposomes: old drugs, new therapeutics. Austin: Landes Bioscience. 301 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Volkmar Weissig
    • 1
  • Sarathi Boddapati
    • 1
  • Gerard D'Souza
    • 1
  • Richard W. Horobin
    • 2
  1. 1.Department of Pharmaceutical SciencesNortheastern UniversityBostonUSA
  2. 2.Division of Neurosciences and Biomedical SystemsIBLS University of GlasgowUK

Personalised recommendations