Skip to main content

Multifunctional Nanotherapeutics for Cancer

  • Chapter
Book cover Multifunctional Pharmaceutical Nanocarriers

Nanotechnology, as a field of applied science, focuses on the development, production, characterization and application of materials, and devices at the level of molecules and atoms with a typical size between 10−9 nm and 10−6 μm. Nanotherapeutics, a rapidly expanding area of medicine, uses nanotechnology products for highly specific medical interventions at the molecular scale for curing diseases or repairing damaged tissues. Although some nanotechnology products can be applied alone as therapeutic or imaging agents, they are being most often used as pharmaceutical nanocarriers for delivering drugs or imaging agents to the site of the action in desired quantities and releasing therapeutic loads with a specific time profile. Linear and branched polymers, dendrimers, quantum dots, nanoparticles, nanospheres, nanotubes, nanocrystals, nanogels, liposomes, micelles, as well as other types of nanocarriers are being employed in different fields of medicine for diagnostics, imaging, treatment, and prophylaxis of many pathological conditions (Fig. 1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, F., Pakunlu, R. I., Brannan, A., Bates, F., Minko, T. and Discher, D. E. 2006. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Contr Rel 116:150–8.

    CAS  Google Scholar 

  • Allen, T. M., Mumbengegwi, D. R. and Charrois, G. J. 2005. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res 11:3567–73.

    PubMed  CAS  Google Scholar 

  • Amirkhanov, N. V. and Wickstrom, E. 2005. Synthesis of novel polydiamidopropanoate dendrimer PNA-peptide chimeras for non-invasive magnetic resonance imaging of cancer. Nucleos Nucleot Nucleic Acids 24:423–6.

    CAS  Google Scholar 

  • Arayne, M. S. and Sultana, N. 2006. Review: nanoparticles in drug delivery for the treatment of cancer. Pak J Pharm Sci 19:258–68.

    PubMed  CAS  Google Scholar 

  • Brignole, C., Marimpietri, D., Pagnan, G., Di Paolo, D., Zancolli, M., Pistoia, V., Ponzoni, M. and Pastorino, F. 2005. Neuroblastoma targeting by c-myb-selective antisense oligonucleotides entrapped in anti-GD2 immunoliposome: immune cell-mediated anti-tumor activities. Cancer Lett 228:181–6.

    PubMed  CAS  Google Scholar 

  • Butts, C., Murray, N., Maksymiuk, A., Goss, G., Marshall, E., Soulieres, D., Cormier, Y., Ellis, P., Price, A., Sawhney, R., Davis, M., Mansi, J., Smith, C., Vergidis, D., MacNeil, M. and Palmer, M. 2005. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23:6674–81.

    PubMed  CAS  Google Scholar 

  • Cai, W., Shin, D. W., Chen, K., Gheysens, O., Cao, Q., Wang, S. X., Gambhir, S. S. and Chen, X. 2006. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–76.

    PubMed  ADS  CAS  Google Scholar 

  • Caliceti, P., Schiavon, O. and Veronese, F. M. 2001. Immunological properties of uricase conjugated to neutral soluble polymers. Bioconjug Chem 12:515–22.

    PubMed  CAS  Google Scholar 

  • Chan, P., Kurisawa, M., Chung, J. E. and Yang, Y. Y. 2007. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials 28:540–9.

    PubMed  CAS  Google Scholar 

  • Chan, W. H., Shiao, N. H. and Lu, P. Z. 2006. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167:191–200.

    PubMed  CAS  Google Scholar 

  • Chang, L. C., Lee, H. F., Chung, M. J. and Yang, V. C. 2005. PEG-modified Protamine with improved pharmacological/pharmaceutical properties as a potential protamine substitute: synthesis and in vitro evaluation. Bioconjug Chem 16:147–55.

    PubMed  CAS  Google Scholar 

  • Chen, B., Pogue, B. W. and Hasan, T. 2005. Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv 2:477–87.

    PubMed  CAS  Google Scholar 

  • Chen, W. and Zhang, J. 2006. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol 6:1159–66.

    PubMed  CAS  Google Scholar 

  • Chen, W. C. and Huang, L. 2005. Non-viral vector as vaccine carrier. Adv Genet 54:315–37.

    PubMed  CAS  Google Scholar 

  • Cho, S. J., Maysinger, D., Jain, M., Roder, B., Hackbarth, S. and Winnik, F. M. 2007. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–80.

    PubMed  CAS  Google Scholar 

  • Choe, Y. H., Greenwald, R. B., Conover, C. D., Zhao, H., Longley, C. B., Guan, S., Zhao, Q. and Xia, J. 2004. PEG prodrugs of 6-mercaptopurine for parenteral administration using benzyl elimination of thiols. Oncol Res 14:455–68.

    PubMed  CAS  Google Scholar 

  • Choi, Y. and Baker, J. R., Jr. 2005. Targeting cancer cells with DNA-assembled dendrimers: a mix and match strategy for cancer. Cell Cycle 4:669–71.

    PubMed  CAS  Google Scholar 

  • Chung, Y. and Cho, H. 2004. Preparation of highly water soluble tacrolimus derivatives: poly(ethylene glycol) esters as potential prodrugs. Arch Pharm Res 27:878–83.

    PubMed  CAS  Google Scholar 

  • Corot, C., Robert, P., Idee, J. M. and Port, M. 2006. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–504.

    PubMed  CAS  Google Scholar 

  • Cosulich, S. C., Worrall, V., Hedge, P. J., Green, S. and Clarke, P. R. 1997. Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol 7:913–20.

    PubMed  CAS  Google Scholar 

  • David, A., Kopeckova, P., Minko, T., Rubinstein, A. and Kopecek, J. 2004. Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer–doxorubicin conjugates to human colon cancer cells. Eur J Cancer 40:148–57.

    PubMed  CAS  Google Scholar 

  • Demoy, M., Minko, T., Kopeckova, P. and Kopecek, J. 2000. Time- and concentration-dependent apoptosis and necrosis induced by free and HPMA copolymer-bound doxorubicin in human ovarian carcinoma cells. J Contr Rel 69:185–96.

    CAS  Google Scholar 

  • Dharap, S. S. and Minko, T. 2003. Targeted proapoptotic LHRH-BH3 peptide. Pharm Res 20:889–96.

    PubMed  CAS  Google Scholar 

  • Dharap, S. S., Qiu, B., Williams, G. C., Sinko, P., Stein, S. and Minko, T. 2003. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Contr Rel 91:61–73.

    CAS  Google Scholar 

  • Dharap, S. S., Wang, Y., Chandna, P., Khandare, J. J., Qiu, B., Gunaseelan, S., Sinko, P. J., Stein, S., Farmanfarmaian, A. and Minko, T. 2005. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci U S A 102:12962–7.

    PubMed  ADS  CAS  Google Scholar 

  • Dharap, S. S., Chandna, P., Wang, Y., Khandare, J. J., Qiu, B., Stein, S. and Minko, T. 2006. Molecular targeting of BCL2 and BCLXL proteins by synthetic BH3 peptide enhances the efficacy of chemotherapy. J Pharmacol Exp Ther 316:992–98.

    PubMed  CAS  Google Scholar 

  • Duncan, R. 2007. Designing polymer conjugates as lysosomotropic nanomedicines. Biochem Soc Trans 35:56–60.

    PubMed  CAS  Google Scholar 

  • Duncan, R., Gac-Breton, S., Keane, R., Musila, R., Sat, Y. N., Satchi, R. and Searle, F. 2001. Polymer–drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J Contr Rel 74:135–46.

    CAS  Google Scholar 

  • Fang, J., Sawa, T. and Maeda, H. 2003. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol 519:29–49.

    PubMed  CAS  Google Scholar 

  • Faraday, M. 1857. Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 14:145–81.

    Google Scholar 

  • Funhoff, A. M., van Nostrum, C. F., Janssen, A. P., Fens, M. H., Crommelin, D. J. and Hennink, W. E. 2004. Polymer side-chain degradation as a tool to control the destabilization of polyplexes. Pharm Res 21:170–6.

    PubMed  CAS  Google Scholar 

  • Gabizon, A. A., Shmeeda, H. and Zalipsky, S. 2006. Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 16:175–83.

    PubMed  CAS  Google Scholar 

  • Gabizon, A. A., Tzemach, D., Horowitz, A. T., Shmeeda, H., Yeh, J. and Zalipsky, S. 2006. Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res 12:1913–20.

    PubMed  CAS  Google Scholar 

  • Gao, X., Chung, L. W. and Nie, S. 2007. Quantum dots for in vivo molecular and cellular imaging. Methods Mol Biol 374:135–46.

    PubMed  CAS  Google Scholar 

  • Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T. and Discher, D. 2007. Soft filaments circulate longer than spherical particles–shape effects in flow and drug delivery. Nat Nanotech 2:249–55.

    ADS  CAS  Google Scholar 

  • Gillies, E. R., Dy, E., Frechet, J. M. and Szoka, F. C. 2005. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol Pharm 2:129–38.

    PubMed  CAS  Google Scholar 

  • Goyal, P., Goyal, K., Vijaya Kumar, S. G., Singh, A., Katare, O. P. and Mishra, D. N. 2005. Liposomal drug delivery systems–clinical applications. Acta Pharm 55:1–25.

    PubMed  CAS  Google Scholar 

  • Greenwald, R. B. 2001. PEG drugs: an overview. J Contr Rel 74:159–71.

    CAS  Google Scholar 

  • Greenwald, R. B., Zhao, H. and Xia, J. 2003. Tripartate poly(ethylene glycol) prodrugs of the open lactone form of camptothecin. Bioorg Med Chem 11:2635–9.

    PubMed  CAS  Google Scholar 

  • Greenwald, R. B., Zhao, H., Xia, J., Wu, D., Nervi, S., Stinson, S. F., Majerova, E., Bramhall, C. and Zaharevitz, D. W. 2004. Poly(ethylene glycol) prodrugs of the CDK inhibitor, alsterpaullone (NSC 705701): synthesis and pharmacokinetic studies. Bioconjug Chem 15:1076–83.

    PubMed  CAS  Google Scholar 

  • Greish, K., Fang, J., Inutsuka, T., Nagamitsu, A. and Maeda, H. 2003. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 42:1089–105.

    PubMed  CAS  Google Scholar 

  • Grodzinski, P., Silver, M. and Molnar, L. K. 2006. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn 6:307–18.

    PubMed  CAS  Google Scholar 

  • Gunaseelan, S., Debrah, O., Wan, L., Leibowitz, M. J., Rabson, A. B., Stein, S. and Sinko, P. J. 2004. Synthesis of poly(ethylene glycol)-based saquinavir prodrug conjugates and assessment of release and anti-HIV-1 bioactivity using a novel protease inhibition assay. Bioconjug Chem 15:1322–33.

    PubMed  CAS  Google Scholar 

  • Gupta, B., Levchenko, T. S., Mongayt, D. A. and Torchilin, V. P. 2005. Monoclonal antibody 2C5-mediated binding of liposomes to brain tumor cells in vitro and in subcutaneous tumor model in vivo. J Drug Target 13:337–43.

    PubMed  CAS  Google Scholar 

  • Hama, Y., Koyama, Y., Urano, Y., Choyke, P. L. and Kobayashi, H. 2007. Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 103:23–8.

    PubMed  Google Scholar 

  • Hillaireau, H., Le Doan, T. and Couvreur, P. 2006. Polymer-based nanoparticles for the delivery of nucleoside analogues. J Nanosci Nanotechnol 6:2608–17.

    PubMed  CAS  Google Scholar 

  • Hofheinz, R. D., Gnad-Vogt, S. U., Beyer, U. and Hochhaus, A. 2005. Liposomal encapsulated anti-cancer drugs. Anticanc Drugs 16:691–707.

    CAS  Google Scholar 

  • Holinger, E. P., Chittenden, T. and Lutz, R. J. 1999. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 274:13298–304.

    PubMed  CAS  Google Scholar 

  • Hong, S., Leroueil, P. R., Majoros, I. J., Orr, B. G., Baker, J. R., Jr. and Banaszak Holl, M. M. 2007. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14:107–15.

    PubMed  CAS  Google Scholar 

  • Islam, M. T., Majoros, I. J. and Baker, J. R., Jr. 2005. HPLC analysis of PAMAM dendrimer based multifunctional devices. J Chromatogr B Analyt Technol Biomed Life Sci 822:21–6.

    PubMed  CAS  Google Scholar 

  • Ito, A., Tanaka, K., Honda, H., Abe, S., Yamaguchi, H. and Kobayashi, T. 2003. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng 96:364–9.

    PubMed  CAS  Google Scholar 

  • Ito, A., Shinkai, M., Honda, H. and Kobayashi, T. 2005. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11.

    PubMed  CAS  Google Scholar 

  • Jackson, H., Muhammad, O., Daneshvar, H., Nelms, J., Popescu, A., Vogelbaum, M. A., Bruchez, M. and Toms, S. A. 2007. Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 60:524–9; discussion 529–30.

    PubMed  Google Scholar 

  • Kale, A. A. and Torchilin, V. P. 2007. Design, synthesis, and characterization of pH-sensitive PEG–PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 18:363–70.

    PubMed  CAS  Google Scholar 

  • Kasuya, Y., Lu, Z. R., Kopeckova, P., Minko, T., Tabibi, S. E. and Kopecek, J. 2001. Synthesis and characterization of HPMA copolymer–aminopropylgeldanamycin conjugates. J Contr Rel 74:203–11.

    CAS  Google Scholar 

  • Kazakov, S., Kaholek, M., Kudasheva, D., Teraoka, I., Cowman, M. K. and Levon, K. 2003. Poly(N-isopropylacrylamide-co-1-vinylimidazole) hydrogel nanoparticles prepared and hydrophobically modified in liposome reactors: Atomic force microscopy and dynamic light scattering study. Langmuir 19:8086–8093.

    CAS  Google Scholar 

  • Khan, M. K., Nigavekar, S. S., Minc, L. D., Kariapper, M. S., Nair, B. M., Lesniak, W. G. and Balogh, L. P. 2005. In vivo biodistribution of dendrimers and dendrimer nanocomposites–implications for cancer imaging and therapy. Technol Cancer Res Treat 4:603–13.

    PubMed  CAS  Google Scholar 

  • Khandare, J. and Minko, T. 2006. Polymer–drug conjugates: progress in polymeric prodrugs. Progr Polym Sci 31:359–97.

    CAS  Google Scholar 

  • Khandare, J., Kolhe, P., Pillai, O., Kannan, S., Lieh-Lai, M. and Kannan, R. M. 2005. Synthesis, cellular transport, and activity of polyamidoamine dendrimer–methylprednisolone conjugates. Bioconjug Chem 16:330–7.

    PubMed  CAS  Google Scholar 

  • Khandare, J. J., Chandna, P., Wang, Y., Pozharov, V. P. and Minko, T. 2006a. Novel polymeric prodrug with multivalent components for cancer therapy. J Pharmacol Exp Ther 317:929–37.

    PubMed  CAS  Google Scholar 

  • Khandare, J. J., Jayant, S., Singh, A., Chandna, P., Wang, Y., Vorsa, N. and Minko, T. 2006b. Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem 17:1464–72.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., Kawamoto, S., Bernardo, M., Brechbiel, M. W., Knopp, M. V. and Choyke, P. L. 2006. Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Contr Rel 111:343–51.

    CAS  Google Scholar 

  • Kolhe, P., Khandare, J., Pillai, O., Kannan, S., Lieh-Lai, M. and Kannan, R. 2004. Hyperbranched polymer–drug conjugates with high drug payload for enhanced cellular delivery. Pharm Res 21:2185–95.

    PubMed  CAS  Google Scholar 

  • Kopecek, J., Kopeckova, P., Minko, T., Lu, Z. R. and Peterson, C. M. 2001. Water soluble polymers in tumor targeted delivery. J Contr Rel 74:147–58.

    CAS  Google Scholar 

  • Kouroussis, C., Androulakis, N., Vamvakas, L., Kalykaki, A., Spiridonakou, S., Kentepozidis, N., Saridaki, Z., Xiropoulou, E. and Georgoulias, V. 2005. Phase I study of weekly docetaxel and liposomal doxorubicin in patients with advanced solid tumors. Oncology 69:202–7.

    PubMed  CAS  Google Scholar 

  • Kovar, M., Kovar, L., Subr, V., Etrych, T., Ulbrich, K., Mrkvan, T., Loucka, J. and Rihova, B. 2004. HPMA copolymers containing doxorubicin bound by a proteolytically or hydrolytically cleavable bond: comparison of biological properties in vitro. J Contr Rel 99:301–14.

    CAS  Google Scholar 

  • Kunath, K., Kopeckova, P., Minko, T. and Kopecek, J. 2000. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 3. The effect of free and polymer-bound adriamycin on the expression of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur J Pharm Biopharm 49:11–15.

    PubMed  CAS  Google Scholar 

  • Lammers, T., Kuhnlein, R., Kissel, M., Subr, V., Etrych, T., Pola, R., Pechar, M., Ulbrich, K., Storm, G., Huber, P. and Peschke, P. 2005. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J Contr Rel 103–18.

    Google Scholar 

  • Langer, M. and Beck-Sickinger, A. G. 2001. Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem Antican Agents 1:71–93.

    CAS  Google Scholar 

  • Langer, R. 2001. Drug delivery. Drugs on target. Science 293:58–9.

    PubMed  CAS  Google Scholar 

  • Langereis, S., de Lussanet, Q. G., van Genderen, M. H., Meijer, E. W., Beets-Tan, R. G., Griffioen, A. W., van Engelshoven, J. M. and Backes, W. H. 2006. Evaluation of Gd(III) DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 19:133–41.

    PubMed  CAS  Google Scholar 

  • Lee, C. C., Gillies, E. R., Fox, M. E., Guillaudeu, S. J., Frechet, J. M., Dy, E. E. and Szoka, F. C. 2006. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci U S A 103:16649–54.

    PubMed  ADS  CAS  Google Scholar 

  • Li, Z., Wang, K., Tan, W., Li, J., Fu, Z., Ma, C., Li, H., He, X. and Liu, J. 2006. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal Biochem 354:169–74.

    PubMed  CAS  Google Scholar 

  • Liu, S., Lee, C. M., Wang, S. and Lu, D. R. 2006. A new bioimaging carrier for fluorescent quantum dots: phospholipid nanoemulsion mimicking natural lipoprotein core. Drug Deliv 13:159–64.

    PubMed  Google Scholar 

  • Ljubimova, J. Y., Fujita, M., Khazenzon, N. M., Lee, B. S., Wachsmann-Hogiu, S., Farkas, D. L., Black, K. L. and Holler, E. 2007. Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact Feb 8 [Epub ahead of print].

    Google Scholar 

  • Lu, C., Perez-Soler, R., Piperdi, B., Walsh, G. L., Swisher, S. G., Smythe, W. R., Shin, H. J., Ro, J. Y., Feng, L., Truong, M., Yalamanchili, A., Lopez-Berestein, G., Hong, W. K., Khokhar, A. R. and Shin, D. M. 2005. Phase II study of a liposome-entrapped cisplatin analog (L-NDDP) administered intrapleurally and pathologic response rates in patients with malignant pleural mesothelioma. J Clin Oncol 23:3495–501.

    PubMed  CAS  Google Scholar 

  • Lu, Z. R., Shiah, J. G., Sakuma, S., Kopeckova, P. and Kopecek, J. 2002. Design of novel bioconjugates for targeted drug delivery. J Contr Rel 78:165–73.

    CAS  Google Scholar 

  • Lukyanov, A. N., Elbayoumi, T. A., Chakilam, A. R. and Torchilin, V. P. 2004. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Contr Rel 100:135–44.

    CAS  Google Scholar 

  • Luten, J., Akeroyd, N., Funhoff, A., Lok, M. C., Talsma, H. and Hennink, W. E. 2006. Methacrylamide polymers with hydrolysis-sensitive cationic side groups as degradable gene carriers. Bioconjug Chem 17:1077–84.

    PubMed  CAS  Google Scholar 

  • Lutz, R. J. 2000. Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and Bcl-2-related proteins. Biochem Soc Trans 28:51–6.

    PubMed  CAS  Google Scholar 

  • Maeda, H. 2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207.

    PubMed  CAS  Google Scholar 

  • Majoros, I. J., Myc, A., Thomas, T., Mehta, C. B. and Baker, J. R., Jr. 2006. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–9.

    PubMed  CAS  Google Scholar 

  • Matsumura, Y. and Maeda, H. 1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–92.

    PubMed  CAS  Google Scholar 

  • McNeil, S. E. 2005. Nanotechnology for the biologist. J Leukoc Biol 78:585–94.

    PubMed  CAS  Google Scholar 

  • Mehvar, R., Dann, R. O. and Hoganson, D. A. 2000. Kinetics of hydrolysis of dextran- methylprednisolone succinate, a macromolecular prodrug of methylprednisolone, in rat blood and liver lysosomes. J Contr Rel 68:53–61.

    CAS  Google Scholar 

  • Minko, T. 2004. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 56:491–509.

    PubMed  CAS  Google Scholar 

  • Minko, T., Kopeckova, P., Pozharov, V. and Kopecek, J. 1998. HPMA copolymer bound adriamycin overcomes MDRI gene encoded resistance in a human ovarian carcinoma cell line. J Contr Rel 54:223–33.

    CAS  Google Scholar 

  • Minko, T., Kopeckova, P. and Kopecek, J. 1999a. Chronic exposure to HPMA copolymer-bound adriamycin does not induce multidrug resistance in a human ovarian carcinoma cell line. J Contr Rel 59:133–48.

    CAS  Google Scholar 

  • Minko, T., Kopeckova, P. and Kopecek, J. 1999b. Comparison of the anticancer effect of free and HPMA copolymer-bound adriamycin in human ovarian carcinoma cells. Pharm Res 16:986–96.

    PubMed  CAS  Google Scholar 

  • Minko, T., Kopeckova, P., Pozharov, V., Jensen, K. D. and Kopecek, J. 2000. The influence of cytotoxicity of macromolecules and of VEGF gene modulated vascular permeability on the enhanced permeability and retention effect in resistant solid tumors. Pharm Res 17:505–14.

    PubMed  CAS  Google Scholar 

  • Minko, T., Kopeckova, P. and Kopecek, J. 2001. Preliminary evaluation of caspases-dependent apoptosis signaling pathways of free and HPMA copolymer-bound doxorubicin in human ovarian carcinoma cells. J Contr Rel 71:227–37.

    CAS  Google Scholar 

  • Minko, T., Paranjpe, P. V., Qiu, B., Lalloo, A., Won, R., Stein, S. and Sinko, P. J. 2002. Enhancing the anticancer efficacy of camptothecin using biotinylated poly(ethylene glycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol 50:143–50.

    PubMed  CAS  Google Scholar 

  • Minko, T., Dharap, S. S. and Fabbricatore, A. T. 2003. Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detect Prev 27:193–202.

    PubMed  CAS  Google Scholar 

  • Minko, T., Dharap, S. S., Pakunlu, R. I. and Wang, Y. 2004. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 5:389–406.

    PubMed  CAS  Google Scholar 

  • Minko, T., Pakunlu, R. I., Wang, Y., Khandare, J. J. and Saad, M. 2006. New generation of liposomal drugs for cancer. Anticanc Agents Med Chem 6:537–52.

    CAS  Google Scholar 

  • Mitra, A., Nan, A., Line, B. R. and Ghandehari, H. 2006. Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr Pharm Des 12:4729–49.

    PubMed  CAS  Google Scholar 

  • Moghimi, S. M. 2006. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticanc Agents Med Chem 6:553–561.

    CAS  Google Scholar 

  • Mora, J. R., Knoll, J. H., Rogan, P. K., Getts, R. C. and Wilson, G. S. 2006. Dendrimer FISH detection of single-copy intervals in acute promyelocytic leukemia. Mol Cell Probes 20:114–20.

    PubMed  CAS  Google Scholar 

  • Mrozek, E., Rhoades, C. A., Allen, J., Hade, E. M. and Shapiro, C. L. 2005. Phase I trial of liposomal encapsulated doxorubicin (Myocet; D-99) and weekly docetaxel in advanced breast cancer patients. Ann Oncol 16:1087–93.

    PubMed  CAS  Google Scholar 

  • Myc, A., Majoros, I. J., Thomas, T. P. and Baker, J. R., Jr. 2007. Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 8:13–8.

    PubMed  CAS  Google Scholar 

  • Naik, S. S., Liang, J. F., Park, Y. J., Lee, W. K. and Yang, V. C. 2005. Application of “ATTEMPTS” for drug delivery. J Contr Rel 101:35–45.

    CAS  Google Scholar 

  • Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J. S., Chin, S. F., Sherry, A. D., Boothman, D. A. and Gao, J. 2006. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–30.

    PubMed  ADS  CAS  Google Scholar 

  • Overmoyer, B., Silverman, P., Holder, L. W., Tripathy, D. and Henderson, I. C. 2005. Pegylated liposomal doxorubicin and cyclophosphamide as first-line therapy for patients with metastatic or recurrent breast cancer. Clin Breast Cancer 6:150–7.

    PubMed  CAS  Google Scholar 

  • Pakunlu, R. I., Cook, T. J. and Minko, T. 2003. Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm Res 20:351–9.

    PubMed  CAS  Google Scholar 

  • Pakunlu, R. I., Wang, Y., Tsao, W., Pozharov, V., Cook, T. J. and Minko, T. 2004. Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense: novel multicomponent delivery system. Cancer. Res. 64:6214–24.

    PubMed  CAS  Google Scholar 

  • Pakunlu, R. I., Wang, Y., Saad, M., Khandare, J. J., Starovoytov, V. and Minko, T. 2006. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J Contr Rel 114:153–62.

    CAS  Google Scholar 

  • Papagiannaros, A., Dimas, K., Papaioannou, G. T. and Demetzos, C. 2005. Doxorubicin–PAMAM dendrimer complex attached to liposomes: cytotoxic studies against human cancer cell lines. Int J Pharm 302:29–38.

    PubMed  CAS  Google Scholar 

  • Paranjpe, P. V., Chen, Y., Kholodovych, V., Welsh, W., Stein, S. and Sinko, P. J. 2004. Tumor-targeted bioconjugate based delivery of camptothecin: design, synthesis and in vitro evaluation. J Contr Rel 100:275–92.

    CAS  Google Scholar 

  • Peterson, C. M., Shiah, J. G., Sun, Y., Kopeckova, P., Minko, T., Straight, R. C. and Kopecek, J. 2003. HPMA copolymer delivery of chemotherapy and photodynamic therapy in ovarian cancer. Adv Exp Med Biol 519:101–23.

    PubMed  CAS  Google Scholar 

  • Popescu, M. A. and Toms, S. A. 2006. In vivo optical imaging using quantum dots for the management of brain tumors. Expert Rev Mol Diagn 6:879–90.

    PubMed  CAS  Google Scholar 

  • Portney, N. G. and Ozkan, M. 2006. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384:620–30.

    PubMed  CAS  Google Scholar 

  • Reubi, J. C. 2003. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427.

    PubMed  CAS  Google Scholar 

  • Romet-Lemonne, J. L., Mills, B., Fridman, W. H. and Munsell, M. 2005. Prospectively planned analysis of data from a phase III study of liposomal muramyltripeptide phosphatidylethanolamine in the treatment of osteosarcoma. J Clin Oncol 23:6437–8.

    PubMed  Google Scholar 

  • Ruozi, B., Tosi, G., Forni, F., Fresta, M. and Vandelli, M. A. 2005. Atomic force microscopy and photon correlation spectroscopy: Two techniques for rapid characterization of liposomes. Eur J Pharmaceut Sci 25:81–9.

    CAS  Google Scholar 

  • Shi, X., Majoros, I. J., Patri, A. K., Bi, X., Islam, M. T., Desai, A., Ganser, T. R. and Baker, J. R., Jr. 2006. Molecular heterogeneity analysis of poly(amidoamine) dendrimer-based mono- and multifunctional nanodevices by capillary electrophoresis. Analyst 131:374–81.

    PubMed  ADS  CAS  Google Scholar 

  • Sinha, R., Kim, G. J., Nie, S. and Shin, D. M. 2006. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–17.

    PubMed  CAS  Google Scholar 

  • Souza, G. R., Christianson, D. R., Staquicini, F. I., Ozawa, M. G., Snyder, E. Y., Sidman, R. L., Miller, J. H., Arap, W. and Pasqualini, R. 2006. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci U S A 103: 1215–20.

    PubMed  ADS  CAS  Google Scholar 

  • Sukhorukov, G. B., Rogach, A. L., Zebli, B., Liedl, T., Skirtach, A. G., Kohler, K., Antipov, A. A., Gaponik, N., Susha, A. S., Winterhalter, M. and Parak, W. J. 2005. Nanoengineered polymer capsules: tools for detection, controlled delivery, and site-specific manipulation. Small 1:194–200.

    PubMed  CAS  Google Scholar 

  • Szoka, F. C., Jr. 1990. The future of liposomal drug delivery. Biotechnol Appl Biochem 12:496–500.

    PubMed  CAS  Google Scholar 

  • Tada, H., Higuchi, H., Wanatabe, T. M. and Ohuchi, N. 2007. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–44.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Ito, A., Kobayashi, T., Kawamura, T., Shimada, S., Matsumoto, K., Saida, T. and Honda, H. 2005. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J Biosci Bioeng 100:112–5.

    PubMed  CAS  Google Scholar 

  • Thomas, D. A., Sarris, A. H., Cortes, J., Faderl, S., O’Brien, S., Giles, F. J., Garcia-Manero, G., Rodriguez, M. A., Cabanillas, F. and Kantarjian, H. 2006. Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer 106:120–7.

    PubMed  CAS  Google Scholar 

  • Thomson, N. H., Collin, I., Davies, M. C., Palin, K., Parkins, D., Roberts, C. J., Tendler, S. J. B. and Williams, P. M. 2000. Atomic force microscopy of cationic liposomes. Langmuir 16:4813–18.

    CAS  Google Scholar 

  • Tomalia, D. A., Reyna, L. A. and Svenson, S. 2007. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61–7.

    PubMed  CAS  Google Scholar 

  • Torchilin, V. P. 2000. Drug targeting. Eur J Pharm Sci 11 Suppl 2:S81–91.

    PubMed  CAS  Google Scholar 

  • Torchilin, V. P. 2002. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54:235–52.

    PubMed  CAS  Google Scholar 

  • Torchilin, V. P. 2005. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–60.

    PubMed  CAS  Google Scholar 

  • Torchilin, V. P. 2006a. Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–55.

    PubMed  CAS  Google Scholar 

  • Torchilin, V. P. 2006b. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–75.

    PubMed  CAS  Google Scholar 

  • Torchilin, V. P. 2007. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16.

    PubMed  CAS  Google Scholar 

  • True, L. D. and Gao, X. 2007. Quantum dots for molecular pathology: their time has arrived. J Mol Diagn 9:7–11.

    PubMed  CAS  Google Scholar 

  • Uchida, M., Flenniken, M. L., Allen, M., Willits, D. A., Crowley, B. E., Brumfield, S., Willis, A. F., Jackiw, L., Jutila, M., Young, M. J. and Douglas, T. 2006. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128:16626–33.

    PubMed  CAS  Google Scholar 

  • Ulbrich, K., Etrych, T., Chytil, P., Jelinkova, M. and Rihova, B. 2004a. Antibody-targeted polymer–doxorubicin conjugates with pH-controlled activation. J Drug Target 12:477–89.

    PubMed  CAS  Google Scholar 

  • Ulbrich, K., Etrych, T., Chytil, P., Pechar, M., Jelinkova, M. and Rihova, B. 2004b. Polymeric anticancer drugs with pH-controlled activation. Int J Pharm 277:63–72.

    PubMed  CAS  Google Scholar 

  • Van der Schyf, C. J., Geldenhuys, W. J. and Youdim, M. B. 2006. Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 99:1033–48.

    PubMed  Google Scholar 

  • van Vlerken, L. E. and Amiji, M. M. 2006. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3:205–16.

    PubMed  Google Scholar 

  • Wang, D., Kopeckova, J. P., Minko, T., Nanayakkara, V. and Kopecek, J. 2000. Synthesis of starlike N-(2-hydroxypropyl) methacrylamide copolymers: potential drug carriers. Biomacromolecules 1:313–19.

    PubMed  CAS  Google Scholar 

  • Wang, Q. W., Lu, H. L., Song, C. C., Liu, H. and Xu, C. G. 2005. Radiosensitivity of human colon cancer cell enhanced by immunoliposomal docetaxel. World J Gastroenterol 11:4003–7.

    PubMed  CAS  Google Scholar 

  • Xue, F. L., Chen, J. Y., Guo, J., Wang, C. C., Yang, W. L., Wang, P. N. and Lu, D. R. 2007. Enhancement of intracellular delivery of CdTe quantum dots (QDs) to living cells by TAT conjugation. J Fluoresc 17:149–54.

    PubMed  CAS  Google Scholar 

  • Young, S. H. and Rozengurt, E. 2006. Qdot nanocrystal conjugates conjugated to bombesin or ANG II label the cognate G protein-coupled receptor in living cells. Am J Physiol Cell Physiol 290:C728–32.

    PubMed  CAS  Google Scholar 

  • Yu, W. W., Chang, E., Falkner, J. C., Zhang, J., Al-Somali, A. M., Sayes, C. M., Johns, J., Drezek, R. and Colvin, V. L. 2007a. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–9.

    PubMed  CAS  Google Scholar 

  • Yu, X., Chen, L., Li, K., Li, Y., Xiao, S., Luo, X., Liu, J., Zhou, L., Deng, Y., Pang, D. and Wang, Q. 2007b. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 12:014008.

    PubMed  Google Scholar 

  • Zarabi, B., Nan, A., Zhuo, J., Gullapalli, R. and Ghandehari, H. 2006. Macrophage targeted N-(2-hydroxypropyl) methacrylamide conjugates for magnetic resonance imaging. Mol Pharm 3:550–7.

    PubMed  CAS  Google Scholar 

  • Zhang, C., Pei, J., Kumar, D., Sakabe, I., Boudreau, H. E., Gokhale, P. C. and Kasid, U. N. 2007. Antisense oligonucleotides: target validation and development of systemically delivered therapeutic nanoparticles. Methods Mol Biol 361:163–85.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., So, M. K. and Rao, J. 2006. Protease-modulated cellular uptake of quantum dots. Nano Lett 6:1988–92.

    PubMed  ADS  CAS  Google Scholar 

  • Zhang, Z., Tanabe, K., Hatta, H. and Nishimoto, S. 2005. Bioreduction activated prodrugs of camptothecin: molecular design, synthesis, activation mechanism and hypoxia selective cytotoxicity. Org Biomol Chem 3:1905–10.

    PubMed  CAS  Google Scholar 

  • Zhao, H., Lee, C., Sai, P., Choe, Y. H., Boro, M., Pendri, A., Guan, S. and Greenwald, R. B. 2000. 20-O-acylcamptothecin derivatives: evidence for lactone stabilization. J Org Chem 65:4601–6.

    PubMed  CAS  Google Scholar 

  • Zielhuis, S. W., Nijsen, J. F., Seppenwoolde, J. H., Zonnenberg, B. A., Bakker, C. J., Hennink, W. E., van Rijk, P. P. and van het Schip, A. D. 2005. Lanthanide bearing microparticulate systems for multi-modality imaging and targeted therapy of cancer. Curr Med Chem Anti-Canc Agents 5:303–13.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Minko, T. et al. (2008). Multifunctional Nanotherapeutics for Cancer. In: Torchilin, V. (eds) Multifunctional Pharmaceutical Nanocarriers. Fundamental Biomedical Technologies, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76554-9_10

Download citation

Publish with us

Policies and ethics