Advertisement

Multifunctional Pharmaceutical Nanocarriers: Development of the Concept

  • Vladimir Torchilin
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 4)

The use of nanoparticulate pharmaceutical carriers to enhance the in vivo efficiency of many drugs and drug administration protocols well established itself over the past decade both in pharmaceutical research and in clinical setting. Certainly, new or modified nanocarriers as well as their combinations with various drugs and genes are still described in multiple publications. However, looking into the future of the field of drug delivery, we have to think about the development of the next generation of pharmaceutical nanocarriers combining variety of properties and allowing for the simultaneous performance of multiple functions.

Keywords

Drug Carrier Polymeric Micelle Boron Neutron Capture Therapy Cationic Lipid Phosphatidyl Ethanolamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T.M., 1994, The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system, Adv Drug Deliv Rev, 13(3):285–309.CrossRefGoogle Scholar
  2. Allen, T.M., Hansen, C., Martin, F., Redemann, C. and Yau-Young, A., 1991, Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo, Biochim Biophys Acta, 1066(1):29–36.PubMedCrossRefGoogle Scholar
  3. Allen, T.M., Mehra, T., Hansen, C. and Chin, Y.C., 1992, Stealth liposomes: an improved sustained release system for 1-S-D-arabinofuranosylcytosine, Cancer Res, 52(9):2431–9.PubMedGoogle Scholar
  4. Allen, T.M., Hansen, C.B. and de Menenez, D.E.L., 1995, Pharmacokinetics of long-circulating liposomes, Adv Drug Deliv Rev, 16:267–84.CrossRefGoogle Scholar
  5. Asokan, A. and Cho, M.J., 2003, Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids, Biochim Biophys Acta, 1611(1–2):151–60.PubMedGoogle Scholar
  6. Bae, Y. et al., 2005, Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy, Bioconjug Chem, 16(1):122–30.PubMedCrossRefGoogle Scholar
  7. Balthasar, S. et al., 2005, Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes, Biomaterials, 26(15):2723–32.PubMedCrossRefGoogle Scholar
  8. Barsky, D., Putz, B., Schulten, K. and Magin, R.L., 1992, Theory of paramagnetic contrast agents in liposome systems, Magn Reson Med, 24(1):1–13.PubMedCrossRefGoogle Scholar
  9. Benhar, I., Padlan, E.A., Jung, S.H., Lee, B. and Pastan, I., 1994, Rapid humanization of the Fv of monoclonal antibody B3 by using framework exchange of the recombinant immunotoxin B3(Fv)-PE38, Proc Natl Acad Sci U S A, 91(25):12051–5.PubMedADSCrossRefGoogle Scholar
  10. Bernkop-Schnurch, A. and Walker, G., 2001, Multifunctional matrices for oral peptide delivery, Crit Rev Ther Drug Carrier Syst, 18(5):459–501.PubMedGoogle Scholar
  11. Bhadra, D., Bhadra, S., Jain, S. and Jain, N.K., 2003, A PEGylated dendritic nanoparticulate carrier of fluorouracil, Int J Pharm, 257(1–2):111–24.PubMedCrossRefGoogle Scholar
  12. Blume, G. et al., 1993, Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times, Biochim Biophys Acta, 1149(1):180–4.PubMedMathSciNetCrossRefGoogle Scholar
  13. Bogdanov, A.A., Jr., Klibanov, A.L. and Torchilin, V.P., 1988, Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide, FEBS Lett, 231(2):381–4.PubMedCrossRefGoogle Scholar
  14. Boman, N.L., Masin, D., Mayer, L.D., Cullis, P.R. and Bally, M.B., 1994, Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors, Cancer Res, 54(11):2830–3.PubMedGoogle Scholar
  15. Boomer, J.A. and Thompson, D.H., 1999, Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications, Chem Phys Lipids, 99(2):145–53.PubMedCrossRefGoogle Scholar
  16. Boussif, O. et al., 1995, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine, Proc Natl Acad Sci U S A, 92(16):7297–301.PubMedADSCrossRefGoogle Scholar
  17. Branden, L.J., Mohamed, A.J. and Smith, C.I., 1999, A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA, Nat Biotechnol, 17(8):784–7.PubMedCrossRefGoogle Scholar
  18. Brannon-Peppas, L. and Blanchette, J.O., 2004, Nanoparticle and targeted systems for cancer therapy, Adv Drug Deliv Rev, 56(11):1649–59.PubMedCrossRefGoogle Scholar
  19. Calvo, P. et al., 2001, Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery, Pharm Res, 18(8):1157–66.PubMedCrossRefGoogle Scholar
  20. Cheung, C.Y., Murthy, N., Stayton, P.S. and Hoffman, A.S., 2001, A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer, Bioconjug Chem, 12(6):906–10.PubMedCrossRefGoogle Scholar
  21. Choi, H., Choi, S.R., Zhou, R., Kung, H.F. and Chen, I.W., 2004, Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery, Acad Radiol, 11(9):996–1004.PubMedCrossRefGoogle Scholar
  22. Chonn, A., Semple, S.C. and Cullis, P.R., 1991, Separation of large unilamellar liposomes from blood components by a spin column procedure: towards identifying plasma proteins which mediate liposome clearance in vivo, Biochim Biophys Acta, 1070(1):215–22.PubMedCrossRefGoogle Scholar
  23. Chonn, A., Semple, S.C. and Cullis, P.R., 1992, Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes, J Biol Chem, 267(26):18759–65.PubMedGoogle Scholar
  24. Cohen, S. and Bernstein, H. (Editors), 1996, Microparticulate systems for the delivery of proteins and vaccines. Drugs and the Pharmaceutical Sciences, v. 77. Marcel Dekker, New York, ix, 525 pp.Google Scholar
  25. Dagar, S., Krishnadas, A., Rubinstein, I., Blend, M.J. and Onyuksel, H., 2003, VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies, J Control Release, 91(1–2):123–33.PubMedCrossRefGoogle Scholar
  26. DeFrees, S.A., Phillips, L., Guo, L. and Zalipsky, S., 1996, Sialyl Lewis x liposomes as a multivalent ligand and inhibitor of E-selectinmediated cellular adhesion, J Am Chem Soc, 118:6101–4.CrossRefGoogle Scholar
  27. Derossi, D., Joliot, A.H., Chassaing, G. and Prochiantz, A., 1994, The third helix of the Antennapedia homeodomain translocates through biological membranes, J Biol Chem, 269(14):10444–50.PubMedGoogle Scholar
  28. Domb, A.J., Tabata, Y., Ravi Kumar, M.N.V. and Farber, S. (Editors), 2007, Nanoparticles for Pharmaceutical Applications. American Scientific Publishers, Stevenson Ranch, CA.Google Scholar
  29. Dunnick, J.K., McDougall, I.R., Aragon, S., Goris, M.L. and Kriss, J.P., 1975, Vesicle interactions with polyamino acids and antibody: in vitro and in vivo studies, J Nucl Med, 16(6):483–7.PubMedGoogle Scholar
  30. Elbayoumi, T.A. and Torchilin, V.P., 2006, Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: c-imaging studies, Eur J Nucl Med Mol Imaging, 33(10):1196–205.PubMedCrossRefGoogle Scholar
  31. Elbayoumi, T.A., Pabba, S., Roby, A. and Torchilin, V.P., 2007, Antinucleosome antibody-modified liposomes and lipid-core micelles for tumor-targeted delivery of therapeutic and diagnostic agents, J Liposome Res, 17(1):1–14.PubMedCrossRefGoogle Scholar
  32. Elouahabi, A. and Ruysschaert, J.M., 2005, Formation and intracellular trafficking of lipoplexes and polyplexes, Mol Ther, 11(3):336–47.PubMedCrossRefGoogle Scholar
  33. Erdogan, S., Roby, A. and Torchilin, V.P., 2006, Enhanced tumor visualization by E-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes, Mol Pharm, 3(5):525–30.PubMedCrossRefGoogle Scholar
  34. Ewer, M.S. et al., 2004, Cardiac safety of liposomal anthracyclines, Semin Oncol, 31(6 Suppl 13):161–81.PubMedCrossRefGoogle Scholar
  35. Farhood, H., Serbina, N. and Huang, L., 1995, The role of dioleoyl phosphatidyl ethanolamine in cationic liposome mediated gene transfer, Biochim Biophys Acta, 1235(2):289–95.PubMedCrossRefGoogle Scholar
  36. Fattal, E., Couvreur, P. and Dubernet, C., 2004, “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes, Adv Drug Deliv Rev, 56(7):931–46.PubMedCrossRefGoogle Scholar
  37. Filion, M.C. and Phillips, N.C., 1997, Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells, Biochim Biophys Acta, 1329(2):345–56.PubMedCrossRefGoogle Scholar
  38. Frankel, A.D. and Pabo, C.O., 1988, Cellular uptake of the TAT protein from human immunodeficiency virus, Cell, 55(6):1189–93.PubMedCrossRefGoogle Scholar
  39. Fretz, M.M., Koning, G.A., Mastrobattista, E., Jiskoot, W. and Storm, G., 2004, OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis, Biochim Biophys Acta, 1665(1–2):48–56.PubMedGoogle Scholar
  40. Gabizon, A.A., 1995, Liposome circulation time and tumor targeting: implications for cancer chemotherapy, Adv Drug Deliv Rev, 16:285–94.CrossRefGoogle Scholar
  41. Gabizon, A. and Papahadjopoulos, D., 1988, Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc Natl Acad Sci U S A, 85(18):6949–53.PubMedADSCrossRefGoogle Scholar
  42. Gabizon, A. and Papahadjopoulos, D., 1992, The role of surface charge and hydrophilic groups on liposome clearance in vivo, Biochim Biophys Acta, 1103(1):94–100.PubMedCrossRefGoogle Scholar
  43. Gabizon, A. et al., 1994, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes, Cancer Res, 54(4):987–92.PubMedGoogle Scholar
  44. Gabizon, A. et al., 1999, Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies, Bioconjug Chem, 10(2):289–98.PubMedCrossRefGoogle Scholar
  45. Gabizon, A., Shmeeda, H., Horowitz, A.T. and Zalipsky, S., 2004, Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates, Adv Drug Deliv Rev, 56(8):1177–92.PubMedCrossRefGoogle Scholar
  46. Glogard, C., Stensrud, G., Hovland, R., Fossheim, S.L. and Klaveness, J., 2002, Liposomes as carriers of amphiphilic gadolinium chelates: the effect of membrane composition on incorporation efficacy and in vitro relaxivity, Int J Pharm, 233(1–2):131–40.PubMedCrossRefGoogle Scholar
  47. Gorodetsky, R. et al., 2004, Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini, J Control Release, 95(3):477–88.PubMedCrossRefGoogle Scholar
  48. Grant, C.W., Karlik, S. and Florio, E., 1989, A liposomal MRI contrast agent: phosphatidylethanolamine-DTPA, Magn Reson Med, 11(2):236–43.PubMedCrossRefGoogle Scholar
  49. Gref, R. et al., 1994, Biodegradable long-circulating polymeric nanospheres, Science, 263(5153):1600–3.PubMedADSCrossRefGoogle Scholar
  50. Gref, R. et al., 1995, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres, Advanced Drug Delivery Reviews, 16(2–3):215–233.CrossRefGoogle Scholar
  51. Guo, X. and Szoka, F.C., Jr., 2001, Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester–lipid conjugate, Bioconjugate Chem, 12(2):291–300.CrossRefGoogle Scholar
  52. Gupta, B. and Torchilin, V.P., 2007, Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice, Cancer Immunol Immunother, 56(8):1215–23.PubMedCrossRefGoogle Scholar
  53. Gupta, B., Levchenko, T.S. and Torchilin, V.P., 2005, Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides, Adv Drug Deliv Rev, 57(4):637–51.PubMedCrossRefGoogle Scholar
  54. Hallbrink, M. et al., 2001, Cargo delivery kinetics of cell-penetrating peptides, Biochim Biophys Acta, 1515(2):101–9.PubMedCrossRefGoogle Scholar
  55. Harding, J.A., Engbers, C.M., Newman, M.S., Goldstein, N.I. and Zalipsky, S., 1997, Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes, Biochim Biophys Acta, 1327(2):181–92.PubMedCrossRefGoogle Scholar
  56. Harper, G.R. et al., 1991, Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro, Biomaterials, 12(7):695–700.PubMedMathSciNetCrossRefGoogle Scholar
  57. Hatakeyama, H., Akita, H., Maruyama, K., Suhara, T. and Harashima, H., 2004, Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo, Int J Pharm, 281(1–2):25–33.PubMedCrossRefGoogle Scholar
  58. Heath, T.D., Robertson, D., Birbeck, M.S. and Davies, A.J., 1980, Covalent attachment of horseradish peroxidase to the outer surface of liposomes, Biochim Biophys Acta, 599(1):42–62.PubMedCrossRefGoogle Scholar
  59. Hirano, K. and Hunt, C.A., 1985, Lymphatic transport of liposome-encapsulated agents: effects of liposome size following intraperitoneal administration, J Pharm Sci, 74(9):915–21.PubMedCrossRefGoogle Scholar
  60. Hobbs, S.K. et al., 1998, Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment, Proc Natl Acad Sci U S A, 95(8):4607–12.PubMedADSMathSciNetCrossRefGoogle Scholar
  61. Huang, S.K. et al., 1994, Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes, Cancer Res, 54(8):2186–91.PubMedGoogle Scholar
  62. Huwyler, J., Wu, D. and Pardridge, W.M., 1996, Brain drug delivery of small molecules using immunoliposomes, Proc Natl Acad Sci U S A, 93(24):14164–9.PubMedADSCrossRefGoogle Scholar
  63. Hwang, K.J., 1987, Liposome pharamacokinetics. In: M.J. Ostro (Editor), Liposomes: From Biophysics to Therapeutics. Dekker, New York, pp. 109–56.Google Scholar
  64. Illum, S.L. and Davis, S.S., 1983, Effect of the nonionic surfactant poloxamer 338 on the fate and deposition of polystyrene microspheres following intravenous administration, J Pharm Sci, 72(9):1086–9.PubMedCrossRefGoogle Scholar
  65. Ishida, O. et al., 2001, Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo, Pharm Res, 18(7):1042–8.PubMedMathSciNetCrossRefGoogle Scholar
  66. Jaracz, S., Chen, J., Kuznetsova, L.V. and Ojima, I., 2005, Recent advances in tumor-targeting anticancer drug conjugates, Bioorg Med Chem, 13(17):5043–54.PubMedCrossRefGoogle Scholar
  67. Jeong, J.H., Kim, S.W. and Park, T.G., 2003, Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide, Bioconjug Chem, 14(2):473–9.PubMedCrossRefGoogle Scholar
  68. Jones, M.C., Ranger, M. and Leroux, J.C., 2003, pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier, Bioconjug Chem, 14(4):774–81.PubMedCrossRefGoogle Scholar
  69. Josephson, L., Tung, C.H., Moore, A. and Weissleder, R., 1999, High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates, Bioconjug Chem, 10(2):186–91.PubMedCrossRefGoogle Scholar
  70. Kabalka, G.W., Davis, M.A., Holmberg, E., Maruyama, K. and Huang, L., 1991a, Gadolinium-labeled liposomes containing amphiphilic Gd-DTPA derivatives of varying chain length: targeted MRI contrast enhancement agents for the liver, Magn Reson Imaging, 9(3):373–7.PubMedCrossRefGoogle Scholar
  71. Kabalka, G.W. et al., 1991b, Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver, Magn Reson Med, 19(2):406–15.PubMedCrossRefGoogle Scholar
  72. Kakudo, T. et al., 2004, Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system, Biochemistry, 43(19):5618–28.PubMedCrossRefGoogle Scholar
  73. Kale, A.A. and Torchilin, V.P., 2007, Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates, Bioconjug Chem, 18(2):363–70.PubMedCrossRefGoogle Scholar
  74. Kale, A. and Torchilin, V., 2007, Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified PEGylated liposomes, J Drug Target, 15(7–8):538–45.PubMedCrossRefGoogle Scholar
  75. Kamps, J.A. et al., 2000, Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer, J Drug Target, 8(4):235–45.PubMedMathSciNetCrossRefGoogle Scholar
  76. Kato, K., Itoh, C., Yasukouchi, T. and Nagamune, T., 2004, Rapid protein anchoring into the membranes of mammalian cells using oleyl chain and poly(ethylene glycol) derivatives, Biotechnol Prog, 20(3):897–904.PubMedCrossRefGoogle Scholar
  77. Kaufman, C.L. et al., 2003, Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability, Transplantation, 76(7):1043–6.PubMedCrossRefGoogle Scholar
  78. Klibanov, A.L., 1998, Antibody-mediated targeting of PEG-coated liposomes. In: M.C. Woodle and G. Storm (Editors), Long Circulating Liposomes: Old Drugs, New Therapeutics. Biotechnology Intelligence Unit, Springer, Berlin, pp. 269.Google Scholar
  79. Klibanov, A.L., Maruyama, K., Torchilin, V.P. and Huang, L., 1990, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes, FEBS Lett, 268(1):235–7.PubMedCrossRefGoogle Scholar
  80. Klibanov, A.L., Maruyama, K., Beckerleg, A.M., Torchilin, V.P. and Huang, L., 1991, Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target, Biochim Biophys Acta, 1062(2):142–8.PubMedCrossRefGoogle Scholar
  81. Klibanov, A.L., Torchilin, V.P. and Zalipsky, S., 2003, Long-circulating sterically protected liposomes. In: V.P. Torchilin and V. Weissig (Editors), Liposomes: A Practical Approach. Practical Approach Series. Oxford University Press, Oxford, New York, pp. 231–265.Google Scholar
  82. Koning, G.A. and Krijger, G.C., 2007, Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery, Anticancer Agents Med Chem, 7(4):425–40.PubMedCrossRefGoogle Scholar
  83. Kratz, F., Beyer, U. and Schutte, M.T., 1999, Drug–polymer conjugates containing acid-cleavable bonds, Crit Rev Ther Drug Carrier Syst, 16(3):245–88.PubMedGoogle Scholar
  84. Krause, H.J., Schwartz, A. and Rohdewald, P., 1985, Polylactic acid nanoparticles, a colloidal drug delivery system for lipophilic drugs, Int. J. Pharm., 27(2–3):145–55.CrossRefGoogle Scholar
  85. Kunath, K. et al., 2003, Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine, J Control Release, 89(1):113–25.PubMedCrossRefGoogle Scholar
  86. Kung, V.T. and Redemann, C.T., 1986, Synthesis of carboxyacyl derivatives of phosphatidylethanolamine and use as an efficient method for conjugation of protein to liposomes, Biochim Biophys Acta, 862(2):435–9.PubMedCrossRefGoogle Scholar
  87. Lasic, D.D. and Martin, F.J. (Editors), 1995, Stealth Liposomes. CRC Press, Boca Raton, 320 pp.Google Scholar
  88. Lasic, D.D., Martin, F.J., Gabizon, A., Huang, S.K. and Papahadjopoulos, D., 1991, Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times, Biochim Biophys Acta, 1070(1):187–92.PubMedCrossRefGoogle Scholar
  89. Leamon, C.P. and Low, P.S., 1991, Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis, Proc Natl Acad Sci U S A, 88(13):5572–6.PubMedADSCrossRefGoogle Scholar
  90. Lee, R.J. and Low, P.S., 1994, Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis, J Biol Chem, 269(5):3198–204.PubMedGoogle Scholar
  91. Lee, E.S., Na, K. and Bae, Y.H., 2003a, Polymeric micelle for tumor pH and folate-mediated targeting, J Control Release, 91(1–2):103–13.PubMedCrossRefGoogle Scholar
  92. Lee, E.S., Shin, H.J., Na, K. and Bae, Y.H., 2003b, Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization, J Control Release, 90(3):363–74.PubMedCrossRefGoogle Scholar
  93. Lee, E.S., Na, K. and Bae, Y.H., 2005, Super pH-sensitive multifunctional polymeric micelle, Nano Lett, 5(2):325–9.PubMedADSCrossRefGoogle Scholar
  94. Leroux, J., Roux, E., Le Garrec, D., Hong, K. and Drummond, D.C., 2001, N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles, J Control Release, 72(1–3):71–84.PubMedCrossRefGoogle Scholar
  95. Leserman, L.D., Barbet, J., Kourilsky, F. and Weinstein, J.N., 1980, Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A, Nature, 288(5791):602–4.PubMedADSCrossRefGoogle Scholar
  96. Levchenko, T.S., Rammohan, R., Volodina, N. and Torchilin, V.P., 2003, Tat peptide-mediated intracellular delivery of liposomes, Methods Enzymol, 372:339–49.PubMedCrossRefGoogle Scholar
  97. Lochmann, D., Jauk, E. and Zimmer, A., 2004, Drug delivery of oligonucleotides by peptides, Eur J Pharm Biopharm, 58(2):237–51.PubMedCrossRefGoogle Scholar
  98. Loret, E.P. et al., 1991, Activating region of HIV-1 Tat protein: vacuum UV circular dichroism and energy minimization, Biochemistry, 30(24):6013–23.PubMedCrossRefGoogle Scholar
  99. Lu, Y. and Low, P.S., 2002, Folate-mediated delivery of macromolecular anticancer therapeutic agents, Adv Drug Deliv Rev, 54(5):675–93.PubMedCrossRefGoogle Scholar
  100. Lukyanov, A.N., Elbayoumi, T.A., Chakilam, A.R. and Torchilin, V.P., 2004a, Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody, J Control Release, 100(1):135–44.PubMedCrossRefGoogle Scholar
  101. Lukyanov, A.N., Hartner, W.C. and Torchilin, V.P., 2004b, Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits, J Control Release, 94(1):187–93.PubMedCrossRefGoogle Scholar
  102. Maeda, H., 2001, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Adv Enzyme Regul, 41:189–207.PubMedCrossRefGoogle Scholar
  103. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. and Hori, K., 2000, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J Control Release, 65(1–2): 271–84.PubMedCrossRefGoogle Scholar
  104. Martin, F.J. and Papahadjopoulos, D., 1982, Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting, J Biol Chem, 257(1):286–8.PubMedGoogle Scholar
  105. Marty, C., Meylan, C., Schott, H., Ballmer-Hofer, K. and Schwendener, R.A., 2004, Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes, Cell Mol Life Sci, 61(14):1785–94.PubMedCrossRefGoogle Scholar
  106. Maruyama, K. et al., 1991, Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes, Chem Pharm Bull (Tokyo), 39(6):1620–2.Google Scholar
  107. Maruyama, K. et al., 1994, Phosphatidyl polyglycerols prolong liposome circulation in vivo, Int J Pharm, 111(1):103–7.CrossRefGoogle Scholar
  108. Maruyama, K. et al., 1995, Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol) s conjugated at their distal terminals to monoclonal antibodies, Biochim Biophys Acta, 1234(1):74–80.PubMedCrossRefGoogle Scholar
  109. Mastrobattista, E. et al., 2002, Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins, J Biol Chem, 277(30):27135–43.PubMedCrossRefGoogle Scholar
  110. Moghimi, S.M. and Szebeni, J., 2003, Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog Lipid Res, 42(6):463–78.PubMedCrossRefGoogle Scholar
  111. Moghimi, S.M. et al., 1994, Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes, FEBS Lett, 344(1):25–30.PubMedCrossRefGoogle Scholar
  112. Monfardini, C. et al., 1995, A branched monomethoxypoly(ethylene glycol) for protein modification, Bioconjug Chem, 6(1):62–9.PubMedCrossRefGoogle Scholar
  113. Monsky, W.L. et al., 1999, Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor, Cancer Res, 59(16):4129–35.PubMedGoogle Scholar
  114. Morawski, A.M., Lanza, G.A. and Wickline, S.A., 2005, Targeted contrast agents for magnetic resonance imaging and ultrasound, Curr Opin Biotechnol, 16(1):89–92.PubMedCrossRefGoogle Scholar
  115. Napper, D.H., 1983, Polymeric Stabilization of Colloidal Dispersions. Academic Press, London, New York, xvi, 428 pp.Google Scholar
  116. Niedermann, G., Weissig, V., Sternberg, B. and Lasch, J., 1991, Carboxyacyl derivatives of cardiolipin as four-tailed hydrophobic anchors for the covalent coupling of hydrophilic proteins to liposomes, Biochim Biophys Acta, 1070(2):401–8.PubMedCrossRefGoogle Scholar
  117. Nobs, L., Buchegger, F., Gurny, R. and Allemann, E., 2004, Current methods for attaching targeting ligands to liposomes and nanoparticles, J Pharm Sci, 93(8):1980–92.PubMedCrossRefGoogle Scholar
  118. Oehlke, J. et al., 1998, Cellular uptake of an O-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically, Biochim Biophys Acta, 1414(1–2):127–39.PubMedGoogle Scholar
  119. Ogris, M., Steinlein, P., Carotta, S., Brunner, S. and Wagner, E., 2001, DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression, AAPS Pharm Sci, 3(3):E21.CrossRefGoogle Scholar
  120. Olivier, J.C., Huertas, R., Lee, H.J., Calon, F. and Pardridge, W.M., 2002, Synthesis of pegylated immunonanoparticles, Pharm Res, 19(8):1137–43.PubMedCrossRefGoogle Scholar
  121. Paleos, C.M., Tsiourvas, D., Sideratou, Z. and Tziveleka, L., 2004, Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system, Biomacromolecules, 5(2):524–9.PubMedCrossRefGoogle Scholar
  122. Palmer, T.N., Caride, V.J., Caldecourt, M.A., Twickler, J. and Abdullah, V., 1984, The mechanism of liposome accumulation in infarction, Biochim Biophys Acta, 797(3):363–8.PubMedGoogle Scholar
  123. Papahadjopoulos, D. et al., 1991, Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy, Proc Natl Acad Sci U S A, 88(24):11460–4.PubMedADSCrossRefGoogle Scholar
  124. Park, J.W. et al., 2001, Tumor targeting using anti-her2 immunoliposomes, J Control Release, 74(1–3):95–113.PubMedCrossRefGoogle Scholar
  125. Park, E.K., Lee, S.B. and Lee, Y.M., 2005, Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs, Biomaterials, 26(9): 1053–61.PubMedMathSciNetCrossRefGoogle Scholar
  126. Patel, H.M., Boodle, K.M. and Vaughan-Jones, R., 1984, Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes, Biochim Biophys Acta, 801(1):76–86.PubMedGoogle Scholar
  127. Peer, D. and Margalit, R., 2004, Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models, Int J Cancer, 108(5):780–9.PubMedCrossRefGoogle Scholar
  128. Peracchia, M.T. et al., 1999, Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting, J Control Release, 60(1):121–8.PubMedCrossRefGoogle Scholar
  129. Phillips, W.T. and Goins, B., 1995, Targeted delivery of imaging agents by liposomes. In: V.P. Torchilin (Editor), Handbook of Targeted Delivery of Imaging Agents. CRC Press, Boca Raton, pp. 149–173.Google Scholar
  130. Pollard, H. et al., 1998, Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells, J Biol Chem, 273(13):7507–11.PubMedCrossRefGoogle Scholar
  131. Pollard, H. et al., 2001, Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids, J Gene Med, 3(2):153–64.PubMedCrossRefGoogle Scholar
  132. Pooga, M., Hallbrink, M., Zorko, M. and Langel, U., 1998, Cell penetration by transportan, Faseb J, 12(1):67–77.PubMedGoogle Scholar
  133. Porter, C.J., Moghimi, S.M., Illum, L. and Davis, S.S., 1992, The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow, FEBS Lett, 305(1):62–6.PubMedCrossRefGoogle Scholar
  134. Potineni, A., Lynn, D.M., Langer, R. and Amiji, M.M., 2003, Poly(ethylene oxide)-modified poly(P-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery, J Control Release, 86(2–3):223–34.PubMedCrossRefGoogle Scholar
  135. Putz, B., Barsky, D. and Schulten, K., 1994, Mechanisms of liposomal contrast agents in magnetic resonance imaging, J. Liposome Res., 4(2):771–808.CrossRefGoogle Scholar
  136. Raffaghello, L. et al., 2003, Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma, Cancer Lett, 197(1–2):151–5.PubMedCrossRefGoogle Scholar
  137. Ranucci, E., Spagnoli, G., Sartore, L. and Ferutti, P., 1994, Synthesis and molecular weight characterization of low molecular weight end-functionalized poly(4-acryloymorpholine), Macromol Chem Phys, 195:3469–79.CrossRefGoogle Scholar
  138. Rapoport, N., Gao, Z. and Kennedy, A., 2007, Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy, J Natl Cancer Inst, 99(14):1095–106.PubMedCrossRefGoogle Scholar
  139. Roby, A., Erdogan, S. and Torchilin, V.P., 2007, Enhanced in vivo antitumor efficacy of poorly soluble PDT agent, meso-tetraphenylporphine, in PEG-PE-based tumor-targeted immunomicelles, Cancer Biol Ther, 6(7):1136–42.PubMedGoogle Scholar
  140. Rose, P.G., 2005, Pegylated liposomal doxorubicin: optimizing the dosing schedule in ovarian cancer, Oncologist, 10(3):205–14.PubMedCrossRefGoogle Scholar
  141. Rothbard, J.B., Jessop, T.C., Lewis, R.S., Murray, B.A. and Wender, P.A., 2004, Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells, J Am Chem Soc, 126(31):9506–7.PubMedCrossRefGoogle Scholar
  142. Roux, E., Francis, M., Winnik, F.M. and Leroux, J.C., 2002a, Polymer based pH-sensitive carriers as a means to improve the cytoplasmic delivery of drugs, Int J Pharm, 242(1–2):25–36.PubMedCrossRefGoogle Scholar
  143. Roux, E. et al., 2002b, Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer, J Pharm Sci, 91(8):1795–802.PubMedCrossRefGoogle Scholar
  144. Roux, E., Passirani, C., Scheffold, S., Benoit, J.P. and Leroux, J.C., 2004, Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes, J Control Release, 94(2–3):447–51.PubMedCrossRefGoogle Scholar
  145. Sakurai, F. et al., 2000, Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression, J Control Release, 66(2–3):255–69.PubMedMathSciNetCrossRefGoogle Scholar
  146. Salem, A.K., Searson, P.C. and Leong, K.W., 2003, Multifunctional nanorods for gene delivery, Nat Mater, 2(10):668–71.PubMedADSCrossRefGoogle Scholar
  147. Sapra, P. and Allen, T.M., 2002, Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs, Cancer Res, 62(24):7190–4.PubMedGoogle Scholar
  148. Sartore, L. et al., 1994, Low molecular weight end-functionalized poly(N-vinylpyrrolidone) for the modifications of polypeptide aminogroups, J Bioact Compact Polym, 9:411–27.CrossRefGoogle Scholar
  149. Sawant, R.M. et al., 2006, “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers, Bioconjug Chem, 17(4):943–9.PubMedCrossRefGoogle Scholar
  150. Scheule, R.K. et al., 1997, Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung, Hum Gene Ther, 8(6):689–707.PubMedCrossRefGoogle Scholar
  151. Schiffelers, R.M. et al., 2003, Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin, J Control Release, 91(1–2):115–22.PubMedCrossRefGoogle Scholar
  152. Schwarze, S.R., Hruska, K.A. and Dowdy, S.F., 2000, Protein transduction: unrestricted delivery into all cells?, Trends Cell Biol, 10(7):290–5.PubMedCrossRefGoogle Scholar
  153. Schwendener, R.A., 1994, Liposomes as carriers for paramagnetic gadolinium chelates as organ specific contrast agents for magnetic resonance imaging (MRI), J Liposome Res, 4(2): 837–55.CrossRefGoogle Scholar
  154. Schwendener, R.A., Wuthrich, R., Duewell, S., Wehrli, E. and von Schulthess, G.K., 1990, A pharmacokinetic and MRI study of unilamellar gadolinium-, manganese-, and iron-DTPA-stearate liposomes as organ-specific contrast agents, Invest Radiol, 25(8):922–32.PubMedCrossRefGoogle Scholar
  155. Senior, J.H., 1987, Fate and behavior of liposomes in vivo: a review of controlling factors, Crit Rev Ther Drug Carrier Syst, 3(2):123–93.PubMedGoogle Scholar
  156. Senior, J., Delgado, C., Fisher, D., Tilcock, C. and Gregoriadis, G., 1991, Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles, Biochim Biophys Acta, 1062(1):77–82.PubMedCrossRefGoogle Scholar
  157. Shalaev, E.Y. and Steponkus, P.L., 1999, Phase diagram of 1, 2-dioleoyl phosphatidyl ethanolamine (DOPE): water system at subzero temperatures and at low water contents, Biochim Biophys Acta, 1419(2):229–47.PubMedCrossRefGoogle Scholar
  158. Sheff, D., 2004, Endosomes as a route for drug delivery in the real world, Adv Drug Deliv Rev, 56(7):927–30.PubMedCrossRefGoogle Scholar
  159. Shi, G., Guo, W., Stephenson, S.M. and Lee, R.J., 2002, Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations, J Control Release, 80(1–3):309–19.PubMedCrossRefGoogle Scholar
  160. Simoes, S., Moreira, J.N., Fonseca, C., Duzgunes, N. and de Lima, M.C., 2004, On the formulation of pH-sensitive liposomes with long circulation times, Adv Drug Deliv Rev, 56(7): 947–65.PubMedCrossRefGoogle Scholar
  161. Sou, K., Endo, T., Takeoka, S. and Tsuchida, E., 2000, Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles, Bioconjug Chem, 11(3):372–9.PubMedCrossRefGoogle Scholar
  162. Stella, B. et al., 2000, Design of folic acid-conjugated nanoparticles for drug targeting, J Pharm Sci, 89(11):1452–64.PubMedCrossRefGoogle Scholar
  163. Stephenson, S.M. et al., 2003, Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy, Anticancer Res, 23(4):3341–5.PubMedGoogle Scholar
  164. Straubinger, R.M., Duzgunes, N. and Papahadjopoulos, D., 1985, pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules, FEBS Lett, 179(1):148–54.PubMedCrossRefGoogle Scholar
  165. Sudimack, J.J., Guo, W., Tjarks, W. and Lee, R.J., 2002, A novel pH-sensitive liposome formulation containing oleyl alcohol, Biochim Biophys Acta, 1564(1):31–7.PubMedCrossRefGoogle Scholar
  166. Sukhorukov, G.B. et al., 2007, Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications, Small, 3(6):944–55.PubMedCrossRefGoogle Scholar
  167. Sullivan, D.C. and Ferrari, M., 2004, Nanotechnology and tumor imaging: seizing an opportunity, Mol Imaging, 3(4):364–9.PubMedCrossRefGoogle Scholar
  168. Suzawa, T. et al., 2002, Enhanced tumor cell selectivity of adriamycin-monoclonal antibody conjugate via a poly(ethylene glycol)-based cleavable linker, J Control Release, 79(1–3): 229–42.PubMedCrossRefGoogle Scholar
  169. Suzuki, R., Yamada, Y. and Harashima, H., 2007, Efficient cytoplasmic protein delivery by means of a multifunctional envelope-type nano device, Biol Pharm Bull, 30(4):758–62.PubMedCrossRefGoogle Scholar
  170. Takeuchi, H. et al., 1999, Prolonged circulation time of doxorubicin-loaded liposomes coated with a modified polyvinyl alcohol after intravenous injection in rats, Eur J Pharm Biopharm, 48(2):123–9.PubMedCrossRefGoogle Scholar
  171. Tang, F. and Hughes, J.A., 1999, Use of dithiodiglycolic acid as a tether for cationic lipids decreases the cytotoxicity and increases transgene expression of plasmid DNA in vitro, Bioconjug Chem, 10(5):791–6.PubMedCrossRefGoogle Scholar
  172. Thassu, D., Deleers, M. and Pathak, Y. (Editors), 2007, Nanoparticulate Drug Delivery Systems. Informa Healthcare USA, New York, NY.Google Scholar
  173. Thomas, T.P. et al., 2004, In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles, Biomacromolecules, 5(6):2269–74.PubMedCrossRefGoogle Scholar
  174. Tilcock, C., 1993, Liposomal paramagnetic magnetic resonance contrast agents. In: G. Gregoriadis (Editor), Liposome Technology. CRC Press, Boca Raton, FL, pp. 65–87.Google Scholar
  175. Tilcock, C., Unger, E., Cullis, P. and MacDougall, P., 1989, Liposomal Gd-DTPA: preparation and characterization of relaxivity, Radiology, 171(1):77–80.PubMedGoogle Scholar
  176. Torchilin, V.P., 1984, Immobilization of specific proteins on liposome surface: Systems for drug targeting. In: G. Gregoriadis (Editor), Liposome Technology. CRC Press, Boca Raton, FL, pp. 75–94.Google Scholar
  177. Torchilin, V.P., 1985, Liposomes as targetable drug carriers, Crit Rev Ther Drug Carrier Syst, 2(1):65–115.PubMedGoogle Scholar
  178. Torchilin, V.P. (Editor), 1991, Immobilized enzymes in medicine. Progress in Clinical Biochemistry and Medicine, v. 11. Springer-Verlag, Berlin, New York, viii, 206 pp.Google Scholar
  179. Torchilin, V.P., 1995, Handbook of Targeted Delivery of Imaging Agents. CRC Press, Boca Raton, 732 pp.Google Scholar
  180. Torchilin, V.P., 1996, How do polymers prolong circulation times of liposomes, J Liposome Res, 9:99–116.CrossRefGoogle Scholar
  181. Torchilin, V.P., 1997a, Pharmacokinetic considerations in the development of labeled liposomes and micelles for diagnostic imaging, Q J Nucl Med, 41(2):141–53.PubMedGoogle Scholar
  182. Torchilin, V.P., 1997b, Surface-modified liposomes in T- and MR-imaging, Adv Drug Deliv Rev, 24(2–3):301–13.CrossRefGoogle Scholar
  183. Torchilin, V.P., 1998, Polymer-coated long-circulating microparticulate pharmaceuticals, J Microencapsul, 15(1):1–19.PubMedCrossRefGoogle Scholar
  184. Torchilin, V.P., 1999, Novel polymers in microparticulate diagnostic agents, Chemtech, 29(11):27–34.Google Scholar
  185. Torchilin, V.P., 2000, Polymeric contrast agents for medical imaging, Curr Pharm Biotechnol, 1(2):183–215.PubMedCrossRefGoogle Scholar
  186. Torchilin, V.P., 2001, Structure and design of polymeric surfactant-based drug delivery systems, J Control Release, 73(2–3):137–72.PubMedCrossRefGoogle Scholar
  187. Torchilin, V.P., 2002, Strategies and means for drug targeting: an overview. In: V. Muzykantov and V.P. Torchilin (Editors), Biomedical Aspects of Drug Targeting. Kluwer, Boston, pp. 3–26.Google Scholar
  188. Torchilin, V.P., 2004, Targeted polymeric micelles for delivery of poorly soluble drugs, Cell Mol Life Sci, 61(19–20):2549–59.PubMedCrossRefGoogle Scholar
  189. Torchilin, V.P., 2006a, Multifunctional nanocarriers, Adv Drug Deliv Rev, 58(14):1532–55.PubMedCrossRefGoogle Scholar
  190. Torchilin, V.P. (Editor), 2006b. Nanoparticualtes as Pharmaceutical Carriers. Imperial College Press, London, UK, 756 pp.Google Scholar
  191. Torchilin, V.P., 2006c, Recent approaches to intracellular delivery of drugs and DNA and organelle targeting, Annu Rev Biomed Eng, 8:343–75.PubMedCrossRefGoogle Scholar
  192. Torchilin, V. and Klibanov, A., 1993, Coupling and labeling of phospholipids. In: G. Cevc (Editor), Phospholipid Handbook. Marcel Dekker, New York, pp. 293–322.Google Scholar
  193. Torchilin, V.P. and Trubetskoy, V.S., 1995a, In vivo visualizing of organs and tissues with liposomes, J Liposome Res, 5(4):795–812.CrossRefGoogle Scholar
  194. Torchilin, V.P. and Trubetskoy, V.S., 1995b, Which polymers can make nanoparticulate drug carriers long-circulating?, Adv Drug Deliv Rev, 16(2):141–55.CrossRefGoogle Scholar
  195. Torchilin, V.P., Zhou, F. and Huang, L., 1993, pH-sensitive liposomes, J Liposome Res, 3(2):201–255.CrossRefGoogle Scholar
  196. Torchilin, V.P. et al., 1994, Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity, Biochim Biophys Acta, 1195(1):11–20.PubMedCrossRefGoogle Scholar
  197. Torchilin, V.P., Trubetskoy, V.S., Narula, J. and Khaw, B.A., 1995a, PEG-modified liposomes for T- and magentic resonance imaging. In: D.D. Lasic and F.J. Martin (Editors), Stealth Liposomes. CRC Press, Boca Raton, pp. 225–31.Google Scholar
  198. Torchilin, V.P. et al., 1995b, New synthetic amphiphilic polymers for steric protection of liposomes in vivo, J Pharm Sci, 84(9):1049–53.PubMedCrossRefGoogle Scholar
  199. Torchilin, V.P., Trubetskoy, V.S. and Wolf, G.L., 1995c, Magnetic resonance imaging of lymph nodes with GD-containing liposomes. In: V.P. Torchilin (Editor), Handbook of Targeted Delivery of Imaging Agents. CRC Press, Boca Raton, pp. 403–13.Google Scholar
  200. Torchilin, V.P. et al., 2000, PEG-Immunoliposomes: attachment of monoclonal antibody to distal ends of PEG chains via p-Nitrophenylcarbonyl groups, 27th International Symposium on Controlled Release of Bioactive Materials. Controlled Release Society, Inc., Paris, pp. 217–18.Google Scholar
  201. Torchilin, V.P. et al., 2001a, p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups, Biochim Biophys Acta, 1511(2):397–411.PubMedCrossRefGoogle Scholar
  202. Torchilin, V.P. et al., 2001b, Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification, Biomaterials, 22(22):3035–44.PubMedCrossRefGoogle Scholar
  203. Torchilin, V.P. et al., 2003a, Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes, Proc Natl Acad Sci U S A, 100(4):1972–7.PubMedADSCrossRefGoogle Scholar
  204. Torchilin, V.P., Lukyanov, A.N., Gao, Z. and Papahadjopoulos-Sternberg, B., 2003b, Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs, Proc Natl Acad Sci U S A, 100(10):6039–44.PubMedADSCrossRefGoogle Scholar
  205. Torchilin, V.P., Weissig, V., Martin, F.J., Heath, T.D. and New, R.R.C., 2003c, Surface modification of liposomes. In: V.P. Torchilin, Weissig, V. (Editor), Liposomes—A Practical Approach. Oxford University press, Oxford, pp. 193–230.Google Scholar
  206. Trubetskoy, V.S. and Torchilin, V.P., 1994, New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes, J. Liposome Res., 4:961–980.CrossRefGoogle Scholar
  207. Trubetskoy, V.S., Torchilin, V.P., 1995, Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostoc agents, Adv Drug Deliv Rev, 16:311–20.CrossRefGoogle Scholar
  208. Trubetskoy, V.S., Torchilin, V.P., 1996, Polyethyleneglycol based micelles as carriers of therapeutic and diagnostic agents, S.T.P. Pharma Sciences, 6:79–86.Google Scholar
  209. Trubetskoy, V.S., Cannillo, J.A., Milshtein, A., Wolf, G.L. and Torchilin, V.P., 1995, Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties, Magn Reson Imaging, 13(1):31–7.PubMedCrossRefGoogle Scholar
  210. Trubetskoy, V.S., Frank-Kamenetsky, M.D., Whiteman, K.R., Wolf, G.L. and Torchilin, V.P., 1996, Stable polymeric micelles: lymphangiographic contrast media for g-scintigraphy and magnetic resonance imaging, Acad Radiol, 3(3):232–8.PubMedCrossRefGoogle Scholar
  211. Tseng, Y.L., Liu, J.J. and Hong, R.L., 2002, Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study, Mol Pharmacol, 62(4):864–72.PubMedCrossRefGoogle Scholar
  212. Turk, M.J., Reddy, J.A., Chmielewski, J.A. and Low, P.S., 2002, Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs, Biochim Biophys Acta, 1559(1):56–68.PubMedCrossRefGoogle Scholar
  213. Unger, E.C. et al., 1989, Hepatic metastases: liposomal Gd-DTPA-enhanced MR imaging, Radiology, 171(1):81–5.PubMedGoogle Scholar
  214. Unger, E., Cardenas, D., Zerella, A., Fajardo, L.L. and Tilcock, C., 1990, Biodistribution and clearance of liposomal gadolinium-DTPA, Invest Radiol, 25(6):638–44.PubMedCrossRefGoogle Scholar
  215. van Vlerken, L.E. and Amiji, M.M., 2006, Multi-functional polymeric nanoparticles for tumour-targeted drug delivery, Expert Opin Drug Deliv, 3(2):205–16.PubMedCrossRefGoogle Scholar
  216. Varga, C.M., Wickham, T.J. and Lauffenburger, D.A., 2000, Receptor-mediated targeting of gene delivery vectors: insights from molecular mechanisms for improved vehicle design, Biotechnol Bioeng, 70(6):593–605.PubMedCrossRefGoogle Scholar
  217. Venugopalan, P. et al., 2002, pH-sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects, Pharmazie, 57(10):659–71.PubMedGoogle Scholar
  218. Veronese, F.M., 2001, Peptide and protein PEGylation: a review of problems and solutions, Biomaterials, 22(5):405–17.PubMedCrossRefGoogle Scholar
  219. Wadia, J.S., Stan, R.V. and Dowdy, S.F., 2004, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis, Nat Med, 10(3):310–15.PubMedCrossRefGoogle Scholar
  220. Wang, J., Mongayt, D. and Torchilin, V.P., 2005, Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids, J Drug Target, 13(1):73–80.PubMedCrossRefGoogle Scholar
  221. Wartlick, H. et al., 2004, Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells, J Drug Target, 12(7):461–71.PubMedCrossRefGoogle Scholar
  222. Weissig, V. and Gregoriadis, G., 1992, Coupling of aminogroup bearing ligands to liposomes. In: G. Gregoriadis (Editor), Liposome Technology. CRC Press, Boca Raton, pp. 231–48.Google Scholar
  223. Weissig, V., Lasch, J., Klibanov, A.L. and Torchilin, V.P., 1986, A new hydrophobic anchor for the attachment of proteins to liposomal membranes, FEBS Lett, 202(1):86–90.PubMedCrossRefGoogle Scholar
  224. Weissig, V., Lasch, J. and Gregoriadis, G., 1990, Covalent binding of peptides at liposome surfaces, Die Pharmazie, 45(11):849–50.Google Scholar
  225. Widera, A., Norouziyan, F. and Shen, W.C., 2003, Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery, Adv Drug Deliv Rev, 55(11):1439–66.PubMedCrossRefGoogle Scholar
  226. Wong, J.Y., Kuhl, T.L., Israelachvili, J.N., Mullah, N. and Zalipsky, S., 1997, Direct measurement of a tethered ligand–receptor interaction potential, Science, 275(5301):820–2.PubMedCrossRefGoogle Scholar
  227. Woodle, M.C., 1993, Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation, Chem Phys Lipids, 64(1–3):249–62.PubMedCrossRefGoogle Scholar
  228. Woodle, M.C., Engbers, C.M. and Zalipsky, S., 1994, New amphipatic polymer–lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes, Bioconjug Chem, 5(6):493–6.PubMedCrossRefGoogle Scholar
  229. Wu, G.Y. and Wu, C.H., 1987, Receptor-mediated in vitro gene transformation by a soluble DNA carrier system, J Biol Chem, 262(10):4429–32.PubMedGoogle Scholar
  230. Xu, Y. and Szoka, F.C., Jr., 1996, Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection, Biochemistry, 35(18):5616–23.PubMedCrossRefGoogle Scholar
  231. Xu, L. et al., 2002, Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes, Mol Cancer Ther, 1(5):337–46.PubMedGoogle Scholar
  232. Yessine, M.A. and Leroux, J.C., 2004, Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules, Adv Drug Deliv Rev, 56(7):999–1021.PubMedCrossRefGoogle Scholar
  233. Yessine, M.A., Lafleur, M., Meier, C., Petereit, H.U. and Leroux, J.C., 2003, Characterization of the membrane-destabilizing properties of different pH-sensitive methacrylic acid copolymers, Biochim Biophys Acta, 1613(1–2):28–38.PubMedGoogle Scholar
  234. Yoo, H.S., Lee, E.A. and Park, T.G., 2002, Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages, J Control Release, 82(1):17–27.PubMedMathSciNetCrossRefGoogle Scholar
  235. Yoshioka, H., 1991, Surface modification of haemoglobin-containing liposomes with polyethylene glycol prevents liposome aggregation in blood plasma, Biomaterials, 12(9):861–4.PubMedCrossRefGoogle Scholar
  236. Yuan, F. et al., 1995, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size, Cancer Res, 55(17):3752–6.PubMedGoogle Scholar
  237. Zalipsky, S., 1995, Chemistry of polyethylene glycol conjugates with biologically active molecules, Adv Drug Deliv Rev, 16:157–82.CrossRefGoogle Scholar
  238. Zalipsky, S. et al., 1997, Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains, Bioconjug Chem, 8(2):111–18.PubMedCrossRefGoogle Scholar
  239. Zalipsky, S., Gittelman, J., Mullah, N., Qazen, M.M. and Harding, J.A., 1998, Biologically active ligand-bearing polymer-grafted liposomes. In: G. Gregoriadis (Editor), Targeting of Drugs 6: Strategies for Stealth Therapeutic Systems. NATO ASI Series, Series A, Life sciences, v. 300. Plenum Press, New York, pp. 131–9.Google Scholar
  240. Zalipsky, S. et al., 1999, New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine, Bioconjug Chem, 10(5):703–7.PubMedCrossRefGoogle Scholar
  241. Zhang, F., Kang, E.T., Neoh, K.G. and Huang, W., 2001, Modification of gold surface by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion, J Biomater Sci Polym Ed, 12(5):515–31.PubMedCrossRefGoogle Scholar
  242. Zhang, Y., Kohler, N. and Zhang, M., 2002, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials, 23(7):1553–61.PubMedCrossRefGoogle Scholar
  243. Zhang, J.X., Zalipsky, S., Mullah, N., Pechar, M. and Allen, T.M., 2004, Pharmaco attributes of dioleoyl phosphatidyl ethanolamine/cholesteryl hemisuccinate liposomes containing different types of cleavable lipopolymers, Pharmacol Res, 49(2):185–98.PubMedCrossRefGoogle Scholar
  244. Zhao, M., Kircher, M.F., Josephson, L. and Weissleder, R., 2002, Differential conjugation of TAT peptide to superparamagnetic nanoparticles and its effect on cellular uptake, Bioconjug Chem, 13(4):840–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vladimir Torchilin
    • 1
  1. 1.Department of Pharmaceutical SciencesNortheastern UniversityBostonUSA

Personalised recommendations