Advertisement

Robust Detection

  • Bernard C. Levy
Chapter

Keywords

False Alarm Detection Problem Robust Test Cumulative Probability Distribution Robust Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Huber, Robust Statistics. New York: J. Wiley & Sons, 1981.CrossRefMATHGoogle Scholar
  2. 2.
    A. L. Gibbs and F. E. Su, "On choosing and bounding probability metrics,” International Statistical Review, vol. 70, no. 3, pp. 419–435, 2002.Google Scholar
  3. 3.
    S. Rachev, Probability Metrics and the Stability of Stochastic Models. Chichester, England: J. Wiley & Sons, 1991.MATHGoogle Scholar
  4. 4.
    R. H. Schumway and D. S. Stoffer, Time Series Analysis and its Applications. New York: Springer-Verlag, 2000.Google Scholar
  5. 5.
    G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions. New York: J. Wiley & Sons, 1997.MATHGoogle Scholar
  6. 6.
    P. J. Huber, “A robust version of the probability ratio test,” Annals Math. Statistics, vol. 36, pp. 1753–1758, Dec. 1965.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    P. J. Huber, “Robust confidence limits,” Z. Wahrcheinlichkeitstheorie verw. Gebiete, vol. 10, pp. 269–278, 1968.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    D. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analsis and Optimization. Belmont, MA: Athena Scientific, 2003.Google Scholar
  9. 9.
    J.-P. Aubin and I. Ekland, Applied Nonlinear Analysis. New York: J. Wiley, 1984.MATHGoogle Scholar
  10. 10.
    P. J. Huber and V. Strassen, “Minimax tests and the Neyman-Pearson lemma for capacities,” Annals Statistics, vol. 1, pp. 251–263, Mar. 1973.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    A. G. Dabak and D. H. Johnson, “Geometrically based robust detection," in Proc. Conf. Information Sciences and Systems, (Baltimore, MD), pp. 73–77, The Johns Hopkins Univ., Mar. 1993.Google Scholar
  12. 12.
    R. D. Martin and S. C. Schwartz, “Robust detection of a known signal in nearly Gaussian noise,” IEEE Trans. Informat. Theory, vol. 17, pp. 50–56, 1971.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    G. V. Moustakides and J. B. Thomas, “Robust detection of signals in dependent noise,” IEEE Trans. Informat. Theory, vol. 33, pp. 11–15, Jan. 1987.CrossRefMATHGoogle Scholar
  14. 14.
    G. V. Moustakides, “Robust detection of signals: a large deviations approach,” IEEE Trans. Informat. Theory, vol. 31, pp. 822–825, Nov. 1985.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    S. Meyn and V. V. Veeravalli, “Asymptotic robust hypothesis testing based on moment classes," in Proc. UCSD Information Theory and its Applications (ITA) Inaugural Workshop, (San Diego, CA), Feb. 2006.Google Scholar
  16. 16.
    A. H. El-Sawy and D. Vandelinde, “Robust detection of known signals,” IEEE Trans. Informat. Theory, vol. 23, pp. 722–727, Nov. 1977.CrossRefMATHGoogle Scholar
  17. 17.
    S. A. Kassam and J. B. Thomas, “Asymptotically robust detection of a known signal in contaminated non-Gaussian noise,” IEEE Trans. Informat. Theory, vol. 22, pp. 22–26, Jan. 1976.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    S. A. Kassam and ,H. V. Poor, “Robust techniques for signal processing: a survey,” Proc. IEEE, vol. 73, pp. 433–480, Mar. 1985.CrossRefMATHGoogle Scholar
  19. 19.
    B. C. Levy and R. Nikoukhah, “Robust least-squares estimation with a relative entropy constraint,” IEEE Trans. Informat. Theory, vol. 50, pp. 89–104, Jan. 2004.CrossRefMathSciNetGoogle Scholar
  20. 20.
    B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-Quadratic Estimation and Control– A Unified Approach to H^2 and H^∞ Theories. Philadelphia: Soc. Indust. Applied Math., 1999.Google Scholar
  21. 21.
    Y. Eldar and N. Merhav, “A competitive minimax approach to robust estimation of random parameters,” IEEE Trans. Signal Proc., vol. 52, pp. 1931–1946, July 2004.CrossRefMathSciNetGoogle Scholar
  22. 22.
    C. W. Helstrom, “Minimax detection of signals with unknown parameters,” Signal Processing, vol. 27, pp. 145–159, 1992.CrossRefMATHGoogle Scholar
  23. 23.
    D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Belmont, MA: Athena Scientific, 1997.Google Scholar
  24. 24.
    B. C. Levy, “Robust hypothdesis testing with a relative entropy tolerance." preprint, available at http://arxiv.org/abs/cs/0707.2926, July 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bernard C. Levy
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations