Parameter Estimation Theory

  • Bernard C. Levy


Unbiased Estimator Bayesian Estimation Conditional Density Fisher Information Matrix Error Covariance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.O. Berger, Statistical Decision Theory and Bayesian Analysis, Second Edition.Springer, 1985.Google Scholar
  2. 2.
    H.L. Van Trees, Detection, Estimation and Modulation Theory, Part I: Detection, Estimation and Linear Modulation Theory.New York: J. Wiley & Sons, 1968.Paperback reprint edition in 2001.Google Scholar
  3. 3.
    T. Kailath, A.H. Sayed, and B. Hassibi, Linear Estimation.Upper Saddle River, NJ: Prentice Hall, 2000.Google Scholar
  4. 4.
    A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications.Cambridge, UK: Cambridge University Press, 2003.Google Scholar
  5. 5.
    A.J. Laub, Matrix Analysis for Scientists and Engineers.Philadelphia, PA: Soc. for Industrial and Applied Math., 2005.CrossRefMATHGoogle Scholar
  6. 6.
    E.L. Lehmann and G. Casella, Theory of Point Estimation, Second Edition.New York: Springer Verlag, 1998.Google Scholar
  7. 7.
    T.S. Ferguson, A Course in Large Sample Theory.London: Chapman & Hall, 1996.MATHGoogle Scholar
  8. 8.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.Prentice-Hall, 1993.Google Scholar
  9. 9.
    H.V. Poor, An Introduction to Signal Detection and Estimation, Second Edition.New York: Springer Verlag, 1994.Google Scholar
  10. 10.
    P.J. Bickel and K.A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, Second Edition.Upper Saddle River, NJ: Prentice Hall, 2001.Google Scholar
  11. 11.
    A.W. van der Vaart, Asymptotic Statistics.Cambridge, UK: Cambridge University Press, 1998.MATHGoogle Scholar
  12. 12.
    S. van de Geer, Empirical Processes in M-Estimation.Cambridge, UK: Cambridge University Press, 2000.Google Scholar
  13. 13.
    A. Wald, “Note on the consistency of the maximum likelihood estimate,” Annals Math. Statistics, vol.20, pp.595–601, 1949.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    V.N. Vapnik, Statistical Learning Theory.New York: Wiley & Sons, 1998.MATHGoogle Scholar
  15. 15.
    B.G. Quinn and E.J. Hannan, The Estimation and Tracking of Frequency.Cambridge, UK: Cambridge University Press, 2001.MATHGoogle Scholar
  16. 16.
    A. Papoulis and S.U. Pillai, Probability, Random Variables and Stochastic Processes, Fourth Edition.New York: McGraw Hill, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bernard C. Levy
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations