Tests with Repeated Observations

  • Bernard C. Levy


False Alarm Repeated Observation Legendre Transformation Asymptotic Performance Sequential Probability Ratio Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Wald, Sequential Analysis.New York: J. Wiley & Sons, 1947.Reprinted by Dover Publ., Mineola, NY, 2004.MATHGoogle Scholar
  2. 2.
    S. Kullback, Information Theory and Statistics.New York: J. Wiley & Sons, 1959.Reprinted by Dover Publ., Mineola, NY, 1968.MATHGoogle Scholar
  3. 3.
    N. Seshadri and C.-E.W. Sundberg, “List Viterbi decoding algorithms with applications,” IEEE Trans. Commun., vol.42, pp.313–323, Feb. Apr. 1994.CrossRefGoogle Scholar
  4. 4.
    S.-I. Amari and H. Nagaoka, Methods of Information Geometry.Providence, RI: American Mathematical Soc., 2000.MATHGoogle Scholar
  5. 5.
    T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd edition.New York: J. Wiley & Sons, 2006.Google Scholar
  6. 6.
    H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,” Annals Math. Statist., vol.23, pp. 493–507, 1952.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    H. Cramér, “Sur un nouveau théoréme-limite de la théorie des probabilités,” in Actalités Scientifiques et Industrielles, vol.736, Paris: Hermann, 1938.Google Scholar
  8. 8.
    A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Second Edition.New York: Springer Verlag, 1998.Google Scholar
  9. 9.
    F.den Hollander, Large Deviations.Providence, RI: American Mathematical Soc., 2000.MATHGoogle Scholar
  10. 10.
    K.L. Chung, A Course in Probability Theory, Second Edition.New York: Academic Press, 1968.Google Scholar
  11. 11.
    D. Bertsekas, A. Nedic, and A.E. Ozdaglar, Convex Analsis and Optimization.Belmont, MA: Athena Scientific, 2003.Google Scholar
  12. 12.
    J.R. Magnus and H.Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics.Chichester, England: J. Wiley & Sons, 1988.MATHGoogle Scholar
  13. 13.
    M. Basseville, “Information: Entropies, divergences et moyennes,” Tech. Rep. 1020, Institut de Recherche en Informatique et Systémes Aléatoires, Rennes, France, May 1996.Google Scholar
  14. 14.
    H.L. Van Trees, Detection, Estimation and Modulation Theory, Part I:Detection, Estimation and Linear Modulation Theory. New York: J. Wiley & Sons, 1968. paperback reprint edition in 2001.Google Scholar
  15. 15.
    A.G. Dabak, A Geometry for Detection Theory. PhD thesis, Electrical and Computer Engineering Dept., RiceUniversity, Houston, TX, 1992.Google Scholar
  16. 16.
    A.G. Dabak and D.H. Johnson, “Geometrically based robust detection,” inProc. Conf. Information Sciences and Systems, (Baltimore, MD),pp.73–77, The Johns Hopkins Univ., Mar. 1993.Google Scholar
  17. 17.
    K.J. Arrow, D. Blackwell, and M.A. Girshick, “Bayes and minimax solutions ofsequential decision problems,” Econometrica, vol.17, pp.213–244,Jul.-Oct. 1949.CrossRefMathSciNetGoogle Scholar
  18. 18.
    M.H. DeGroot, Optimal Statistical Decisions. New York: McGraw-Hill, 1970. Reprinted by Wiley-Interscience, New York, 2004.MATHGoogle Scholar
  19. 19.
    D. Bertsekas, Dynamic Programming and Optimal Control, Vol. I. Belmont, MA: Athena Scientific, 1995.Google Scholar
  20. 20.
    T.S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach. New York: Academic Press, 1967.MATHGoogle Scholar
  21. 21.
    S. Karlin and H.M. Taylor, A First Course in Stochastic Processes. New York: Academic Press, 1975.MATHGoogle Scholar
  22. 22.
    R.G. Gallager, Discrete Stochastic Processes. Boston: Kluwer Acad. Publ., 1996.Google Scholar
  23. 23.
    D.L. Burkholder and R.A. Wijsman, “Optimum properties and admissibility ofsequential tests,” Annals. Math. Statistics, vol.34, pp.1–17, Mar.1963.CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    D.H. Johnson, “Notes for ELEC 530: Detection Theory.” Dept. Elec. Comp.Eng., Rice University, 2003.Google Scholar
  25. 25.
    P. Whittle, Optimization Over Time, Vol. II. Chichester, England: J. Wiley & Sons, 1983.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bernard C. Levy
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations