Advertisement

EM Estimation and Detection of Gaussian Signals with unknown parameters

  • Bernard C. Levy
Chapter

Keywords

Unknown Parameter Conditional Density Proximal Point Algorithm Gaussian Signal Unknown Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bertsekas, Nonlinear Programming, Second Edition. Belmont, MA: Athena Scientific, 1999.Google Scholar
  2. 2.
    A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Stat. Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.MATHMathSciNetGoogle Scholar
  3. 3.
    G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions. New York: J. Wiley & Sons, 1997.MATHGoogle Scholar
  4. 4.
    C. F. J. Wu, “On the convergence properties of the EM algorithm,” Annals Statistics, vol. 11, pp. 95–103, 1983.CrossRefMATHGoogle Scholar
  5. 5.
    X.-L. Meng and D. van Dyk, “The EM algorithm – an old folk-song sung to a fast new tune,” J. Royal Stat. Soc., Series B, vol. 59, no. 3, pp. 511–567, 1997.CrossRefMATHGoogle Scholar
  6. 6.
    J. A. Fessler and A. Hero, “Space-alternating generalized expectation-maximization algorithm,” IEEE Trans. Signal Proc., vol. 42, pp. 2664–2677, Oct. 1994.Google Scholar
  7. 7.
    J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics. Chichester, England: J. Wiley & Sons, 1988.MATHGoogle Scholar
  8. 8.
    X.-L. Meng and D. B. Rubin, “Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm,” J. Amer. Stat. Assoc., vol. 86, pp. 899–909, Dec. 1991.CrossRefGoogle Scholar
  9. 9.
    R. H. Schumway and D. S. Stoffer, “An approach to time series smoothing and forecasting using the EM algorithm,” J. Time Series Analysis, vol. 3, pp. 253–264, 1982.CrossRefGoogle Scholar
  10. 10.
    R. H. Schumway and D. S. Stoffer, Time Series Analysis and its Applications. New York: Springer-Verlag, 2000.Google Scholar
  11. 11.
    P. E. Caines, Linear Stochastic Systems. New York: J. Wiley & Sons, 1988.MATHGoogle Scholar
  12. 12.
    L. Ljung, System Identification: Theory for the User, Second edition. Upper Saddle River, NJ: Prentice-Hall, 1999.Google Scholar
  13. 13.
    A. J. Laub, Matrix Analysis for Scientists and Engineers. Philadelphia, PA: Soc. for Industrial and Applied Math., 2005.CrossRefMATHGoogle Scholar
  14. 14.
    T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Upper Saddle River, NJ: Prentice Hall, 2000.Google Scholar
  15. 15.
    F. A. Badawi, A. Lindquist, and M. Pavon, “A stochastic realization approach to the smoothing problem,” IEEE Trans. Automat. Control, vol. 24, pp. 878–888, 1979.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    M. G. Bello, A. S. Willsky, B. C. Levy, and D. A. Castanon, “Smoothing error dynamics and their use in the solution of smoothing and mapping problems,” IEEE Trans. Informat. Theory, vol. 32, pp. 483–495, 1986.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    M. G. Bello, A. S. Willsky, and B. C. Levy, “Construction and application of discrete-time smoothing error models,” Int. J. Control, vol. 50, pp. 203–223, 1989.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    B. C. Levy, R. Frezza, and A. J. Krener, “Modeling and estimation of discrete-time Gaussian reciprocal processes,” IEEE Trans. Automatic Control, vol. 35, pp. 1013–1023, Sept. 1990.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Prentice-Hall, 1998.Google Scholar
  20. 20.
    S. Chrétien and A. O. Hero, “Kullback proximal algorithms for maximum likelihood estimation,” IEEE Trans. Informat. Theory, vol. 46, pp. 1800–1810, Aug. 2000.CrossRefMATHGoogle Scholar
  21. 21.
    R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM J. Control Optim., vol. 14, pp. 877–898, 1976.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    X.-L. Meng and D. B. Rubin, “On the global and componentwise rates of convergence of the EM algorithm,” Linear Algebra Appl., vol. 199, pp. 413–425, 1994.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of linear dynamic systems,” J. Amer. Inst. Aero. Astro., vol. 3, pp. 1445–1450, 1965.MathSciNetGoogle Scholar
  24. 24.
    S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, 1993.Google Scholar
  25. 25.
    K. S. Miller, Complex Stochastic Processes. Readings, MA: Addison-Wesley, 1974.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bernard C. Levy
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations