Advertisement

Introduction

  • Bernard C. Levy
Chapter

Keywords

Code Division Multiple Access Detection Problem Viterbi Algorithm Sequential Probability Ratio Test Generalize Likelihood Ratio Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Communications Magazine, pp. 5–14, 1990.Google Scholar
  2. 2.
    A. J. Viterbi, CDMA: Principles of Spread-Spectrum Communication. Reading, MA: Addison-Wesley, 1995.MATHGoogle Scholar
  3. 3.
    G. Ungerboeck, “Trellis-coded modulation with redundant signal sets, Parts I and II,” IEEE Communications Magazine, vol. 25, pp. 5–21, 1987.CrossRefGoogle Scholar
  4. 4.
    F. den Hollander, Large Deviations. Providence, RI: American Mathematical Soc., 2000.MATHGoogle Scholar
  5. 5.
    A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Second Edition. New York: Springer Verlag, 1998.Google Scholar
  6. 6.
    P. J. Huber, Robust Statistics. New York: J. Wiley & Sons, 1981.CrossRefMATHGoogle Scholar
  7. 7.
    R. D. Martin and S. C. Schwartz, “Robust detection of a known signal in nearly Gaussian noise,” IEEE Trans. Informat. Theory, vol. 17, pp. 50–56, 1971.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    S. A. Kassam and H. V. Poor, “Robust techniques for signal processing: a survey,” Proc. IEEE, vol. 73, pp. 433–480, Mar. 1985.Google Scholar
  9. 9.
    E. Wong and B. Hajek, Stochastic Processes in Engineering Systems. New York: Springer-Verlag, 1985.MATHGoogle Scholar
  10. 10.
    D. Middleton, An Introduction to Satistical Communication Theory. New York: McGraw-Hill, 1960. Reprinted by IEEE Press, New York, 1996.Google Scholar
  11. 11.
    W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise. New York: McGraw-Hill, 1958. Reprinted by IEEE Press, New York, 1987.MATHGoogle Scholar
  12. 12.
    H. L. Van Trees, Detection, Estimation and Modulation Theory, Part I: Detection, Estimation and Linear Modulation Theory. New York: J. Wiley & Sons, 1968. Paperback reprint edition in 2001.Google Scholar
  13. 13.
    J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering. New York: J. Wiley & Sons, 1965. Reprinted by Waveland Press, Prospect Heights, IL, 1990.Google Scholar
  14. 14.
    M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels, Second Edition. New York: J. Wiley & Sons, 2004.CrossRefGoogle Scholar
  15. 15.
    T. Kailath, “The innovations approach to detection and estimation theory,” Proc. IEEE, vol. 58, pp. 680–695, May 1970.Google Scholar
  16. 16.
    T. Kailath and H. V. Poor, “Detection of stochastic processes,” IEEE Trans. Informat. Theory, vol. 44, pp. 2230–2259, Oct. 1998.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Stat. Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.MATHMathSciNetGoogle Scholar
  18. 18.
    L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Annals Mathematical Statistics, vol. 41, pp. 164–171, Feb. 1970.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    L. R. Welch, “The Shannon lecture: Hidden Markov models and the Baum-Welch algorithm,” IEEE Information Theory Soc. Newsletter, vol. 53, Dec. 2003.Google Scholar
  20. 20.
    E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis Coded Modulation with Application. New York: Macmillan, 1991.Google Scholar
  21. 21.
    M. K. Simon, Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communications. Wiley-Interscience, 2003.Google Scholar
  22. 22.
    L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rates,” IEEE Trans. Informat. Theory, vol. 20, pp. 284–287, Mar. 1974.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    R. Koetter, A. C. Singer, and M. Tüchler, “Turbo equalization,” IEEE Signal Processing Mag., vol. 21, pp. 67–80, Jan. 2004.CrossRefGoogle Scholar
  24. 24.
    R. Raheli, A. Polydoros, and C. Tzou, “Per-survivor-processing: A general approach to MLSE in uncertain environments,” IEEE Trans. Commun., vol. 43, pp. 354–364, Feb. Apr. 1995.CrossRefGoogle Scholar
  25. 25.
    H. Nguyen and B. C. Levy, “Blind and semi-blind equalization of CPM signals with the EMV algorithm,” IEEE Trans. Signal Proc., vol. 51, pp. 2650–2664, Oct. 2003.Google Scholar
  26. 26.
    E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, Third Edition. New York: Springer Verlag, 2005.Google Scholar
  27. 27.
    E. L. Lehmann and G. Casella, Theory of Point Estimation, Second Edition. New York: Springer Verlag, 1998.Google Scholar
  28. 28.
    E. L. Lehmann, Elements of Large-Sample Theory. New York: Springer Verlag, 1999.CrossRefMATHGoogle Scholar
  29. 29.
    T. S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach. New York: Academic Press, 1967.MATHGoogle Scholar
  30. 30.
    P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, Second Edition. Upper Saddle River, NJ: Prentice Hall, 2001.Google Scholar
  31. 31.
    T. S. Ferguson, A Course in Large Sample Theory. London: Chapman & Hall, 1996.MATHGoogle Scholar
  32. 32.
    A. W. van der Vaart, Asymptotic Statistics. Cambridge, United Kingdom: Cambridge University Press, 1998.MATHGoogle Scholar
  33. 33.
    H. L. Van Trees, Detection, Estimation and Modulation Theory, Part II: Nonlinear Modulation Theory. New York: J. Wiley & Sons, 1971. Paperback reprint edition in 2001.MATHGoogle Scholar
  34. 34.
    H. L. Van Trees, Detection, Estimation and Modulation Theory, Part III: Radar-Sonar Signal Processing and Gaussian Signals in Noise. New York: J. Wiley & Sons, 1971. Paperback reprint edition in 2001.Google Scholar
  35. 35.
    L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis. Reading, MA: Addison Wesley, 1991.MATHGoogle Scholar
  36. 36.
    S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle, NJ: Prentice-Hall, 1993.MATHGoogle Scholar
  37. 37.
    S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Prentice-Hall, 1998.Google Scholar
  38. 38.
    H. V. Poor, An Introduction to Signal Detection and Estimation, Second Edition. New York: Springer Verlag, 1994.Google Scholar
  39. 39.
    C. W. Helstrom, Elements of Signal Detection & Estimation. Upper Saddle River, NJ: Prentice-Hall, 1995.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bernard C. Levy
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations