Electropolymers for Mechatronics and Artificial Muscles

  • Zhongyang Cheng
  • Qiming Zhang
  • Ji Su
  • Mario El Tahchi

This chapter covers the main features and material examples of the electric fieldactivated electropolymers used for electromechanical applications. This class of electropolymers is very attractive in performing the energy conversion between the electric and mechanical forms and hence can be utilized as both solid-state electromechanical actuators and motion sensors. These polymers are also attractive for artificial muscles and for energy-harvesting applications. As will be discussed, the electromechanical response in this class of polymers can be linear, as in typical piezoelectric polymers and electrets, or nonlinear, as the electrostrictive polymers and Maxwell stress-induced response.

Most of the piezoelectric polymers under investigation and in commercial use are based on poled ferroelectric (FE) polymers, including poly(vinylidene fluoride) (PVDF) and related copolymers. This chapter will discuss in detail the properties of these FE polymers. In comparisonwith the electromechanical responses in inorganic materials, the electromechanical activity in these polymers is relatively low. To significantly improve the electromechanical properties in these electropolymers, new avenues or approaches have to be explored. From the basic material consideration, these approaches include the strain change accompanied with the molecular conformation change, due to the polar vector reorientation, from the morphology change due to the ordering degree change in the interfacial layer between crystalline and amorphous regions, and from the Maxwell stress effect in soft polymer elastomers. This chapter will discuss the recent advances based on those approaches, which have produced remarkable improvements in terms of the electric field-induced strain level, elastic energy density, and electromechanical conversion efficiency in the electropolymers.


Piezoelectric Property Transverse Strain Electromechanical Property Electromechanical Response Ferroelectric Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bharti V, Cheng ZY, Gross S, Xu TB, Zhang QM (1999) High electrostrictive strain under high mechanical stress in electron irradiated poly(vinylidene fluoride-trifluorethylene) copolymer. Appl Phys Lett 75: 2653.CrossRefGoogle Scholar
  2. Bharti V et al. (2000) Polarization and structural properties of high energy electron irradiated P(VDF-TrFE) copolymer films. J Appl Phys 87: 452-461.CrossRefGoogle Scholar
  3. Buckley GS et al. (2002) Electrostrictive properties of poly(vinylidenefluoride-trifluoroethylene-chlorotrifluoroethylene). Chem Mater 14 (6): 2590-2593.CrossRefGoogle Scholar
  4. Casalini R, Roland M (2001) Highly electrostrictive poly(vinylidene fluoride-trifluoroethylene) networks. Appl Phys Lett 79: 2627.CrossRefGoogle Scholar
  5. Cheng ZY, Katiyar RS, Yao X, Bhalla AS (1998) Temperature dependence of dielectric constant of relaxor ferroelectrics. Phys Rev B57: 8166-8177.Google Scholar
  6. Cheng ZY et al. (1999a) Transverse strain responses in electrostrictive poly(vinylidene fluoride-trifluoroethylene) films and development of a dilatometer for the measurement. J Appl Phys 86: 2208.CrossRefGoogle Scholar
  7. Cheng ZY et al. (1999b) Transverse strain responses in the electrostrictive P(VDF-TrFE) copoly-mer. Appl Phys Lett 74: 1901-1903.CrossRefGoogle Scholar
  8. Cheng ZY et al. (2000) Effect of high energy electron irradiation on the electromechanical prop-erties of poly (vinylidene fluoride-trifluorethylene) 50/50 and 65/35 copolymers. IEEE Trans Ultrason Ferroelectrics Freq Contr 47: 1296.CrossRefGoogle Scholar
  9. Cheng ZY et al. (2001) Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers. Sensor Actuator A: Phys 90: 138.CrossRefGoogle Scholar
  10. Cheng ZY, Zhang QM, Bateman FB (2002a) Dielectric relaxation behavior and its relation to mi-crostructure in relaxor ferroelectric polymers - high-energy electron irradiated P(VDF-TrFE) copolymer. J Appl Phys 92: 6749-6755.CrossRefGoogle Scholar
  11. Cheng ZY et al. (2002b) Structural changes and transitional behavior studied from both micro- and macroscale in the high-energy electron-irradiated P(VDF-TrFE) copolymer. Macromolecules 35: 664.CrossRefGoogle Scholar
  12. Chung T, Petchsuk A (2001) Ferroelectric polymers with large electrostriction; based on semicrys-talline VDF/TrFE/CTFE terpolymers. Ferroelectrics Lett 28: 135.CrossRefGoogle Scholar
  13. Chung T, Petchsuk A (2002) Synthesis and properties of ferroelectric fluoroterpolymers with Curie transition at ambient temperature. Macromolecules 35: 7678.CrossRefGoogle Scholar
  14. Cross LE (1994) Relaxor ferroelectrics. Ferroelectrics 151: 305.Google Scholar
  15. Davis GT et al. (1982) Structural and dielectric investigation on the nature of the transition in a copolymer of vinylidene fluoride and trifluoroethylene (52/48 mol%). Macromolecules 15: 329.CrossRefGoogle Scholar
  16. Dvey-Aharon H et al. (1980) Kink propagation as a model for poling in poly(vinylidene fluoride). Phys Rev B: Condens Matter 21: 3700.Google Scholar
  17. Fernandez MV et al. (1987) Study of annealing effects on the structure of VDF-TrFE copolymers using WAXS and SAXS. Macromolecules 20: 1806.CrossRefGoogle Scholar
  18. Furukawa T, Seo N (1990) Electrostriction as the origin of piezoelectricity in ferroelectric poly-mers. Jpn J Appl Phys 29 (4): 675.CrossRefGoogle Scholar
  19. Gao Q, Scheinbeim JI (2000) Dipolar intermolecular interactions, structure development, and electromechanical properties in ferroelectric polymer blends of Nylon-11 and poly(vinylidene fluoride). Macromolecules 33: 7564.CrossRefGoogle Scholar
  20. Gao Q, Scheinbeim JI, Newman BA (1999) Ferroelectric properties of Nylon 11 and poly (vinylidene fluoride) blends. J Polym Sci Part B: Polym Phys 37: 3217.CrossRefGoogle Scholar
  21. Garrett JT et al. (2003) Electrostrictive behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene). Appl Phys Lett 83: 1190.CrossRefGoogle Scholar
  22. Green JB, Farmer BI, Rabolt JF (1986) Effect of thermal and solution history on the curie point of VF2-trFE random copolymers. J Appl Phys 60 (8): 2690. CrossRefGoogle Scholar
  23. Gross SJ, Cheng ZY, Bharti V, Zhang QM (1999) Mechanical load effects on the electrostric-tive strain of P(VDF-TrFE) copolymer and the development of a high-resolution hydrostatic-pressure dilatometer. Proc IEEE 1999 Int Symp Ultrason: 1019-1024.Google Scholar
  24. Guo S et al. (2004) High electrostriction and relaxor ferroelectric behavior in proton-irradiated P(VDF-TrFE) copolymer. Appl Phys Lett 84: 3349.CrossRefGoogle Scholar
  25. Guy IL, Unworth J (1988) Observation of a change in the form of polarization reversal in a P(VDF-TrFE) copolymer. Appl Phys Lett 52: 532.CrossRefGoogle Scholar
  26. Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1972) Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym J 3: 600.CrossRefGoogle Scholar
  27. Holland R (1967) Representation of dielectric, elastic, and piezoelectric losses by complex coeffi-cients. IEEE Trans Son Ultrason Su-14 (1): 18.Google Scholar
  28. Hom C et al. (1994) Calculation of quasi-static electromechanical coupling coefficients for elec-trostrictive ceramic materials. IEEE Trans Ultrason Ferroelectrics Freq Contr 41: 542-551.CrossRefGoogle Scholar
  29. Huang C et al. (2004) P(VDF-TrFE-CFE) based high performance electroactive polymers. IEEE Transactions on Dielectrics and Electrical Insulation 11 (2): 299-311.CrossRefGoogle Scholar
  30. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, IEEE, New York (1988).Google Scholar
  31. Jayasuriya AC et al. (2001) Crystal-structure dependence of electroactive properties in differently prepared P(VDF-HFP) copolymer films. J Polym Sci Part B: Polym Phys 39: 2793-2799.CrossRefGoogle Scholar
  32. Jona F, Shirane G (1993) Ferroelectric Crystals. Dover, New York, p 138.Google Scholar
  33. Kinase W, Itoh M (1977) Theory of electrostriction of NaCl crystal. J Phys Soc Jpn 42 (3): 895-902.CrossRefGoogle Scholar
  34. K ünstler W et al. (2001) Preparation and assessment of piezo- and pyroelectric P(VDF-HFP) copolymer films. Appl Phys A: Mater Sci Process 73 (5): 641-645.CrossRefGoogle Scholar
  35. Lee JW, Takase Y, Newman BA, Scheinbeim JI (1991a) Ferroelectric polarization switching in Nylon-11. J Polym Sci B: Polym Phys 29: 273.CrossRefGoogle Scholar
  36. Lee JW et al. (1991b) Effect of annealing on the ferroelectric behavior of Nylon-11 and Nylon-7. J Polym Sci: Part B: Polym Phys 29: 279.CrossRefGoogle Scholar
  37. Li ZM (2004) Novel electroactive poly(vinylidene fluoride)-based polymer systems and their ap-plications. PhD Thesis, Auburn University.Google Scholar
  38. Li ZM et al. (2004) Recrystalliation study of high-energy electron-irradiated P(VDF-TrFE) 65/35 copolymer. Macromolecules 37: 79-85.CrossRefGoogle Scholar
  39. Li ZM et al. (2006) Electromechanical properties of poly(vinyledene-fluoride-chlorotri-fluoroethylene) copolymer. Appl Phys Lett 88: 062904.CrossRefGoogle Scholar
  40. Lines ME, Glass AM (1977) Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, Oxford.Google Scholar
  41. Lovinger AJ (1981) Unit cell of the β phase of poly(vinylidene fluoride). Macromolecules 14: 322.CrossRefGoogle Scholar
  42. Lovinger AJ (1982) Poly(vinylidene fluoride). In: Bassett DC (Ed.) Developments in Crystalline Polymers-1. Applied Science Publishers, London, p. 195.Google Scholar
  43. Lovinger AJ et al. (1982) Crystalline forms in a copolymer of vinylidene fluoride and trifluo-roethylene (52/48 mol %) Macromolecules 15: 323.Google Scholar
  44. Lovinger AJ, Furukawa T, Davis GT, Broadhurst MG (1983) Curie transitions in copolymers of vinylidene fluoride. Ferroelectrics 50: 227.Google Scholar
  45. Lu XY et al. (2000) Giant electrostrictive response in P(VDF-HFP) copolymers. IEEE Trans Ul-trason Ferroelectrics Freq Contr 47 (6): 1291-1295.CrossRefGoogle Scholar
  46. Mabboux P, Gleason K (2002) F-19 NMR characterization of electron beam irradiated vinylidene fluoride-trifluoroethylene copolymers. J Fluorine Chem 113: 27.CrossRefGoogle Scholar
  47. Mathur SC et al. (1988) Pizeoelectricity in uniaxially stretched and plasticized nylon 11 films. J Polym Sci B: Polym Phys 26: 447.CrossRefGoogle Scholar
  48. McCrum NG, Read BE, Williams G (1991) Anelastic and Dielectric Effects in Polymeric Solids, Chapter 4. Dover Publications, New York.Google Scholar
  49. Mei BZ, Scheinbeim JI, Newman BA (1993) The ferroelectric behavior of odd-numbered Nylons. Ferroelectrics 144: 51.CrossRefGoogle Scholar
  50. Newman BA et al. (1980) Piezoelectricity in Nylon 11. J Appl Phys 51: 5161. CrossRefGoogle Scholar
  51. Newnham RE, Sundar V, Yimmirun R, Su J, Zhang QM (1998) Electrostriction in dielectric mate-rials. Ceram Trans 88: 15-39.Google Scholar
  52. Nye JF (1987) Physical Properties of Crystals. Clarendon Press, Oxford.Google Scholar
  53. Ohigashi H, Hattori T (1995) Improvement of piezoelectric properties of PVDF and its copolymers by crystallization under high pressure. Ferroelectrics 171: 11.Google Scholar
  54. Omote K, Ohigashi H, Koga K (1997) Temperature dependence of elastic, dielectric, and piezo-electric properties of “single crystalline” films of vinylidene fluoride trifluoroethylene copoly-mer. J Appl Phys 81 (6): 2760.CrossRefGoogle Scholar
  55. Scheinbeim JI, Newman BA (1993) Electric field induced changes in odd-numbered nylons. Trends in Polym Sci 1: 384.Google Scholar
  56. Scheinbeim JI, Nakafuku C, Newman BA, Pae KD (1979) High-pressure crystallization of poly(vinylidene fluoride). J Appl Phys 50: 4399.CrossRefGoogle Scholar
  57. Scheinbeim JI, Mathur SC, Newman BA (1986) Field induced dipole reorientation and piezoelec-tricity in heavily plasticized Nylon 11 films. J Polym Sci B: Polym Phys 24: 1791.CrossRefGoogle Scholar
  58. Scheinbeim JI, Lee JW, Newman BA (1991) Ferroelectric polarization mechanisms in Nylon 11. Macromolecules 25: 3729.CrossRefGoogle Scholar
  59. Schewe H (1982) Piezoelectricity of uniaxially oriented polyvinylidene fluoride. Ultrason Symp Proc, Vol 1, IEEE, New York.Google Scholar
  60. Sharples A (1966) Introduction to Polymer Crystallization. St Martin’s Press, New York.Google Scholar
  61. Shkel YM, Klingenberg DJ (1998) Electrostriction of polarizable materials: Comparison of models with experimental data. J Appl Phys 83: 415.CrossRefGoogle Scholar
  62. Stack GM, Ting RY (1988) Thermodynamic and morphological-studies of the solid state transition in copolymers of vinylidene fluoride and trifluoroethylene. J Polym Sci B: Polym Phys 26: 55.CrossRefGoogle Scholar
  63. Strachan A, Goddard WA III (2005) Large electrostrictive strain at gigahertz frequencies in a poly-mer nanoactuator: Computational device design. Appl Phys Lett 86: 083103.CrossRefGoogle Scholar
  64. Su J (1995) Ferroelectric and piezoelectric properties of ferroelectric polymer composite systems. PhD Thesis, Rutgers University.Google Scholar
  65. Su J et al. (1995) Ferroelectric and piezoelectric properties of Nylon 11/poly(vinylidene fluoride) bilaminate films. J Polym Sci B: Polym Phys 33: 85.CrossRefGoogle Scholar
  66. Su J et al. (2000) Novel polymeric elastomers for actuation. Proc IEEE Int Symp Appl Ferro-electrics: 811.Google Scholar
  67. Su J et al. (2003) Composition and annealing effects on the response of electrostrictive graft elas-tomers. Proc SPIE Smart Struc Mater 5051: 191.Google Scholar
  68. Su HB, Strachan A, Goddard III WA (2004) Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers: PVDF and P(VDF-TrFE). Phys Rev B: Condens Matter 70: 064101.Google Scholar
  69. Sundar V, Newnham RE (1992) Electrostriction and polarization. Ferroelectrics 135: 431.CrossRefGoogle Scholar
  70. Takahashi Y, Tadokoro H (1980) Crystal structure of form III of poly(vinylidene fluoride). Macro-molecules 13: 1317.Google Scholar
  71. Takahashi N, Odajima A (1984) On the structure of poly(vinylidene fluoride) under a high electric field. Ferroelectrics 57: 221.Google Scholar
  72. Takahashi T, Dale M, Fukada E (1980) Dielectric hysteresis and rotation of dipoles in polyvinyli-dene fluoride. Appl Phys Lett 37 (9): 791.CrossRefGoogle Scholar
  73. Takahashi Y, Matsubara Y, Tadokoro H (1983) Crystal structure of form II of PVDF. Macromole-cules 16: 1588.CrossRefGoogle Scholar
  74. Takase Y et al. (1991) High-temperature characteristics of Nylon-11 and Nylon-7 piezoelectrics. Macromolecules 24: 6644.CrossRefGoogle Scholar
  75. Tanaka R et al. (1999) Annealing effect on the ferroelectric phase transition behavior and do-main structure of P(VDF-TrFE): A comparison between uniaxially oriented VDF 73 and 65% copolymers. Polymer 40: 3855.CrossRefGoogle Scholar
  76. Tashiro K, Kobayashi M (1986) Ferroelectric phase transition and specific volume change in P(VDF-TrFE). Rep Progr Polym Phys Jpn 29: 169. Google Scholar
  77. Tashiro K, Nishimura S, Kobayashi M (1990) Thermal contraction and ferroelectric phase transi-tion in vinylidene fluoride-trifluoroethylene copolymers. II. An effect of tensile stress applied in the direction perpendicular to the chain axis. Macromolecules 23: 2802.CrossRefGoogle Scholar
  78. Uchino K, Nomura S, Vedam K, Newnham RE, Cross LE (1984) Pressure dependence of the refractive index and dielectric constant in a fluoroperovskite, KMgF3 . Phys Rev B: Condens Matter 29 (12): 6921-6925.Google Scholar
  79. Wang H et al. (1993) Piezoelectric dielectric, and elastic properties of polyvinylidene fluoride/ trifluoroethylene. J Appl Phys 74: 3394.CrossRefGoogle Scholar
  80. Wegener M et al. (2002) Ferroelectric polarization in stretched piezo- and pyroelectric P(VDF-HFP) copolymer films. J Appl Phys 92 (12): 7442.CrossRefGoogle Scholar
  81. Xia F et al. (2002) High electromechanical responses in a P(VDF-TrFE-CFE) terpolymer. Adv Mater 14: 1574.CrossRefGoogle Scholar
  82. Xu H et al. (2001) Ferroelectric and electromechanical properties of P(VDF-TrFE-CTFE) terpoly-mer. Appl Phys Lett 78: 2360.CrossRefGoogle Scholar
  83. Xu TB et al. (2002) High-performance micromachined unimorph actuators based on electrostric-tive P(VDF-TrFE) copolymer. Appl Phys Lett 80: 1082.CrossRefGoogle Scholar
  84. Zhang QM et al. (1995) Characteristics of the electromechanical response and polarization of electric field biased ferroelectrics. J Appl Phys 77: 2549.CrossRefGoogle Scholar
  85. Zhang QM et al. (1998) Giant electrostriction and relaxor ferroelectric behavior in electron irradiated P(VDF-TrFE). Science 280: 2101.CrossRefGoogle Scholar
  86. Zhao X et al. (1998) Electromechanical properties of electrostrictive P(VDF-TrFE) copolymer. Appl Phys Lett 73: 2054.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhongyang Cheng
    • 1
  • Qiming Zhang
    • 2
  • Ji Su
    • 3
  • Mario El Tahchi
    • 4
  1. 1.Materials Research and Education Center, 275 Wilmore LabAuburn UniversityAuburnUSA
  2. 2.187 Materials Research LaboratoryThe Pennsylvania State University, University ParkUSA
  3. 3.Advanced Materials and Processing BranchNational Aeronautics and Space AdministrationHamptonUSA
  4. 4.Applied Physics Laboratory, Physics Department, Faculty of Sciences IILebanese University, Fanar CampusJdeidetLebanon

Personalised recommendations