Advertisement

Important ferroelectric or antiferroelectric oxide ceramics for dielectric, ferroelectric, piezoelectric, electrostrictive, and/or pyroelectric applications are restricted to perovskite-type, tungsten bronze-type, and bismuth layer-structured compounds. A recent trend in the study on piezoelectric and/or pyroelectric ceramic compounds is the use of lead-free materials. The other trend is the use of grain orientation techniques as the ceramic fabrication methods.

Recently, bismuth layer-structured ferroelectrics (BLSF), which form one of BO6 octahedral ferroelectric groups, have been extensively studied in the form of thin films because they seem to be an excellent candidate for nonvolatile FeRAM applications. For example, SrBi2Ta2O9 shows fatigue-free properties, which are very desirable in such applications.

Keywords

Anisotropy Hexagonal Tungsten Milling Shrinkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando A et al. (2003a) Piezoelectric Resonance Characteristics of SrBi2 Nb2 O9 -based Ceramics, Jpn. J. Appl. Phys. 42: 150-156.CrossRefGoogle Scholar
  2. Ando A et al. (2003b) Piezoelectric Properties of Ba and Ca doped SrBi2 Nb2 O9 Based Ceramic Materials, Jpn. J. Appl. Phys. 42: 520-525.CrossRefGoogle Scholar
  3. Aoyagi R et al. (2005) Piezoelectric Properties of Vanadium-Substituted Strontium Bismuth, Jpn. J. Appl. Phys. 44: 7055-7058.CrossRefGoogle Scholar
  4. Armstrong RA, Newnham RE (1972) Bismuth Titanate Solid Solutions, Mater. Res. Bull. 7(10): 1025-1034.CrossRefGoogle Scholar
  5. Aurivillius B (1949a) Mixed Bismuth Oxides with Layer Lattices. I. The Structure Type of CaNb2 Bi2 O9, Arkiv Kemi 1: 463-480.Google Scholar
  6. Aurivillius B (1949b) Mixed Bismuth Oxides with Layer Lattices. II. Structure of Bi4 Ti3 O12 , Arkiv Kemi 1: 499-512.Google Scholar
  7. Aurivillius B (1950) Mixed Bismuth Oxides with Layer Lattices. III. Structure of BaBi4 Ti4 O15 , Arkiv Kemi 2: 519-527.Google Scholar
  8. Aurivillius B, Fang PH (1962) Ferroelectricity in the Compound Ba2 Bi4 Ti5 O18 , Phys. Rev. 126: 893-896.CrossRefGoogle Scholar
  9. Cross LE, Pohanka RC (1971) Ferroelectricity in Bismuth Oxides Type Layer Structure Com-pounds, Mater. Res. Bull. 6: 939-949.CrossRefGoogle Scholar
  10. Cummins SE, Cross LE (1967) Crystal Symmetry, Optical Properties, and Ferroelectric Polariza-tion of Bi4 Ti3 O12 Single Crystal, Appl. Phys. Lett. 10(1): 14-16.Google Scholar
  11. Cummins SE, Cross LE (1968) Electrical and Optical Properties of Ferroelectric Bi4 Ti3 O12 Single Crystals, Appl. Phys. 39(5): 2268-2274.CrossRefGoogle Scholar
  12. Dorrian JF et al. (1971) Crystal Structure of Bi4Ti3O12, Ferroelectrics 3: 17-27.Google Scholar
  13. Fang PH et al. (1962) Ferroelectricity in the Compound Bi4 Ti3 O12 , Phys. Rev. 126(3): 892-896.CrossRefGoogle Scholar
  14. Ikegami S, Ueda I (1974) Piezoelectricity in Ceramics of Ferroelectric Bismuth Compound with Layer Structure, Jpn. J. Appl. Phys. 13(10): 1572-1579.CrossRefGoogle Scholar
  15. Inai S et al. (2006) Electrical Properties of Grain-Oriented SrBi2 Nb2−xVxO9 Ceramics, Key Eng. Mater. 320: 31-34.Google Scholar
  16. Lotgering FK (1959) Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal Structures - I. J. Inorg. Nucl. Chem. 9(2): 113-123.CrossRefGoogle Scholar
  17. Matsuzawa S et al. (2006) Piezoelectric Properties of Nd and V co-substituted Bi4 Ti3 O12 Ceram-ics, Key Eng. Mater. 320: 39-42. Google Scholar
  18. Nagata H et al. (2000) Piezoelectric Anisotropies of Bismuth Layer-Structured Ferroelectrics, Trans. Mater. Res. Jpn, 25(1): 273-276.Google Scholar
  19. Nagata H et al. (2003) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric SrBi2 Ta2 O9 -Bi3 TiTaO9 Ceramics, Ferroelectrics, 286: 85-92.CrossRefGoogle Scholar
  20. Nagata H et al. (2004) Piezoelectric Properties of Nb and V Substituted Bi4 Ti3 O12 Ferroelectric Ceramics, Ceram. Trans. 150: 253-263.Google Scholar
  21. Nagata H et al. (2006a) Bismuth Layer-Structured Ferroelectric (Sr,Ca)2 Bi4 Ti5 O18 Ceramics for Lead-Free Piezoelectric Resonator Applications, Proc. 2005 IEEE Ultrason. Symp. pp. 1077-1082.Google Scholar
  22. Nagata H et al. (2006b) Piezoelectric Properties of Nd and V co-substituted Bi4 Ti3 O12 Ceramics for resonator applications, Proc. 2006 IEEE Ultrason. Symp. 355-358.Google Scholar
  23. Newnham RE et al. (1971) Structural Basis of Ferroelectricity in the Bismuth Titanate Family, Mater. Res. Bull. 6: 1029-1039.CrossRefGoogle Scholar
  24. Noguchi Y, Miyayama M (2001) Large remnant polarization of vanadium-doped Bi4 Ti3 O12 . Appl. Phys. Lett. 78(13): 1903-1905.CrossRefGoogle Scholar
  25. Ogawa H et al. (2001) Temperature Dependence of Piezoelectric Properties of Grain-Oriented CaBi4 Ti4 O15 Ceramics, Jpn. J. Appl. Phys. 40(9B): 5715-5718.CrossRefGoogle Scholar
  26. Ogawa H et al. (2005) Piezoelectric Properties of SrBi2 Nb2 O9 Textured Ceramics, Jpn. J. Appl. Phys. 44: 7050-7054.CrossRefGoogle Scholar
  27. Shannon RD (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A 32(5): 751-767.CrossRefMathSciNetGoogle Scholar
  28. Shulman HS et al. (1996) Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth Titanate, J. Am. Ceram. Soc. 79(12): 3124-3128.CrossRefGoogle Scholar
  29. Smolenskii GA et al. (1959) A New Group of Ferroelectrics (with Layered Structure), Sov. Phys. Solid State 1: 149-150.Google Scholar
  30. Smolenskii GA et al. (1961) Ferroelectrics of the Oxygen-Octahedral Type with Layered Structure, Sov. Phys.-Solid State 3: 651-655.Google Scholar
  31. Subbarao EC (1961) Ferroelectricity in Bi4 Ti3 O12 and Its Solid Solutions, Phys. Rev. 122(3): 804-807.CrossRefGoogle Scholar
  32. Subbarao EC (1962a) Crystal Chemistry of Mixed Bismuth Oxides with Layer-Type Structure, J. Am. Ceram. Soc. 45(4): 166-169.CrossRefGoogle Scholar
  33. Subbarao EC (1962b) A Family of Ferroelectric Bismuth Compounds, J. Phys. Chem. Solids 23: 665-676.CrossRefGoogle Scholar
  34. Takenaka T et al. (1976) Ferroelectric and Dielectric Properties of Press Forged Bi4 Ti3 O12 Ceram-ics, Proc. 19th Jpn. Cong. Materials Research, Tokyo, 1975 (The Society of Materials Science, Kyoto, 1976), pp. 230-233.Google Scholar
  35. Takenaka T et al. (1977) Grain Orientation and Microstructure of Hot-Forged Bi4 Ti3 O12 Ceramics, Proc. 20th Jpn. Cong. Materials Research, Kyoto, 1976 (The Society of Materials Science, Kyoto, 1977), pp. 212-214.Google Scholar
  36. Takenaka T, Sakata K (1980) Grain Orientation and Electrical Properties of Hot-Forged Bi4Ti3O12 Ceramics, Jpn. J. Appl. Phys. 19(1): 31-39.CrossRefGoogle Scholar
  37. Takenaka T, Sakata K (1982) Dielectric and Piezoelectric Properties of Some Bismuth Layer-Structured Ferroelectric Ceramics, Jpn. J. IEEE (C)J65-C(7): 514-521 (in Japanese).Google Scholar
  38. Takenaka T, Sakata K (1983) Pyroelectric Properties of Grain-Oriented Bismuth Layer-Structured Ferroelectric Ceramics, Jpn. J. Appl. Phys. 22 (Suppl. 22-2): 53-56.Google Scholar
  39. Takenaka T, Sakata K (1984) Grain Orientation Effects on Electrical Properties of Bismuth Layer-Structured Ferroelectric Pb1−x (Na,Ce)x/2 Bi4 Ti4 O15 Solid Solution, J. Appl. Phys. 55(4): 1092-1099.CrossRefGoogle Scholar
  40. Takenaka T et al. (1985) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Na0.5 Bi4.5 Ti4 O15 Ceramic, Jpn. J. Appl. Phys. 24 (Suppl. 24-2): 730-732.Google Scholar
  41. Takenaka T, Sakata K (1986) Piezoelectric Properties of Grain-Oriented Bismuth Layer-Structured Ferroelectric Ceramics, Proc. Sixth Int. Symp. Appl. Ferroelectr. IEEE, pp. 414-417.Google Scholar
  42. Takenaka T, Sakata K (1988) Grain-Oriented and Mn-Doped (NaBi)(1−x/2)CaxBi4 Ti4 O15 Ceram-ics for Piezo- and Pyrosensor Materials, Sens. Mater. 1: 35-46.Google Scholar
  43. Takenaka T, Sakata K (1989) Piezoelectric and Pyroelectric Properties of Calcium-Modified and Grain-Oriented (NaBi)1/2 Bi4 Ti4 O15 Ceramics, Ferroelectrics 94: 175-181.Google Scholar
  44. Takenaka T, Sakata K (1991) Pyroelectric Properties of Bismuth Layer-Structured Ferroelectric Ceramics, Ferroelectrics 118: 123-133.Google Scholar
  45. Takenaka T (2002) Grain Orientation Effects on Electrical Properties of Bismuth Layer-Structured Ferroelectric Ceramics, J. Cer. Soc. Jpn 110: 215-224.Google Scholar
  46. Takenaka T, Nagata H (2006) Grain Orientation and Electrical Properties of Some Bismuth Layer-Structured Ferroelectrics for Lead-Free Piezoelectric Applications, Ferroelectrics 336: 119-136.CrossRefGoogle Scholar
  47. Takeuchi T et al. (1999) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Ceram-ics with a Preferred Orientation Processed by the Reactive Templated Grain Growth Method, Jpn. J. Appl. Phys. 38(9B): 5553-5556.CrossRefGoogle Scholar
  48. Villegas M et al. (1999) Factors Affecting the Electrical Conductivity of Donor-Doped Bi4 Ti3 O12 Piezoelectric Ceramics, J. Am. Ceram. Soc. 82(9): 2411-2416.CrossRefGoogle Scholar
  49. Wolfe RW, Newnham RE (1969) Rare Earth Bismuth Titanates, J. Electrochem. Soc; SOLD STATE SCIENCE: 116, 832-835.Google Scholar
  50. Yamashita Y et al. (1983) Effects of MnO Additive on Piezoelectric Properties in Modified (Pb, Ca)TiO3 Ferroelectric Ceramics, Jpn. J. Appl. Phys. 22 (Suppl. 22-2): 40-42.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tadashi Takenaka
    • 1
  1. 1.Department of Electrical Engineering (EE), Faculty of Science and TechnologyTokyo University of ScienceNodaJapan

Personalised recommendations