Skip to main content

Important ferroelectric or antiferroelectric oxide ceramics for dielectric, ferroelectric, piezoelectric, electrostrictive, and/or pyroelectric applications are restricted to perovskite-type, tungsten bronze-type, and bismuth layer-structured compounds. A recent trend in the study on piezoelectric and/or pyroelectric ceramic compounds is the use of lead-free materials. The other trend is the use of grain orientation techniques as the ceramic fabrication methods.

Recently, bismuth layer-structured ferroelectrics (BLSF), which form one of BO6 octahedral ferroelectric groups, have been extensively studied in the form of thin films because they seem to be an excellent candidate for nonvolatile FeRAM applications. For example, SrBi2Ta2O9 shows fatigue-free properties, which are very desirable in such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando A et al. (2003a) Piezoelectric Resonance Characteristics of SrBi2 Nb2 O9 -based Ceramics, Jpn. J. Appl. Phys. 42: 150-156.

    Article  Google Scholar 

  • Ando A et al. (2003b) Piezoelectric Properties of Ba and Ca doped SrBi2 Nb2 O9 Based Ceramic Materials, Jpn. J. Appl. Phys. 42: 520-525.

    Article  Google Scholar 

  • Aoyagi R et al. (2005) Piezoelectric Properties of Vanadium-Substituted Strontium Bismuth, Jpn. J. Appl. Phys. 44: 7055-7058.

    Article  Google Scholar 

  • Armstrong RA, Newnham RE (1972) Bismuth Titanate Solid Solutions, Mater. Res. Bull. 7(10): 1025-1034.

    Article  Google Scholar 

  • Aurivillius B (1949a) Mixed Bismuth Oxides with Layer Lattices. I. The Structure Type of CaNb2 Bi2 O9, Arkiv Kemi 1: 463-480.

    Google Scholar 

  • Aurivillius B (1949b) Mixed Bismuth Oxides with Layer Lattices. II. Structure of Bi4 Ti3 O12 , Arkiv Kemi 1: 499-512.

    Google Scholar 

  • Aurivillius B (1950) Mixed Bismuth Oxides with Layer Lattices. III. Structure of BaBi4 Ti4 O15 , Arkiv Kemi 2: 519-527.

    Google Scholar 

  • Aurivillius B, Fang PH (1962) Ferroelectricity in the Compound Ba2 Bi4 Ti5 O18 , Phys. Rev. 126: 893-896.

    Article  Google Scholar 

  • Cross LE, Pohanka RC (1971) Ferroelectricity in Bismuth Oxides Type Layer Structure Com-pounds, Mater. Res. Bull. 6: 939-949.

    Article  Google Scholar 

  • Cummins SE, Cross LE (1967) Crystal Symmetry, Optical Properties, and Ferroelectric Polariza-tion of Bi4 Ti3 O12 Single Crystal, Appl. Phys. Lett. 10(1): 14-16.

    Google Scholar 

  • Cummins SE, Cross LE (1968) Electrical and Optical Properties of Ferroelectric Bi4 Ti3 O12 Single Crystals, Appl. Phys. 39(5): 2268-2274.

    Article  Google Scholar 

  • Dorrian JF et al. (1971) Crystal Structure of Bi4Ti3O12, Ferroelectrics 3: 17-27.

    Google Scholar 

  • Fang PH et al. (1962) Ferroelectricity in the Compound Bi4 Ti3 O12 , Phys. Rev. 126(3): 892-896.

    Article  Google Scholar 

  • Ikegami S, Ueda I (1974) Piezoelectricity in Ceramics of Ferroelectric Bismuth Compound with Layer Structure, Jpn. J. Appl. Phys. 13(10): 1572-1579.

    Article  Google Scholar 

  • Inai S et al. (2006) Electrical Properties of Grain-Oriented SrBi2 Nb2−xVxO9 Ceramics, Key Eng. Mater. 320: 31-34.

    Google Scholar 

  • Lotgering FK (1959) Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal Structures - I. J. Inorg. Nucl. Chem. 9(2): 113-123.

    Article  Google Scholar 

  • Matsuzawa S et al. (2006) Piezoelectric Properties of Nd and V co-substituted Bi4 Ti3 O12 Ceram-ics, Key Eng. Mater. 320: 39-42.

    Google Scholar 

  • Nagata H et al. (2000) Piezoelectric Anisotropies of Bismuth Layer-Structured Ferroelectrics, Trans. Mater. Res. Jpn, 25(1): 273-276.

    Google Scholar 

  • Nagata H et al. (2003) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric SrBi2 Ta2 O9 -Bi3 TiTaO9 Ceramics, Ferroelectrics, 286: 85-92.

    Article  Google Scholar 

  • Nagata H et al. (2004) Piezoelectric Properties of Nb and V Substituted Bi4 Ti3 O12 Ferroelectric Ceramics, Ceram. Trans. 150: 253-263.

    Google Scholar 

  • Nagata H et al. (2006a) Bismuth Layer-Structured Ferroelectric (Sr,Ca)2 Bi4 Ti5 O18 Ceramics for Lead-Free Piezoelectric Resonator Applications, Proc. 2005 IEEE Ultrason. Symp. pp. 1077-1082.

    Google Scholar 

  • Nagata H et al. (2006b) Piezoelectric Properties of Nd and V co-substituted Bi4 Ti3 O12 Ceramics for resonator applications, Proc. 2006 IEEE Ultrason. Symp. 355-358.

    Google Scholar 

  • Newnham RE et al. (1971) Structural Basis of Ferroelectricity in the Bismuth Titanate Family, Mater. Res. Bull. 6: 1029-1039.

    Article  Google Scholar 

  • Noguchi Y, Miyayama M (2001) Large remnant polarization of vanadium-doped Bi4 Ti3 O12 . Appl. Phys. Lett. 78(13): 1903-1905.

    Article  Google Scholar 

  • Ogawa H et al. (2001) Temperature Dependence of Piezoelectric Properties of Grain-Oriented CaBi4 Ti4 O15 Ceramics, Jpn. J. Appl. Phys. 40(9B): 5715-5718.

    Article  Google Scholar 

  • Ogawa H et al. (2005) Piezoelectric Properties of SrBi2 Nb2 O9 Textured Ceramics, Jpn. J. Appl. Phys. 44: 7050-7054.

    Article  Google Scholar 

  • Shannon RD (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A 32(5): 751-767.

    Article  MathSciNet  Google Scholar 

  • Shulman HS et al. (1996) Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth Titanate, J. Am. Ceram. Soc. 79(12): 3124-3128.

    Article  Google Scholar 

  • Smolenskii GA et al. (1959) A New Group of Ferroelectrics (with Layered Structure), Sov. Phys. Solid State 1: 149-150.

    Google Scholar 

  • Smolenskii GA et al. (1961) Ferroelectrics of the Oxygen-Octahedral Type with Layered Structure, Sov. Phys.-Solid State 3: 651-655.

    Google Scholar 

  • Subbarao EC (1961) Ferroelectricity in Bi4 Ti3 O12 and Its Solid Solutions, Phys. Rev. 122(3): 804-807.

    Article  Google Scholar 

  • Subbarao EC (1962a) Crystal Chemistry of Mixed Bismuth Oxides with Layer-Type Structure, J. Am. Ceram. Soc. 45(4): 166-169.

    Article  Google Scholar 

  • Subbarao EC (1962b) A Family of Ferroelectric Bismuth Compounds, J. Phys. Chem. Solids 23: 665-676.

    Article  Google Scholar 

  • Takenaka T et al. (1976) Ferroelectric and Dielectric Properties of Press Forged Bi4 Ti3 O12 Ceram-ics, Proc. 19th Jpn. Cong. Materials Research, Tokyo, 1975 (The Society of Materials Science, Kyoto, 1976), pp. 230-233.

    Google Scholar 

  • Takenaka T et al. (1977) Grain Orientation and Microstructure of Hot-Forged Bi4 Ti3 O12 Ceramics, Proc. 20th Jpn. Cong. Materials Research, Kyoto, 1976 (The Society of Materials Science, Kyoto, 1977), pp. 212-214.

    Google Scholar 

  • Takenaka T, Sakata K (1980) Grain Orientation and Electrical Properties of Hot-Forged Bi4Ti3O12 Ceramics, Jpn. J. Appl. Phys. 19(1): 31-39.

    Article  Google Scholar 

  • Takenaka T, Sakata K (1982) Dielectric and Piezoelectric Properties of Some Bismuth Layer-Structured Ferroelectric Ceramics, Jpn. J. IEEE (C)J65-C(7): 514-521 (in Japanese).

    Google Scholar 

  • Takenaka T, Sakata K (1983) Pyroelectric Properties of Grain-Oriented Bismuth Layer-Structured Ferroelectric Ceramics, Jpn. J. Appl. Phys. 22 (Suppl. 22-2): 53-56.

    Google Scholar 

  • Takenaka T, Sakata K (1984) Grain Orientation Effects on Electrical Properties of Bismuth Layer-Structured Ferroelectric Pb1−x (Na,Ce)x/2 Bi4 Ti4 O15 Solid Solution, J. Appl. Phys. 55(4): 1092-1099.

    Article  Google Scholar 

  • Takenaka T et al. (1985) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Na0.5 Bi4.5 Ti4 O15 Ceramic, Jpn. J. Appl. Phys. 24 (Suppl. 24-2): 730-732.

    Google Scholar 

  • Takenaka T, Sakata K (1986) Piezoelectric Properties of Grain-Oriented Bismuth Layer-Structured Ferroelectric Ceramics, Proc. Sixth Int. Symp. Appl. Ferroelectr. IEEE, pp. 414-417.

    Google Scholar 

  • Takenaka T, Sakata K (1988) Grain-Oriented and Mn-Doped (NaBi)(1−x/2)CaxBi4 Ti4 O15 Ceram-ics for Piezo- and Pyrosensor Materials, Sens. Mater. 1: 35-46.

    Google Scholar 

  • Takenaka T, Sakata K (1989) Piezoelectric and Pyroelectric Properties of Calcium-Modified and Grain-Oriented (NaBi)1/2 Bi4 Ti4 O15 Ceramics, Ferroelectrics 94: 175-181.

    Google Scholar 

  • Takenaka T, Sakata K (1991) Pyroelectric Properties of Bismuth Layer-Structured Ferroelectric Ceramics, Ferroelectrics 118: 123-133.

    Google Scholar 

  • Takenaka T (2002) Grain Orientation Effects on Electrical Properties of Bismuth Layer-Structured Ferroelectric Ceramics, J. Cer. Soc. Jpn 110: 215-224.

    Google Scholar 

  • Takenaka T, Nagata H (2006) Grain Orientation and Electrical Properties of Some Bismuth Layer-Structured Ferroelectrics for Lead-Free Piezoelectric Applications, Ferroelectrics 336: 119-136.

    Article  Google Scholar 

  • Takeuchi T et al. (1999) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Ceram-ics with a Preferred Orientation Processed by the Reactive Templated Grain Growth Method, Jpn. J. Appl. Phys. 38(9B): 5553-5556.

    Article  Google Scholar 

  • Villegas M et al. (1999) Factors Affecting the Electrical Conductivity of Donor-Doped Bi4 Ti3 O12 Piezoelectric Ceramics, J. Am. Ceram. Soc. 82(9): 2411-2416.

    Article  Google Scholar 

  • Wolfe RW, Newnham RE (1969) Rare Earth Bismuth Titanates, J. Electrochem. Soc; SOLD STATE SCIENCE: 116, 832-835.

    Google Scholar 

  • Yamashita Y et al. (1983) Effects of MnO Additive on Piezoelectric Properties in Modified (Pb, Ca)TiO3 Ferroelectric Ceramics, Jpn. J. Appl. Phys. 22 (Suppl. 22-2): 40-42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Takenaka, T. (2008). Bismuth-based Piezoelectric Ceramics. In: Safari, A., AkdoÄŸan, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76540-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76540-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76538-9

  • Online ISBN: 978-0-387-76540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics