This chapter discusses properties of lead-based piezoelectric materials, the most versatile and the most widely used piezoelectrics. Majority of these materials were discovered in 1950s and 1960s, and their properties and applications are described in classical textbooks, e.g. (Jaffe et al. 1971; Lines and Glass 1979). After giving essential background, this chapter will focus on recent developments. Lead titanate is discussed first, followed by modified lead titanate compositions. Lead zirconate titanate is then discussed in some details, focusing on mechanisms of hardening and softening and properties at morphotropic phase boundary. The subsequent sections discuss field-induced piezoelectric effect in relaxors, relaxor-ferroelectric ceramics, and crystals. Other lead-based materials and environmental issues are briefly discussed in the closing sections of the chapter.


Domain Wall Piezoelectric Property Monoclinic Phase Piezoelectric Effect Morphotropic Phase Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell AJ (2006) Factors influencing the piezoelectric behaviour of PZT and other “morphotropic phase boundary” ferroelectrics. J Mat Sci 41: 13-25.CrossRefGoogle Scholar
  2. Bellaiche L et al. (2000) Finite-temperature properties of Pb(Zr1−xTix )O3 alloys from first princi-ples. Phys Rev Lett 84: 5427-30.CrossRefGoogle Scholar
  3. Berlincourt D et al. (1964) Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids 25: 659-74.CrossRefGoogle Scholar
  4. Bondarenko EI et al. (1991) The role of ◦ domain wall displacements in forming physical prop-erties of perovskite ferroelectric ceramics. Ferroelectr Lett 13: 13.CrossRefGoogle Scholar
  5. Budimir M et al. (2003) Piezoelectric anisotropy-phase transition relations in perovskite single crystals. J Appl Phys 94: 6753-61.CrossRefGoogle Scholar
  6. Budimir M et al. (2006) Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3 . Phys Rev B 73: 174106CrossRefGoogle Scholar
  7. Carl K, Haerdtl KH (1978) Electrical after-effects in Pb(Ti,Zr)O3 ceramics. Ferroelectrics 17: 473-86.Google Scholar
  8. Carl K, H ärdtl KH (1971) On the origin of the maximum in the electromechanical activity in Pb(ZrxTi1−x )O3 ceramics near the morphotropic phase boundary. Phys Stat Sol (a) 8: 87.CrossRefGoogle Scholar
  9. Choi SW et al. (1989) Morphotropic phase boundary in Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 system. Mat Lett 8: 253-55.CrossRefGoogle Scholar
  10. Chung ST et al. (1989) Piezoelectric and dielectric properties of Pb(Ni,Nb)O3 -Pb(Zn,Nb) O3 -PbZrO3 -PbTiO3 system ceramics. Ferroelectrics 94: 243-7.CrossRefGoogle Scholar
  11. Cohen RE (1992) Origin of ferroelectricity in perovskite oxides. Nature 358: 136-8. Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76: 241-67.Google Scholar
  12. Cross LE (1993) Ferroelectric ceramics: Tailoring properties for specific applications. In Setter N, Colla EL (Eds.) Ferroelectric Ceramics. Basel, Birkhäuser p. 1.Google Scholar
  13. Damjanovic D (1997) Stress and frequency dependence of the direct piezoelectric effect in ferro-electric ceramics. J Appl Phys 82: 1788-97.CrossRefGoogle Scholar
  14. Damjanovic D (2005) Hysteresis in piezoelectric and ferroelectric materials. In Bertotti G, Mayergoyz I (Eds.) Science of Hysteresis. Amsterdam, Elsevier p. 337.Google Scholar
  15. Damjanovic D, Demartin M (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J Phys: Con-dens Matter 9: 4943-53.CrossRefGoogle Scholar
  16. Damjanovic D et al. (1987) Anisotropy in piezoelectric properties of modified lead titanate ceram-ics. Am Ceram Soc Bull 66: 699-703.Google Scholar
  17. Damjanovic D et al. (2003) Monodomain versus polydomain piezoelectric response of 0.67 Pb(Mg1/3 Nb2/3 )O3 -0.33PbTiO3 single crystals along nonpolar directions. Appl Phys Lett 83: 527-9.CrossRefGoogle Scholar
  18. Davis M et al. (2005) Domain engineering of the transverse piezoelectric coefficient in perovskite ferroelectrics. J Appl Phys 98: 014102.CrossRefGoogle Scholar
  19. Davis M et al. (2006) Electric field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys Rev B 73: 014115.CrossRefGoogle Scholar
  20. Davis M et al. (2007) Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys 101: 054112. CrossRefGoogle Scholar
  21. Eichel RA (2007) Defect structure of oxide ferroelectrics - valence state, site of incorporation, mechanisms of charge compensation and internal bias fields. J Electroceramics 19: 9-21.CrossRefGoogle Scholar
  22. Eitel R, Randall CA (2007) Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr,Ti)O3 . Phys Rev B 75: 094106.CrossRefGoogle Scholar
  23. Eitel RE et al. (2002) Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1 − x)BiScO3 -xPbTiO3 . Jpn J Appl Phys Part 1 41: 2099-104.CrossRefGoogle Scholar
  24. Fesenko EG et al. (1986) Phase (x,T) diagram of PbZr1−xTixO3 crystals. Sov Phys Solid State 28: 181.Google Scholar
  25. Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403: 281-3.CrossRefGoogle Scholar
  26. Gavrilyachenko VG, Fesenko EG (1971) Piezoelectric effect in lead titanate single crystals. Sov Phys Crystallogr 16 p. 549.Google Scholar
  27. Glazer AM, Mabud SA (1978) Powder profile refinement of lead zirconate titanate at several tem-peratures, Part II: Pure PbTiO3 . Acta Cryst B 34: 1065.CrossRefGoogle Scholar
  28. Goldschmidt VM et al. (1926) Geochemische Verteilunggestze der Elemente VII Die Gesetze der Krystallochemie. Srkrifter Utgitt av der Norske Videnskaps-Akademi i Oslo, I Matem-Naturvid Klasse p. 2.Google Scholar
  29. Grinberg I et al. (2002) Relationship between local structure and phase transitions of a disordered solid solution. Nature 419: 909-11.CrossRefGoogle Scholar
  30. Guiffard B et al. (2005) Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. J Eur Ceram Soc 25: 2487-90.CrossRefGoogle Scholar
  31. Haertling GH (1994) Chemically reduced PLZT ceramics for ultra-high displacement actuators. Ferroelectrics 154: 101-6.Google Scholar
  32. Hall DA et al. (2005) Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics. J Mech Phys Solids 53: 249.MATHCrossRefGoogle Scholar
  33. Harada J et al. (1970) X-ray and neutron diffraction study of tetragonal barium titanate. Acta Cryst A 26: 336.CrossRefGoogle Scholar
  34. Haun MJ et al. (1987) Thermodynamic theory of PbTiO3 . J. Appl. Phys. 62: 3331-3338.CrossRefGoogle Scholar
  35. Haun MJ et al. (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, Part V: Theoretical calculations. Ferroelectrics 99: 63-86.Google Scholar
  36. Ishibashi Y, Iwata M (1998) Morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics. Jpn J Appl Phys 37: L985-L987.CrossRefGoogle Scholar
  37. Isupov VA (2001) Phase coexistence in lead zirconate titanate solid solutions. Phys Solid State 43: 2262-6.CrossRefGoogle Scholar
  38. Isupov VA (2002) Phases in the PZT ceramics. Ferroelectrics 266: 91-102.CrossRefGoogle Scholar
  39. Iwata M, Ishibashi Y (2005) Phenomenological theory of morphotropic phase boundary with mon-oclinic phase in solid-solution systems of perovskite-type oxide ferroelectrics. Jpn J Appl Phys 44: 3095-8.CrossRefGoogle Scholar
  40. Jaffe B et al. (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25: 809-10.CrossRefGoogle Scholar
  41. Jaffe B et al. (1971) Piezoelectric Ceramics. New York, Academic.Google Scholar
  42. Jin YM et al. (2003) Conformal miniaturization of domains with low domain-wall energy: Mono-clinic ferroelectric states near the morphotropic phase boundaries. Physl Rev Lett 91: 197601.CrossRefGoogle Scholar
  43. Jones JL et al. (2007) Time-resolved and orientation-dependent electric-field-induced strains in lead zirconate titanate ceramics. Appl Phys Lett 90:172909.CrossRefGoogle Scholar
  44. Kighelman Z et al. (2002) Properties of ferroelectric PbTiO3 thin films. J Appl Phys 91: 1495-501.CrossRefGoogle Scholar
  45. Kosec M et al. (1998) Effect of a chemically aggressive environment on the electromechanical behaviour of modified lead titanate ceramics. J Kor Phys Soc 32: S1163-S1166.Google Scholar
  46. Kushida K, Takeuchi H (1987) Piezoelectricity in c-axis oriented PbTiO3 thin films. Appl Phys Lett 50: 1800-1.CrossRefGoogle Scholar
  47. Kutnjak Z et al. (2007) Electric field induced critical points and polarization rotations in relaxor ferroelectrics. Phys Rev B 76: 104102.CrossRefGoogle Scholar
  48. Kuwata J et al. (1981) Phase transitions in the Pb(Zn1/3 Nb2/3 )O3 -PbTiO3 system. Ferroelectrics 37: 579-82. Google Scholar
  49. Kuwata J et al. (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3 Nb2/3 ) O3 -0.09 PbTiO3 single crystals. Jpn J Appl Phys 21: 1298-302.CrossRefGoogle Scholar
  50. Lambeck PV, Jonker GH (1986) The nature of domain stabilization in ferroelectric perovskites. J Phys Chem Solid 47: 453-61.CrossRefGoogle Scholar
  51. Li Z et al. (1993) The elastic, piezoelectric and dielectric constants of tetragonal PbTiO3 single crystals. Ferroelectrics 141: 313-25.Google Scholar
  52. Lines ME, Glass AM (1979) Principles and Applications of Ferroelectrics and Related Materials. Oxford, Clarendon.Google Scholar
  53. Lu Y et al. (2001) Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 single crystals. Appl Phys Lett 78: 3109-11.CrossRefGoogle Scholar
  54. Lupascu DC et al. (2006) Aging in ferroelecrtrics. J Am Ceram Soc 89: 224-9.CrossRefGoogle Scholar
  55. Megaw HD (1957) Ferroelectricity in Crystals. London, Methuen.Google Scholar
  56. Mestric H et al. (2005) Iron-oxygen vacancy defect centers in PbTiO3 : Newman superposition model analysis and density functional calculations. Phys Rev B 71: 134109.CrossRefGoogle Scholar
  57. Michel C et al. (1969) Atomic structures of two rhombohedral ferroelectric phases in the Pb(Zr, Ti)O3 solid solution series. Solid State Comm 7: 865-8.CrossRefGoogle Scholar
  58. Nelmes RJ, Kuhs WF (1985) The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K. Solid State Comm 54: 721.CrossRefGoogle Scholar
  59. Nelmes RJ et al. (1990) Order-disorder behaviour in the transition of PbTiO3 . Ferroelectrics 108: 165-70.Google Scholar
  60. Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid State Mat Sci 6: 27-34.CrossRefGoogle Scholar
  61. Noheda B et al. (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix )O3 solid solution. Appl Phys Lett 74: 2059-61.CrossRefGoogle Scholar
  62. Ogawa T et al. (2002) Giant electromechanical coupling factor of k31 mode and piezoelectric d31 constant in Pb[(Zn1/3 Nb2/3 )(0.91)Ti0.09 ]O3 piezoelectric single crystal. Jpn J Appl Phys Part 2: Letters 41: L55-L57.CrossRefGoogle Scholar
  63. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelec-tric single crystals. J Appl Phys 82: 1804-11.CrossRefGoogle Scholar
  64. Robels U, Arlt G (1993) Domain wall clamping in ferroelectrics by orientation of defects. J Appl Phys 73: 3454-60.CrossRefGoogle Scholar
  65. SaghiSzabo G, Cohen RE (1997) Long-range order effects in Pb(Zr1/2 Ti1/2 )O3 . Ferroelectrics 194: 287-98.CrossRefGoogle Scholar
  66. Sawaguchi E (1953) Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3 . J Phys Soc Japan 8: 615-29.CrossRefGoogle Scholar
  67. Schonau KA et al. (2007) Nanodomain structure of Pb(Zr1−xTix )O3 at its morphotropic phase boundary: Investigations from local to average structure. Phys Rev B 75: S184117-S184200.Google Scholar
  68. Sehirlioglu A et al. (2006) Effect of poling on dielectric anomalies at phase transitions for lead magnesium niobate-lead titanate crystals in the morphotropic phase boundary region. J Appl Phys 99: 064101.CrossRefGoogle Scholar
  69. Shirane G et al. (1952) Phase transitions in solid solutions of PbZrO3 and PbTiO3 , Part II: X-ray study. J Phys Soc Jpn 7: 12.CrossRefGoogle Scholar
  70. Takeuchi H et al. (1985) Highly anisotropic piezoelectric ceramics and their application in ultra-sonic probes. IEEE Ultrasonics Symposium. San Francisco.Google Scholar
  71. Takeuchi H et al.(1990) Relaxor ferroelectric transducers. IEEE Ultrasonics Symposium. Honolulu.Google Scholar
  72. Tanaka H et al. (2006) Electrostatic potential of ferroelectric PbTiO3 : Visualized electron polariza-tion of Pb ion. Physical Review B 74: 172105.CrossRefGoogle Scholar
  73. Taylor DJ et al. (1991) Large hydrostatic piezoelectric coefficient in lead magnesium niobate: Lead titanate ceramics. J Mater Sci Lett 10: 668.CrossRefGoogle Scholar
  74. Troilo LM et al. (1994) Modified lead titanate ceramics with relatively large dielectric constant for hydrophone applications. J Am Ceram Soc 77: 857.CrossRefGoogle Scholar
  75. Trolier-McKinstry S et al. (Eds.) (2004) Ferroelectric single crystals and their application.Google Scholar
  76. Turik AV et al. (1975) Anisotropy of the dielectric and piezoelectric properties of lead titanate. Sov Phys Crystallogr 19: 677-78.Google Scholar
  77. Turik AV, Topolov VY (1997) Ferroelectric ceramics with a large piezoelectric anisotropy. J Phys D: Appl Phys 30: 1541-9.CrossRefGoogle Scholar
  78. Warren WL et al. (1996) Oxygen vacancy motion in perovskite oxides. J Am Ceram Soc 79: 536-8.CrossRefGoogle Scholar
  79. Woodward DI et al. (2005) Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution. Phys Rev B 72: 104110.CrossRefGoogle Scholar
  80. Wu ZG, Cohen RE (2005) Pressure-induced anomalous phase transitions and colossal enhance-ment of piezoelectricity in PbTiO3 . Phys Rev Lett 95: 037601.CrossRefGoogle Scholar
  81. Yamashita Y, Hosono Y (2005) Material design of high-dielectric-constant and large- electromechanical-coupling-factor relaxor-based piezoelectric ceramics. Jpn J Appl Phys Part 1: Regular Pap Brief CommRevPap 44: 7046-9.Google Scholar
  82. Yamashita Y et al. (1981) (Pb,Ca)((Co1/2 W1/2 )Ti)O3 piezoelectric ceramics and their applica-tions. Jpn J Appl Phys 20: 183.Google Scholar
  83. Zhang LX, Ren X (2006) Electro-shape-memory effect in Mn-doped BaTiO3 single crystals and in situ observation of the reversible domain switching. Mater Sci Eng A: Struct Mater 438: 354-9.CrossRefGoogle Scholar
  84. Zhang R et al. (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 single crystals. J Appl Phys 90: 3471-75.CrossRefGoogle Scholar
  85. Zhang R et al. (2003a) Orientation dependence of piezoelectric properties of single domain 0.67 (Mg1/3 Nb2/3 )O3 -0.33PbTiO3 crystals. Appl Phys Lett 82: 3737-9.CrossRefGoogle Scholar
  86. Zhang R et al. (2003b) Single-domain properties of 0.67Pb(Mg1/3 Nb2/3 )O3 -0.33PbTiO3 single crystals under electric field bias. Appl Phys Lett 82: 787-9.CrossRefGoogle Scholar
  87. Zhang S, Shrout TR (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroce-ramics 19: 111-24.Google Scholar
  88. Zhang XL et al. (1983) Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K. J Mater Sci 18: 968-72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dragan Damjanovic
    • 1
  1. 1.Ceramics LaboratorySwiss Federal Institute of Technology-EPFLLausanneSwitzerland

Personalised recommendations