Skip to main content

This chapter discusses properties of lead-based piezoelectric materials, the most versatile and the most widely used piezoelectrics. Majority of these materials were discovered in 1950s and 1960s, and their properties and applications are described in classical textbooks, e.g. (Jaffe et al. 1971; Lines and Glass 1979). After giving essential background, this chapter will focus on recent developments. Lead titanate is discussed first, followed by modified lead titanate compositions. Lead zirconate titanate is then discussed in some details, focusing on mechanisms of hardening and softening and properties at morphotropic phase boundary. The subsequent sections discuss field-induced piezoelectric effect in relaxors, relaxor-ferroelectric ceramics, and crystals. Other lead-based materials and environmental issues are briefly discussed in the closing sections of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell AJ (2006) Factors influencing the piezoelectric behaviour of PZT and other “morphotropic phase boundary” ferroelectrics. J Mat Sci 41: 13-25.

    Article  Google Scholar 

  • Bellaiche L et al. (2000) Finite-temperature properties of Pb(Zr1−xTix )O3 alloys from first princi-ples. Phys Rev Lett 84: 5427-30.

    Article  Google Scholar 

  • Berlincourt D et al. (1964) Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids 25: 659-74.

    Article  Google Scholar 

  • Bondarenko EI et al. (1991) The role of ◦ domain wall displacements in forming physical prop-erties of perovskite ferroelectric ceramics. Ferroelectr Lett 13: 13.

    Article  Google Scholar 

  • Budimir M et al. (2003) Piezoelectric anisotropy-phase transition relations in perovskite single crystals. J Appl Phys 94: 6753-61.

    Article  Google Scholar 

  • Budimir M et al. (2006) Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3 . Phys Rev B 73: 174106

    Article  Google Scholar 

  • Carl K, Haerdtl KH (1978) Electrical after-effects in Pb(Ti,Zr)O3 ceramics. Ferroelectrics 17: 473-86.

    Google Scholar 

  • Carl K, H ärdtl KH (1971) On the origin of the maximum in the electromechanical activity in Pb(ZrxTi1−x )O3 ceramics near the morphotropic phase boundary. Phys Stat Sol (a) 8: 87.

    Article  Google Scholar 

  • Choi SW et al. (1989) Morphotropic phase boundary in Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 system. Mat Lett 8: 253-55.

    Article  Google Scholar 

  • Chung ST et al. (1989) Piezoelectric and dielectric properties of Pb(Ni,Nb)O3 -Pb(Zn,Nb) O3 -PbZrO3 -PbTiO3 system ceramics. Ferroelectrics 94: 243-7.

    Article  Google Scholar 

  • Cohen RE (1992) Origin of ferroelectricity in perovskite oxides. Nature 358: 136-8. Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76: 241-67.

    Google Scholar 

  • Cross LE (1993) Ferroelectric ceramics: Tailoring properties for specific applications. In Setter N, Colla EL (Eds.) Ferroelectric Ceramics. Basel, Birkhäuser p. 1.

    Google Scholar 

  • Damjanovic D (1997) Stress and frequency dependence of the direct piezoelectric effect in ferro-electric ceramics. J Appl Phys 82: 1788-97.

    Article  Google Scholar 

  • Damjanovic D (2005) Hysteresis in piezoelectric and ferroelectric materials. In Bertotti G, Mayergoyz I (Eds.) Science of Hysteresis. Amsterdam, Elsevier p. 337.

    Google Scholar 

  • Damjanovic D, Demartin M (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J Phys: Con-dens Matter 9: 4943-53.

    Article  Google Scholar 

  • Damjanovic D et al. (1987) Anisotropy in piezoelectric properties of modified lead titanate ceram-ics. Am Ceram Soc Bull 66: 699-703.

    Google Scholar 

  • Damjanovic D et al. (2003) Monodomain versus polydomain piezoelectric response of 0.67 Pb(Mg1/3 Nb2/3 )O3 -0.33PbTiO3 single crystals along nonpolar directions. Appl Phys Lett 83: 527-9.

    Article  Google Scholar 

  • Davis M et al. (2005) Domain engineering of the transverse piezoelectric coefficient in perovskite ferroelectrics. J Appl Phys 98: 014102.

    Article  Google Scholar 

  • Davis M et al. (2006) Electric field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys Rev B 73: 014115.

    Article  Google Scholar 

  • Davis M et al. (2007) Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys 101: 054112.

    Article  Google Scholar 

  • Eichel RA (2007) Defect structure of oxide ferroelectrics - valence state, site of incorporation, mechanisms of charge compensation and internal bias fields. J Electroceramics 19: 9-21.

    Article  Google Scholar 

  • Eitel R, Randall CA (2007) Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr,Ti)O3 . Phys Rev B 75: 094106.

    Article  Google Scholar 

  • Eitel RE et al. (2002) Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1 − x)BiScO3 -xPbTiO3 . Jpn J Appl Phys Part 1 41: 2099-104.

    Article  Google Scholar 

  • Fesenko EG et al. (1986) Phase (x,T) diagram of PbZr1−xTixO3 crystals. Sov Phys Solid State 28: 181.

    Google Scholar 

  • Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403: 281-3.

    Article  Google Scholar 

  • Gavrilyachenko VG, Fesenko EG (1971) Piezoelectric effect in lead titanate single crystals. Sov Phys Crystallogr 16 p. 549.

    Google Scholar 

  • Glazer AM, Mabud SA (1978) Powder profile refinement of lead zirconate titanate at several tem-peratures, Part II: Pure PbTiO3 . Acta Cryst B 34: 1065.

    Article  Google Scholar 

  • Goldschmidt VM et al. (1926) Geochemische Verteilunggestze der Elemente VII Die Gesetze der Krystallochemie. Srkrifter Utgitt av der Norske Videnskaps-Akademi i Oslo, I Matem-Naturvid Klasse p. 2.

    Google Scholar 

  • Grinberg I et al. (2002) Relationship between local structure and phase transitions of a disordered solid solution. Nature 419: 909-11.

    Article  Google Scholar 

  • Guiffard B et al. (2005) Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. J Eur Ceram Soc 25: 2487-90.

    Article  Google Scholar 

  • Haertling GH (1994) Chemically reduced PLZT ceramics for ultra-high displacement actuators. Ferroelectrics 154: 101-6.

    Google Scholar 

  • Hall DA et al. (2005) Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics. J Mech Phys Solids 53: 249.

    Article  MATH  Google Scholar 

  • Harada J et al. (1970) X-ray and neutron diffraction study of tetragonal barium titanate. Acta Cryst A 26: 336.

    Article  Google Scholar 

  • Haun MJ et al. (1987) Thermodynamic theory of PbTiO3 . J. Appl. Phys. 62: 3331-3338.

    Article  Google Scholar 

  • Haun MJ et al. (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, Part V: Theoretical calculations. Ferroelectrics 99: 63-86.

    Google Scholar 

  • Ishibashi Y, Iwata M (1998) Morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics. Jpn J Appl Phys 37: L985-L987.

    Article  Google Scholar 

  • Isupov VA (2001) Phase coexistence in lead zirconate titanate solid solutions. Phys Solid State 43: 2262-6.

    Article  Google Scholar 

  • Isupov VA (2002) Phases in the PZT ceramics. Ferroelectrics 266: 91-102.

    Article  Google Scholar 

  • Iwata M, Ishibashi Y (2005) Phenomenological theory of morphotropic phase boundary with mon-oclinic phase in solid-solution systems of perovskite-type oxide ferroelectrics. Jpn J Appl Phys 44: 3095-8.

    Article  Google Scholar 

  • Jaffe B et al. (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25: 809-10.

    Article  Google Scholar 

  • Jaffe B et al. (1971) Piezoelectric Ceramics. New York, Academic.

    Google Scholar 

  • Jin YM et al. (2003) Conformal miniaturization of domains with low domain-wall energy: Mono-clinic ferroelectric states near the morphotropic phase boundaries. Physl Rev Lett 91: 197601.

    Article  Google Scholar 

  • Jones JL et al. (2007) Time-resolved and orientation-dependent electric-field-induced strains in lead zirconate titanate ceramics. Appl Phys Lett 90:172909.

    Article  Google Scholar 

  • Kighelman Z et al. (2002) Properties of ferroelectric PbTiO3 thin films. J Appl Phys 91: 1495-501.

    Article  Google Scholar 

  • Kosec M et al. (1998) Effect of a chemically aggressive environment on the electromechanical behaviour of modified lead titanate ceramics. J Kor Phys Soc 32: S1163-S1166.

    Google Scholar 

  • Kushida K, Takeuchi H (1987) Piezoelectricity in c-axis oriented PbTiO3 thin films. Appl Phys Lett 50: 1800-1.

    Article  Google Scholar 

  • Kutnjak Z et al. (2007) Electric field induced critical points and polarization rotations in relaxor ferroelectrics. Phys Rev B 76: 104102.

    Article  Google Scholar 

  • Kuwata J et al. (1981) Phase transitions in the Pb(Zn1/3 Nb2/3 )O3 -PbTiO3 system. Ferroelectrics 37: 579-82.

    Google Scholar 

  • Kuwata J et al. (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3 Nb2/3 ) O3 -0.09 PbTiO3 single crystals. Jpn J Appl Phys 21: 1298-302.

    Article  Google Scholar 

  • Lambeck PV, Jonker GH (1986) The nature of domain stabilization in ferroelectric perovskites. J Phys Chem Solid 47: 453-61.

    Article  Google Scholar 

  • Li Z et al. (1993) The elastic, piezoelectric and dielectric constants of tetragonal PbTiO3 single crystals. Ferroelectrics 141: 313-25.

    Google Scholar 

  • Lines ME, Glass AM (1979) Principles and Applications of Ferroelectrics and Related Materials. Oxford, Clarendon.

    Google Scholar 

  • Lu Y et al. (2001) Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 single crystals. Appl Phys Lett 78: 3109-11.

    Article  Google Scholar 

  • Lupascu DC et al. (2006) Aging in ferroelecrtrics. J Am Ceram Soc 89: 224-9.

    Article  Google Scholar 

  • Megaw HD (1957) Ferroelectricity in Crystals. London, Methuen.

    Google Scholar 

  • Mestric H et al. (2005) Iron-oxygen vacancy defect centers in PbTiO3 : Newman superposition model analysis and density functional calculations. Phys Rev B 71: 134109.

    Article  Google Scholar 

  • Michel C et al. (1969) Atomic structures of two rhombohedral ferroelectric phases in the Pb(Zr, Ti)O3 solid solution series. Solid State Comm 7: 865-8.

    Article  Google Scholar 

  • Nelmes RJ, Kuhs WF (1985) The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K. Solid State Comm 54: 721.

    Article  Google Scholar 

  • Nelmes RJ et al. (1990) Order-disorder behaviour in the transition of PbTiO3 . Ferroelectrics 108: 165-70.

    Google Scholar 

  • Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid State Mat Sci 6: 27-34.

    Article  Google Scholar 

  • Noheda B et al. (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix )O3 solid solution. Appl Phys Lett 74: 2059-61.

    Article  Google Scholar 

  • Ogawa T et al. (2002) Giant electromechanical coupling factor of k31 mode and piezoelectric d31 constant in Pb[(Zn1/3 Nb2/3 )(0.91)Ti0.09 ]O3 piezoelectric single crystal. Jpn J Appl Phys Part 2: Letters 41: L55-L57.

    Article  Google Scholar 

  • Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelec-tric single crystals. J Appl Phys 82: 1804-11.

    Article  Google Scholar 

  • Robels U, Arlt G (1993) Domain wall clamping in ferroelectrics by orientation of defects. J Appl Phys 73: 3454-60.

    Article  Google Scholar 

  • SaghiSzabo G, Cohen RE (1997) Long-range order effects in Pb(Zr1/2 Ti1/2 )O3 . Ferroelectrics 194: 287-98.

    Article  Google Scholar 

  • Sawaguchi E (1953) Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3 . J Phys Soc Japan 8: 615-29.

    Article  Google Scholar 

  • Schonau KA et al. (2007) Nanodomain structure of Pb(Zr1−xTix )O3 at its morphotropic phase boundary: Investigations from local to average structure. Phys Rev B 75: S184117-S184200.

    Google Scholar 

  • Sehirlioglu A et al. (2006) Effect of poling on dielectric anomalies at phase transitions for lead magnesium niobate-lead titanate crystals in the morphotropic phase boundary region. J Appl Phys 99: 064101.

    Article  Google Scholar 

  • Shirane G et al. (1952) Phase transitions in solid solutions of PbZrO3 and PbTiO3 , Part II: X-ray study. J Phys Soc Jpn 7: 12.

    Article  Google Scholar 

  • Takeuchi H et al. (1985) Highly anisotropic piezoelectric ceramics and their application in ultra-sonic probes. IEEE Ultrasonics Symposium. San Francisco.

    Google Scholar 

  • Takeuchi H et al.(1990) Relaxor ferroelectric transducers. IEEE Ultrasonics Symposium. Honolulu.

    Google Scholar 

  • Tanaka H et al. (2006) Electrostatic potential of ferroelectric PbTiO3 : Visualized electron polariza-tion of Pb ion. Physical Review B 74: 172105.

    Article  Google Scholar 

  • Taylor DJ et al. (1991) Large hydrostatic piezoelectric coefficient in lead magnesium niobate: Lead titanate ceramics. J Mater Sci Lett 10: 668.

    Article  Google Scholar 

  • Troilo LM et al. (1994) Modified lead titanate ceramics with relatively large dielectric constant for hydrophone applications. J Am Ceram Soc 77: 857.

    Article  Google Scholar 

  • Trolier-McKinstry S et al. (Eds.) (2004) Ferroelectric single crystals and their application.

    Google Scholar 

  • Turik AV et al. (1975) Anisotropy of the dielectric and piezoelectric properties of lead titanate. Sov Phys Crystallogr 19: 677-78.

    Google Scholar 

  • Turik AV, Topolov VY (1997) Ferroelectric ceramics with a large piezoelectric anisotropy. J Phys D: Appl Phys 30: 1541-9.

    Article  Google Scholar 

  • Warren WL et al. (1996) Oxygen vacancy motion in perovskite oxides. J Am Ceram Soc 79: 536-8.

    Article  Google Scholar 

  • Woodward DI et al. (2005) Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution. Phys Rev B 72: 104110.

    Article  Google Scholar 

  • Wu ZG, Cohen RE (2005) Pressure-induced anomalous phase transitions and colossal enhance-ment of piezoelectricity in PbTiO3 . Phys Rev Lett 95: 037601.

    Article  Google Scholar 

  • Yamashita Y, Hosono Y (2005) Material design of high-dielectric-constant and large- electromechanical-coupling-factor relaxor-based piezoelectric ceramics. Jpn J Appl Phys Part 1: Regular Pap Brief CommRevPap 44: 7046-9.

    Google Scholar 

  • Yamashita Y et al. (1981) (Pb,Ca)((Co1/2 W1/2 )Ti)O3 piezoelectric ceramics and their applica-tions. Jpn J Appl Phys 20: 183.

    Google Scholar 

  • Zhang LX, Ren X (2006) Electro-shape-memory effect in Mn-doped BaTiO3 single crystals and in situ observation of the reversible domain switching. Mater Sci Eng A: Struct Mater 438: 354-9.

    Article  Google Scholar 

  • Zhang R et al. (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 single crystals. J Appl Phys 90: 3471-75.

    Article  Google Scholar 

  • Zhang R et al. (2003a) Orientation dependence of piezoelectric properties of single domain 0.67 (Mg1/3 Nb2/3 )O3 -0.33PbTiO3 crystals. Appl Phys Lett 82: 3737-9.

    Article  Google Scholar 

  • Zhang R et al. (2003b) Single-domain properties of 0.67Pb(Mg1/3 Nb2/3 )O3 -0.33PbTiO3 single crystals under electric field bias. Appl Phys Lett 82: 787-9.

    Article  Google Scholar 

  • Zhang S, Shrout TR (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroce-ramics 19: 111-24.

    Google Scholar 

  • Zhang XL et al. (1983) Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K. J Mater Sci 18: 968-72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Damjanovic, D. (2008). Lead-Based Piezoelectric Materials. In: Safari, A., Akdoğan, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76540-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76540-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76538-9

  • Online ISBN: 978-0-387-76540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics