Advertisement

Crystal Chemistry of Piezoelectric Materials

  • Susan Trolier-McKinstry
Piezoelectricity linearly relates an induced polarization to an applied stress, as shown in (3.1),
$$P_{\rm i}\ =\ d_{ijk}\ \sigma_{jk}$$
(3.1)

Where σ jk is the applied stress, P i is the induced polarization, and d ijk is the piezoelectric charge coefficient. Einstein notation is used, where repeated indices are summed. Because piezoelectricity is a third-rank tensor property, a good starting point to understanding the crystal chemistry of piezoelectric materials is to consider the impact of symmetry on such a property.

Neumann’s law states that the geometrical representation of any physical property contains the symmetry of the point group of the material. As shown in Fig. 3.1, of the 32 crystallographic point groups, only 21 are noncentrosymmetric. Odd-rank tensor properties are symmetry forbidden in centrosymmetric structures, making piezoelectricity a null property for such materials. In the same way, in point group 432, the combination of symmetry elements eliminates piezoelectricity. The remaining 20 point groups are potentially piezoelectric. Of these 20 point groups, ten are polar, that is, they have a vector direction in the material that is not symmetry-related to other directions. Such materials can have a spontaneous polarization, which is typically a function of temperature. Thus, these materials are pyroelectric. Ferroelectric materials are a subset of pyroelectric materials in which the spontaneous polarization can be reoriented between crystallographically-defined directions by a realizable electric field. Thus, all ferroelectric materials are both piezoelectric and pyroelectric.

Keywords

Domain Wall Piezoelectric Material Piezoelectric Property Spontaneous Polarization Morphotropic Phase Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberta EF, Guo R, Bhalla AS (2001) Structure-property diagrams of ferroic solid solutions. Part I: Perovskite relaxor ferroelectrics with morphotropic phase boundaries. Ferro. Rev. 4: 1-327.Google Scholar
  2. Aurivillius B (1950) Mixed oxides with layer lattices: III. Structure of BaBi4 Ti4 O15 . Arkiv Kemi 2 (37): 519-527.Google Scholar
  3. Bassiri Gharb N, Trolier-McKinstry S, Damjanovic D (2006) Piezoelectric nonlinearity in ferro-electric thin films. J. Appl. Phys. 100, 044107.CrossRefGoogle Scholar
  4. Bell AJ (2001) Phenomenologically derived electric field-temperature phase diagrams and piezo-electric coefficients for single crystal barium titanate under fields along different axes. J. Appl. Phys. 89: 3907-3914.CrossRefGoogle Scholar
  5. Corker DL, Glazer AM, Whatmore RW, Stallard A, Fauth F (1998) A neutron diffraction investi-gation into the rhombohedral phases of the perovskite series PbZr1−xTixO3 . J. Phys.: Condens. Matter 10: 6251-6269. CrossRefGoogle Scholar
  6. Damjanovic D (1997) Stress and frequency dependence of the direct piezoelectric effect in ferro-electric ceramics. J. Appl. Phys. 82: 1788-1797.CrossRefGoogle Scholar
  7. Damjanovic D, Brem F, Setter N (2002) Crystal orientation dependence of the piezoelectric d33 coefficient in tetragonal BaTiO3 as a function of temperature. Appl. Phys. Lett. 80: 652-654.CrossRefGoogle Scholar
  8. Du XH, Zheng JH, Belegundu U, Uchino K (1998) Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 72: 2421-2423.CrossRefGoogle Scholar
  9. Duran C, Trolier-McKinstry S, Messing GL (2003) Dielectric and piezoelectric properties of tex-tured Sr0.53 Ba0.47 Nb2 O6 ceramics prepared by templated grain growth. J. Mat. Res. 18: 228-238.CrossRefGoogle Scholar
  10. Durbin MK, Hicks JC, Park SE, Shrout TR (2000) X-ray diffraction and phenomenological studies of the engineered monoclinic crystal domains in single crystal relaxor ferroelectrics. J. Appl. Phys. 87: 8159-8164.CrossRefGoogle Scholar
  11. Eitel R, Randall CA (2007) Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr,Ti)O3 . Phys. Rev. 75.Google Scholar
  12. Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park SE (2001) New high temper-ature morphotropic phase boundary piezoelectrics based on Bi(Me)O3 -PbTiO3 ceramics. Jpn. J. Appl. Phys., 40(Pt 1): 5999-6002.CrossRefGoogle Scholar
  13. Fousek J, Janovek V (1969) The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40: 135-142.CrossRefGoogle Scholar
  14. Ghosez P, Cockayne E, Waghmare UV, Rabe KM (1995) Lattice dynamics of BaTiO3 , PbTiO3 , and PbZrO3 : A comparative first principles study. Phys. Rev. B 60: 836-843.CrossRefGoogle Scholar
  15. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B28: 3384-3392.CrossRefGoogle Scholar
  16. Goldschmidt VM (1926) The laws of crystal chemistry. Naturwissenschaften 14: 477-485.CrossRefGoogle Scholar
  17. Hall DA (1999) Rayleigh behaviour and the threshold field in ferroelectric ceramics. Ferroelectrics 223: 319-328.CrossRefGoogle Scholar
  18. Hall DA, Stevenson PJ (1999) High field dielectric behaviour of ferroelectric ceramics. Ferro-electrics 228: 139-158.Google Scholar
  19. Horn JA, Zhang XC, Selvaraj U, Messing GL, and Trolier-McKinstry S (1999) Templated grain growth of textured bismuth niobate. J. Am. Ceram. Soc. 82: 921-926.CrossRefGoogle Scholar
  20. Jones GO, Thomas PA (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5 Bi0.5 TiO3 . Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 58: 168-178.CrossRefGoogle Scholar
  21. Li SP, Cao WW, Cross LE (1991) The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic. J. Appl. Phys. 69: 7219-7224.CrossRefGoogle Scholar
  22. Lines ME, Glass AM (1977) Principles and Applications of Ferroelectric and Related Materials. Clarendon Press, Oxford.Google Scholar
  23. Lu Y, Jeong DY, Cheng ZY, Zhang QM, Luo HS, Yin ZW, Viehland D (2001) Phase transitional be-havior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 single crystals. Appl. Phys. Lett. 78: 3109-3111.CrossRefGoogle Scholar
  24. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M (2004) Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Sol. State Mat. Sci. 29: 45-96.CrossRefGoogle Scholar
  25. Muller O, Roy R (1974) The Major Ternary Structural Families. Springer-Verlag, New York.Google Scholar
  26. Newnham RE (1975) Structure-Property Relations. Springer-Verlag, New York.Google Scholar
  27. Newnham RE, Private communication (2003).Google Scholar
  28. Newnham RE, Wolfe RW, Dorrian JF (1971) Structural basis of ferroelectricity in bismuth titanate family. Mat. Res. Bull. 6: 1029.CrossRefGoogle Scholar
  29. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelec-tric single crystals. J. Appl. Phys. 82: 1804-1811.CrossRefGoogle Scholar
  30. Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J. Appl. Phys. 86: 2746-2750.CrossRefGoogle Scholar
  31. Randall CA, Eitel R, Jones B, Shrout TR, Woodward DI, Reaney IM (2004) Investigation of a high Tc piezoelectric system: (1 − x)Bi(Mg1/2 Ti1/2 )O3 -(x)PbTiO3 . J. Appl. Phys. 95: 3633-3639.CrossRefGoogle Scholar
  32. Reaney IM, Roulin M, Shulman HS, Setter N (1995) In situ observations of octahedral tilt transi-tions in strontium bismuth titanate layered perovskites. Ferroelectrics 165: 295-305.Google Scholar
  33. Sa Neto A, Cross LE (1982) Electro-mechanical behavior of single domain single crystals of bis-muth titanate (Bi4 Ti3 O12 ). J. Mat. Sci. 17: 1409-1412.CrossRefGoogle Scholar
  34. Seshadri R, Hill NA (2001) Visualization of the role of Bi 6s “lone pair” electrons in the off-center distortions in ferromagnetic BiMnO3 , Chem. Mat. 13: 2892-2899.CrossRefGoogle Scholar
  35. Shrout TR, Halliyal A (1987) Preparation of lead-based ferroelectric relaxors for capacitors. Am. Ceram. Soc. Bull. 66: 714-711.Google Scholar
  36. Takenaka T, Sakata K (1980) Grain-orientation and electrical-properties of hot-forged Bi4 Ti3 O12 ceramics. Jpn. J. Appl. Phys. 19: 31-39.CrossRefGoogle Scholar
  37. Trolier-McKinstry S, Bassiri Gharb N, Damjanovic D (2006) Piezoelectric nonlinearity due to motion of 180 ◦ domain walls in ferroelectric materials at subcoercive fields: A dynamic poling model. Appl. Phys. Lett. 88: 202901.CrossRefGoogle Scholar
  38. Vanderbilt D, Cohen MH (2001) Monoclinic and triclinic phases in higher-order Devonshire the-ory. Phys. Rev. B 63: 094108.CrossRefGoogle Scholar
  39. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of BaTiO3 single crystals with engineered domain configura-tions. Jpn. J. Appl. Phys. Pt. 1 38: 5505-5511.CrossRefGoogle Scholar
  40. Woodward DI, Kundsen J, Reaney IM (2005) Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution. Phys. Rev. B 72: 104-110.CrossRefGoogle Scholar
  41. Xiang PH, Kinemuchi Y, Watari K (2006) Effective grain alignment in bismuth titanate ceramic by centrifugal force. J. Mat. Res. 21: 1830-1835.CrossRefGoogle Scholar
  42. Yamamoto T (1996) Ferroelectric properties of PbZrO3 -PbTiO3 system. Jpn. J. Appl. Phys. 35: 5104-5108.CrossRefGoogle Scholar
  43. Zhang QM, Pan WY, Jang SJ, Cross LE (1988) Domain-wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64: 6445-6451.CrossRefGoogle Scholar
  44. Zhang QM, Wang H, Kim N, Cross LE (1994) Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75: 454-459.CrossRefGoogle Scholar
  45. Zhang XL, Chen ZX, Cross LE, Schulze WA (1983) Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2K to 300K. J. Mater. Sci. 18: 968-972.CrossRefGoogle Scholar
  46. Zheng H, Reaney IM, Lee WE, Jones N, Thomas H (2002) Effects of octahedral tilting on the piezoelectric properties of strontium/barium/niobium-doped soft lead zirconate titanate ceram-ics. J. Am. Ceram. Soc. 85: 2337-2344.CrossRefGoogle Scholar
  47. Zhong W, Vanderbilt D (1995) Competing structural instabilities in cubic perovskites. Phys. Rev. Lett. 74: 2587-2590.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Susan Trolier-McKinstry
    • 1
  1. 1.Materials Science and Engineering Department & Materials Research InstituteThe Pennsylvania State University, University ParkUSA

Personalised recommendations