Micromachined Ultrasonic Transducers

  • Massimo Pappalardo
  • Giosue Caliano
  • Alessandro S. Savoia
  • Alessandro Caronti

In this chapter the basic principles, the fabrication process, and some modeling approaches of the novel micromachined ultrasonic transducers (MUTs) are described. These transducers utilize the flextensional vibration of an array of micromembranes. They are usually called cMUT (capacitive MUT) or pMUT (piezoelectric MUT) depending on the actuation principle, electrostatic or piezoelectric. For water coupling applications, both these kinds of transducers offer a better matching to the load compared with the typical piezoelectric transducers and therefore they have a larger intrinsic bandwidth. Here emphasis is given to the cMUTs because they have shown good electroacoustic characteristics, which parallel, or even exceed, those of conventional piezoelectric transducers. Good echographic images of internal organs of the human body have been obtained demonstrating the possibilities of this technology to be utilized in commercial 1D and 2D probes for medical applications. At present pMUTs are in a very early stage of development and the potential advantages over the cMUTs are still to be demonstrated.


Silicon Nitride Ultrasonic Transducer Mechanical Impedance Chemical Solution Deposition Acoustic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasheh F, Myers T, Fraser JD, Bose S, Bandyopadhyay A (2004) Development of piezoelectric micromachined ultrasonic transducers. Sens. Actuat. A, vol. 111, pp. 275-287CrossRefGoogle Scholar
  2. Anderson MJ, Hill JA, Fortunko CM, Do gan NS, Moore RD (1995) Broadband electrostatic trans-ducers: modeling and experiments. J. Acoust. Soc. Am., vol. 97, no. 1, pp. 262-272CrossRefGoogle Scholar
  3. Baborowsky J, Ledermann N, Muralt P (2002) Piezoelectric micromachined transducers (pMUT) based on PZT films. IEEE Ultrason. Symp., pp. 1051-1054Google Scholar
  4. Bayram B, Kupnik M, Yaralioglu GG, Oralkan O, Ergun AS, Lin DS, Wong SH, Khuri-Yakub BT (2007) Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrays. IEEE Trans. UFFC, vol. 54, no. 2, pp. 418-430Google Scholar
  5. Bernstein JJ, Bottari J, Huston K, Kirkos G, Miller R (1999) Advanced MEMS ferroelectric ultra-sound 2D arrays. IEEE Ultrason. Symp., pp. 1145-1153Google Scholar
  6. Caliano G, Foglietti V, Galanello F, Caronti A, Lamberti N, Carotenuto R, Pappalardo M (2000) Micromachined ultrasonics transducers using silicon nitride membrane fabricated in PECVD technology. IEEE Ultrason. Symp., pp. 963-967Google Scholar
  7. Caliano G, Carotenuto R, Cianci E, Foglietti V, Caronti A, Iula A, Pappalardo M (2005a) Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging. IEEE Trans. UFFC, vol. 52, pp. 2259-2269Google Scholar
  8. Caliano G, Pappalardo M, Caronti A, Minotti A, Foglietti V, Cianci E, Nencioni A (2005b) Surface micromechanical process for manufacturing micromachined capacitive ultracoustic  476M. Pappalardo et al. transducers and relevant micromachined ultracoustic transducer. Patent no. RM2005A93, PCT/IT2006/000126Google Scholar
  9. Caliano G, Savoia A, Caronti A, Longo C, Gatta P, Pappalardo M (2007) Echographic images improvements with a cMUT probe. 19th International Congress on Acoustics (ICA), Madrid, p. 375Google Scholar
  10. Cantrell JH, Heyman J, Yost W, Torbett M, Breazeale M (1979) Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids. Rev. Sci. Instrum., vol. 50, pp. 31-33CrossRefGoogle Scholar
  11. Caronti A, Caliano G, Iula A, Pappalardo M (2000) Electrical impedance mismatch in capacitive micromachined ultrasonic transducers. IEEE Ultrason. Symp., pp. 925-930Google Scholar
  12. Caronti A, Iula A, Caliano G, Pappalardo M (2002) An accurate model for capacitive microma-chined ultrasonic transducers. IEEE Trans. UFFC, vol. 49, no. 2, pp. 159-168Google Scholar
  13. Caronti A, Fiasca D, Caliano G, Pappalardo M (2003) Experimental study of acoustic coupling in CMUT arrays by optical interferometry. IEEE Ultrason. Symp., pp. 1960-1964Google Scholar
  14. Caronti A, Carotenuto R, Caliano G, Pappalardo M (2004) The effects of membrane metalliza-tion in capacitive microfabricated ultrasonic transducers. J. Acoust. Soc. Am., vol. 115, no. 2, pp. 651-657CrossRefGoogle Scholar
  15. Caronti A, Savoia AS, Caliano G, Pappalardo M (2005) Acoustic coupling in capacitive microfab-ricated ultrasonic transducers: modeling and experiments. IEEE Trans. UFFC, vol. 52, no. 12, pp. 2220-2234Google Scholar
  16. Caronti A, Caliano G, Carotenuto R, Savoia AS, Pappalardo M, Cianci E, Foglietti V (2006a) Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging. Micro-electron. J., vol. 37, pp. 770-777Google Scholar
  17. Caronti A, Longo C, Savoia AS, Gatta P, Caliano G, Pappalardo M (2006b) Analysis of acoustic interaction effects and crosstalk in CMUT linear arrays for medical imaging. IEEE Ultrason. Symp., pp. 582-585Google Scholar
  18. Carr H, Wykes C (1993) Diagnostic measurements in capacitive transducers. Ultrasonics, vol. 31, no. 1, pp. 13-20CrossRefGoogle Scholar
  19. Certon D, Teston F, Patat F (2005) A finite difference model for cMUT devices. IEEE Trans. UFFC, vol. 52, no. 12, pp. 2199-2210Google Scholar
  20. Cheng CH, Chow EM, Jin X, Ergun AS, Khuri-Yakub BT (2000) An efficient electrical addressing method using through-wafer vias for two-dimensional ultrasonic arrays. IEEE Ultrason. Symp., pp. 1179-1182Google Scholar
  21. Cianci E, Pirola F, Foglietti V (2005) Analysis of stress and composition of silicon nitride thin films deposited by ECR-PECVD for microfabrication processes. J. Vac. Sci. Technol. B, vol. 23, no. 1, p. 168CrossRefGoogle Scholar
  22. Cianci E, Foglietti V, Minotti A, Caronti A, Caliano G, Pappalardo M (2006a) Fabrication techniques in micromachined capacitive ultrasonic transducers and their applications. In: Leondes CT (ed.) MEMS/NEMS Handbook: Techniques and Applications, vol. 2, Springer, New YorkGoogle Scholar
  23. Cianci E, Schina A, Minotti A, Quaresima S, Foglietti V (2006b) Dual frequency PECVD silicon nitride for fabrication of CMUTs’ membranes. Sens. Actuat. A, vol. 127, pp. 80-87CrossRefGoogle Scholar
  24. Claasen WAP, Valkenburg WGYN, Willemsen MFC, van de Wijgert WM (1985) Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers. J. Electrochem. Soc., vol. 132, no. 4, p. 893CrossRefGoogle Scholar
  25. Daft C, Panda S, Wagner P, Ladabaum I (2006) Two approaches to electronically scanned 3D imaging using cMUTs. IEEE Ultrason. Symp., pp. 685-688Google Scholar
  26. Dausch D, Castellucci JB, Chou DR, Von Ramm OT (2006) Piezoelectric micromachined ultra-sound transducer (pMUT) arrays for 3D imaging probe. IEEE Ultrason. Symp., pp. 930-933Google Scholar
  27. Eccardt P, Niederer K (2000) Micromachined ultrasound transducers with improved coupling fac-tors from a CMOS compatible process. Ultrasonics, vol. 38, pp. 774-780CrossRefGoogle Scholar
  28. Eccardt P, Niederer K, Scheiter T, Hierold C (1996) Surface micromachined ultrasound transducers in CMOS technology. IEEE Ultrason. Symp., pp. 959-962Google Scholar
  29. Eccardt PC, Lohfink A, von Garssen HG (2005) Analysis of crosstalk between fluid coupled mem-branes. IEEE Ultrason. Symp., pp. 593-596Google Scholar
  30. Foglietti V, Caliano G, Cianci E, Galanello F, Pappalardo M (2000) Fabrication of micromechani-cal capacitive ultrasonic transducers by surface micromachining. Proc. MICROtec 2000, VDE World Micro-Technologies Congress, Berlin, p. 79Google Scholar
  31. Foglietti V, Memmi D, Cianci E, Caliano G, Pappalardo M (2001) Capacitive ultrasonic transducers fabricated by a low temperature surface-micromachined process. Sixth National Conference on Sensors and Microsystems, AISEM 2001, PisaGoogle Scholar
  32. Foglietti V, Cianci E, Memmi D, Caliano G, Caronti A, Pappalardo M (2002) Fabrication of ca-pacitive ultrasonic transducers by a low temperature and fully surface-micromachined process. Precision Eng., vol. 26, p. 347CrossRefGoogle Scholar
  33. Ge LF (1999) Electrostatic airborne ultrasonic transducers: modeling and characterization. IEEE Trans. UFFC, vol. 46, no. 5, pp. 1120-1127Google Scholar
  34. Haller M, Khuri-Yakub BT (1994) A surface micromachined electrostatic ultrasonic air transducer. IEEE Ultrason. Symp., pp. 1241-1244Google Scholar
  35. Hietanen J, Stor-Pellinen J, Luukkala M (1992) A model for an electrostatic ultrasonic transducer with a grooved backplate. IEEE Meas. Sci. Technol., vol. 3, pp. 1095-1097CrossRefGoogle Scholar
  36. Jin X, Ladabaum I, Khuri-Yakub BT (1998) The microfabrication of capacitive ultrasonic trans-ducers. IEEE J. Microelectromech. Syst., vol. 7, no. 3, pp. 295-302CrossRefGoogle Scholar
  37. Jin X, Ladabaum I, Degertekin FL, Calmes S, Khuri-Yakub BT (1999) Fabrication and characteri-zation of surface micromachined capacitive ultrasonic immersion transducers. IEEE J. Micro-electromech. Syst., vol. 8, no. 1, pp. 100-114Google Scholar
  38. Kinsler LE, Frey AR, Coppens AB, Sanders JV (2000) Fundamentals of Acoustics. Wiley, New YorkGoogle Scholar
  39. Kuhl W, Schodder G, Schroder F (1954) Condenser transmitters and microphones with solid di-electric diaphragms for airborne ultrasonics. Acustica, vol. 4, pp. 520-532Google Scholar
  40. Ladabaum I, Jin X, Soh HT, Atalar A, Khuri-Yakub BT (1998) Surface micromachined capacitive ultrasonic transducers. IEEE Trans. UFFC, vol. 45, no. 3, pp. 678-690Google Scholar
  41. Ladabaum I, Wagner P, Zanelli C, Mould J, Reynolds P, Wojcik G (2000) Silicon substrate ringing in microfabricated ultrasonic transducers. IEEE Ultrason. Symp., pp. 943-946Google Scholar
  42. Lin H, Xu L, Chen X, Wang X, Sheng M, Stubhan F, Merkel K, Wilde J (1998) Moisture-resistant properties of SiNx films prepared by PECVD. Thin Solid Films, vol. 333, p. 71CrossRefGoogle Scholar
  43. Lin KC, Lee SC (1992) The structural and optical properties of a-SiNx:H prepared by plasma-enhanced chemical-vapor deposition. J. Appl. Phys., vol. 72, no. 11, p. 5474CrossRefGoogle Scholar
  44. Mason WP (1948) Electromechanical transducers and wave filters. Van Nostrand Company, New YorkGoogle Scholar
  45. Mills DM, Smith LS (2003) Real time in-vivo imaging with capacitive micromachined ultrasound transducer (cMUT) linear arrays. IEEE Ultrason. Symp., pp. 568-571Google Scholar
  46. Muralt P, Schmitt D, Ledermann N, Baborowski J, Weber PK, Steichen W, Petigrand S, Bosseboeuf A, Setter N, Gaucher P (2001) Study of PZT coated membrane structures for micromachined ultrasonic transducers. IEEE Ultrason. Symp., pp. 907-911Google Scholar
  47. Parsons GN, Souk JH, Batey J (1991) Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition. J. Appl. Phys., vol. 70, p. 1553CrossRefGoogle Scholar
  48. Pearce CW, Fetcho RF, Gross MD, Koefer RF, Pudliner RA (1992) Characteristics of silicon ni-tride deposited by plasma-enhanced chemical vapor deposition using dual frequency radio-frequency source. J. Appl. Phys., vol. 71, no. 4, p. 1838CrossRefGoogle Scholar
  49. Perçin G, Khuri-Yakub BT (2002) Piezoelectrically actuated flextensional micromachined ultra-sound transducers. Ultrasonics, vol. 40, pp. 441-448CrossRefGoogle Scholar
  50. Ronnekleiv A, Ladabaum I, Jin X, Khuri-Yakub BT (1997) An improved circuit model of MUTs. IEEE Ultrason. Symp., pp. 395-399Google Scholar
  51. Scheeper PR, Voorthuzen JA, Bergveld P (1991) PECVD silicon nitride diaphragm for condenser microphones. Sens. Actuat. A, vol. 4, p. 79CrossRefGoogle Scholar
  52. Schindel D, Hutchins D, Zou L, Sayer M (1995) The design and characterization of micromachined air-coupled capacitance transducers. IEEE Trans. UFFC, vol. 42, no. 1, pp. 42-50Google Scholar
  53. Schmid P, Orfert M, Vogt M (1998) Plasma deposition of Si N and Si O passivation layers on three-dimensional sensor devices. Surf. Coat. Technol., vol. 98, p. 1510CrossRefGoogle Scholar
  54. Suzuki K, Higuchi K, Tanigawa H (1989) A silicon electrostatic ultrasonic transducer. IEEE Trans. UFFC, vol. 36, no. 6, pp. 620-627Google Scholar
  55. Tarraf A, Daleiden J, Irmer S, Prasai D, Hillmer H (2004) Stress investigation of PECVD dielectric layers for advanced optical MEMS. J. Micromech. Microeng., vol. 14, p. 317CrossRefGoogle Scholar
  56. Van de Ven EP, Connick IW, Harrus AS (1990) Advantages of dual frequency PECVD for deposi-tion of ILD and passivation films. Proc. IEEE VMIC Conf., p. 194Google Scholar
  57. Wang Z, Zhu W, Miao J, Zhu H, Chao C, Tau OK (2006) Micromachined thick film piezoelectric transducer array. Sens. Actuat. A, vol. 130-131, pp. 485-490CrossRefGoogle Scholar
  58. Yamaschita K, Katata H, Okuyama M, Miyoshi H, Koto G, Aoyagi S, Suzuki Y (2002) Arrayed ultrasonic microsensors with high directivity for in air use using PZT thin film on silicon di-aphrams. Sens. Actuat. A, vol. 97-98, pp. 302-307CrossRefGoogle Scholar
  59. Yamashita K, Chansamphou L, Miracami H, Okuyama M (2004) Ultrasonic micro array sen-sors using piezoelectric thin film and resonant frequency tuning. Sens. Actuat. A, vol. 114, pp. 147-153CrossRefGoogle Scholar
  60. Yaralioglu GG, Badi MH, Ergun AS, Khuri-Yakub BT (2003) Improved equivalent circuit and finite element method modeling of capacitive micromachined ultrasonic transducers. IEEE Ultrason. Symp., pp. 469-472Google Scholar
  61. Yaralioglu GG, Ergun AS, Khuri-Yakub BT (2005) Finite-element analysis of capacitive micro-machined ultrasonic transducers. IEEE Trans. UFFC, vol. 52, no. 12, pp. 2185-2198Google Scholar
  62. Zhou S, Hossack JA (2007) Reducing inter-element acoustic crosstalk in capacitive micromachined ultrasound transducers. IEEE Trans. UFFC, vol. 54, no. 6, pp. 1217-1228Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Massimo Pappalardo
    • 1
  • Giosue Caliano
    • 1
  • Alessandro S. Savoia
    • 1
  • Alessandro Caronti
    • 1
  1. 1.Aculab—Department of ElectronicsUniversity “Roma Tre”RomaItaly

Personalised recommendations