Microelectromechanical systems (MEMS) are miniaturized devices that when coupled with IC (integrated circuit) components have the ability to interact with the environment or other on-chip components, allowing creation of sensor, actuator, and/or transducer systems thereby. Although originally the term referred to only miniaturizedmechanical devices,MEMS is now a generic expression for any miniaturized device that has interactive capabilities. Therefore, optoelectronic and micro- fluidic miniaturized systems, including lab-on-chip, are also currently described as MEMS.

MEMS technology emerged in early 1990s by leveraging many of the materials and processes from the IC industry, and thus it was mainly based on the silicon technology.As the field has grown over the years, concepts of more complex devices have been proposed and demonstrated, many based on new, functional materials with new fabrication processes, which allow creation of systems consuming less power, with faster and more reliable response, and capable of incorporating more complex functions.


Piezoelectric Actuator Piezoelectric Layer Proof Mass Voice Coil Motor Piezoelectric Response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aigner, R., in MEMS in RF-filter applications: Thin film bulk-acoustic-wave technology, Seoul, South Korea, 2005 (Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States), 5.Google Scholar
  2. Baborowski, J. (2004) Microfabrication of piezoelectric MEMS. J. Electroceram. 12: 33CrossRefGoogle Scholar
  3. Baborowski, J., Muralt, P., Ledermann, N. (2000), Mechanisms of Pb(Zr0.53 Ti0.47 )O3 thin film etching with ECR/RF reactor, 577.Google Scholar
  4. Baborowski, J., Ledermann, N., Gentil, S., in Micromachining of piezoelectric MEMS, Munich, Germany, 2001 (Springer-Verlag), 596Google Scholar
  5. Bassiri-Gharb, N., Fuji, I., Hong, E. (2007) Domain Wall Contributions to the Properties of Piezo-electric Thin Films, J. Electroceram.Google Scholar
  6. Bharadwaja, S.S.N., Damjanovic, D., Setter, N. (2004) Analysis of the non linear domain wall response in ferroelectric thin films. Ferroelectrics 303: 59CrossRefGoogle Scholar
  7. Calame, F., Muralt, P. (2007) Growth and properties of gradient free sol-gel lead zirconate titanate thin films. Appl. Phys. Lett. 90: 62907CrossRefGoogle Scholar
  8. Campbell, G.A., Mutharasan, R. (2005) Detection of pathogen Escherichia coli O157:H7 using self-excited PZT-glass microcantilever. Biosens. Bioelectr. 21: 462CrossRefGoogle Scholar
  9. Carlotti, G., Socino, G., Petri, A. (1987) Elastic constants of ZnO sputtered films. IEEE Ultrason. Symp. Proc. 295Google Scholar
  10. Chang-Il, K., Gwan-Ha, K., Dong-Pyo, K. (2006) Dry etching of LaNiO3 thin films using induc-tively coupled plasma. Thin Solid Films 506-507: 217CrossRefGoogle Scholar
  11. Chen, Q., Qin, L., Wang, Q.-M. (2007) Property characterization of AlN thin films in composite resonator structure. J. Appl. Phys. 101: 084103CrossRefGoogle Scholar
  12. Coudevylle, J.-R., Basrour, S., De Labachelerie, M. (2001) Fabrication and characterization of high Q microresonators using thin plate mechanical mode. SPIE Proc. 5343: 273CrossRefGoogle Scholar
  13. DeVoe, D.L., Pisano, A.P. (2001) Surface micromachined piezoelectric accelerometers (PiXLs). J. MEMS 10: 180Google Scholar
  14. Eun Sun, L., Hyun Woo, C., Sung Hoon, L. (2005) Comparison of forming gas effects on the ferroelectric properties between more-oriented and less-oriented Pb(Zr0.52 Ti0.48 )O3 thin films. J. Vac. Sci. Tech. 23: 773CrossRefGoogle Scholar
  15. Fabula, T., Wagner, H.J., Schmidt, B. (1994) Triple-beam resonant silicon force sensor based on piezoelectric thin films, Sen. Actuat. A 42: 375CrossRefGoogle Scholar
  16. Gharb, N.B., Trolier-McKinstry, S. (2005a) Dielectric nonlinearity of (100) oriented PYbN-PT thin films, IEEE ISAF, 95.Google Scholar
  17. Gharb, N.B., Trolier-Mckinstry, S. (2005b) Dielectric nonlinearity of Pb (Yb1/2 Nb1/2 )O3 -PbTiO3 thin films with {100} and {111} crystallographic orientation. J. Appl. Phys. 97: 064106CrossRefGoogle Scholar
  18. Gross, S.J. (2004) Micromachined switches and cantilever actuators based on piezoelectric lead zirconate titanate (PZT). Ph.D. Thesis, The Pennsylvania State University, University Park, PAGoogle Scholar
  19. Gross, S.J., Tadigadapa, S., Jackson, T.N. (2003) Lead-zirconate-titanate-based piezoelectric mi-cromachined switch. Appl. Phys. Lett. 83: 174CrossRefGoogle Scholar
  20. Gualtieri, J.G., Kosinski, J.A., Ballato, A. (1994) Piezoelectric materials for acoustic wave appli-cations. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 41: 53CrossRefGoogle Scholar
  21. Hall, D.A. (2001) Nonlinearity in piezoelectric ceramics J. Mater. Sci. 36: 4575CrossRefGoogle Scholar
  22. Hee-Chul, L., Jae-Hyoung, P., Yong-Hee, P. (2007) Development of shunt type ohmic RF MEMS switches actuated by piezoelectric cantilever. Sens. Actuat. A 136: 282CrossRefGoogle Scholar
  23. Hickernell, F.J., Yue, R.X., Hickernell, F.S. (1997) Statistical modeling for the optimal deposition of sputtered piezoelectric films. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 44: 615CrossRefGoogle Scholar
  24. Hong, E. (2004) Surface micromachined peristaltic pumps using lead zirconate titanatefilms. Ph.D. Thesis, The Pennsylvania State University, University Park, PAGoogle Scholar
  25. Hong, E., Krishnaswamy, S.V., Freidhoff, C.B. (2005) Micromachined piezoelectric diaphragms actuated by ring shaped interdigitated transducer electrodes. Sens. Actuat. A 119: 520Google Scholar
  26. Hong, E., Smith, R., Krishnaswamy, S.V. (2006) Residual stress development in Pb(Zr,Ti) O3 /ZrO2 /SiO2 stacks for piezoelectric microactuators. Thin Solid Films 510: 213CrossRefGoogle Scholar
  27. Hongxia, Q., Jinsong, Z., Zhiqiang, J. (2000) Oriented growth in PZT thin films. Integr. Ferroelectr. 30: 175CrossRefGoogle Scholar
  28. IEEE (2003) Draft 16 of a working document for a proposed standard to be entitled: IEEE standard definitions of terms associated with ferroelectric and related materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 50: 1613CrossRefGoogle Scholar
  29. Jiang, S.W., Zhang, Q.Y., Huang, W. (2006) Texture control of Pb(Zr, Ti)O3 thin films with dif-ferent post-annealing processes. Appl. Surf. Sci. 252: 8756 CrossRefGoogle Scholar
  30. Judy, J.W., Polla, D.L., Robbins, W.P. (1990) A linear piezoelectric stepper motor with submi-crometer step size and centimeter travel range. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 37: 428CrossRefGoogle Scholar
  31. Kanno, I., Tazawa, Y., Suzuki, T. (2007a) Piezoelectric unimorph microactuators with X-shaped structure composed of PZT thin films. Microsyst. Tech. 13: 825CrossRefGoogle Scholar
  32. Kanno, I., Kunisawa, T., Suzuki, T. (2007b) Development of deformable mirror composed of piezo-electric thin films for adaptive optics. IEEE J. Select. Topics Quantum Electron. 13: 155CrossRefGoogle Scholar
  33. Kennedy, M.S., Zosel, M., Richards, C.D. (2004) Optimization of film stresses utilized in compos-ite piezoelectric membrane microgenerators. MRS Proc. 795: 503.Google Scholar
  34. Kholkin, A.L., Calzada, M.L., Ramos, P. (1996) Piezoelectric properties of Ca-modified PbTiO3 thin films. Appl. Phys. Lett. 69: 3602CrossRefGoogle Scholar
  35. Kotera, H., Kanno, I., Inoue, T., in Deformable micro-mirror for adaptive optics composed of piezoelectric PZT thin films, Oulu, Finland, 2005 (Institute of Electrical and Electronics Engi-neers Computer Society, Piscataway, NJ 08855-1331, United States), 31Google Scholar
  36. Kugeler, C., Tappe, S., Bottger, U. (2005) A novel design for integrated RF-MEM switches using ferroelectric thin films. Integr. Ferroelectr. 76: 59CrossRefGoogle Scholar
  37. Kugeler, C., Tappe, S., Bottger, U. (2006) Piezoelectric actuated MEMS for integrated RF switches based on PZT thin film bridges. Ferroelectrics 338: 89CrossRefGoogle Scholar
  38. Ledermann, N., Muralt, P., Baborowski, J. (2003) {100}-textured, piezoelectric Pb(Zrx ,Ti1−x )O3 thin films for MEMS: integration, deposition and properties. Sens. Actuat. A A105: 162Google Scholar
  39. Lee, K.P., Jung, K.B., Srivastava, A. (1999) Dry etching of BaSrTiO3 and LaNiO3 thin films in inductively coupled plasmas. J. Electrochem. Soc. 146: 3778CrossRefGoogle Scholar
  40. Loebl, H.P., Metzmacher, C., Milsom, R.F. (2004) RF bulk acoustic wave resonators and filters. J. Electroceram. 12: 109CrossRefGoogle Scholar
  41. Maeder, T., Muralt, P., Sagalowicz, L. (1996) Pb(Zr,Ti)O3 thin films on zirconium membranes for micromechanical applications. Appl. Phys. Lett. 68: 776CrossRefGoogle Scholar
  42. Miller, D.C., Herrmann, C.F., Maier, H.J. (2007) Thermo-mechanical evolution of multilayer thin films. I. Mechanical behavior of Au/Cr/Si microcantilevers. Thin Solid Films 515: 3208CrossRefGoogle Scholar
  43. Miyahara, Y., II, Fujii, T., Watanabe, S. (1999) Lead zirconate titanate cantilever for noncontact atomic force microscopy. Appl. Surf. Sci. 140: 428.CrossRefGoogle Scholar
  44. Ouyang, J., Ramesh, R., Roytburd, A.L. (2005) Intrinsic effective piezoelectric coefficient e31,f for ferroelectric thin films. Appl. Phys. Lett. 86: 152901CrossRefGoogle Scholar
  45. Pan, W., Thio, C.L., Desu, S.B. (1998) Reactive ion etching damage to the electrical properties of ferroelectric thin films. J. Mater. Res. 13: 362CrossRefGoogle Scholar
  46. Park, S.E., Shrout, T.R. (1997) Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mater. Res. Innovat. 1: 20CrossRefGoogle Scholar
  47. Polla, D.L., Erdman, A.G., Robbins, W.P. (2000) Microdevices in medicine. Ann. Rev. Biomed. Eng. 2: 551-576CrossRefGoogle Scholar
  48. Rogers, B., Manning, L., Sulchek, T. (2004) Improving tapping mode atomic force microscopy with piezoelectric cantilevers. Ultramicroscopy 100: 267-276CrossRefGoogle Scholar
  49. Sang-Gook, K., Kyu-Ho, H. (2000) Thin-film micromirror array (TMA) for large information-display systems. J. Soc. Inf. Display 8: 177CrossRefGoogle Scholar
  50. Sanghun, S., Jaichan, L. (2006) Fabrication and sensing behavior of ultrasensitive piezoelectric microcantilever-based precision mass sensor K. J. Phys. Soc. 49: 608Google Scholar
  51. Schwartz, R.W., Boyle, T.J., Lockwood, S.J. (1995) Sol-gel processing of PZT thin films. A review of the state-of-the-art and process optimization strategies. Integr. Ferroelectr. 7: 259CrossRefGoogle Scholar
  52. Subasinghe, S.S., Goyal, A., Tadigadapa, S.A. (2006) High aspect ratio plasma etching of bulk lead zirconate titanate. SPIE Proc. 6409: 61090CrossRefGoogle Scholar
  53. Taylor, D.V., Damjanovic, D. (2000) Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and “random” crystallographic orientation. Appl. Phys. Lett. 76: 1615CrossRefGoogle Scholar
  54. Tonisch, K., Cimalla, V., Foerster, C. (2006) Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sens. Actuat. A 132: 658CrossRefGoogle Scholar
  55. Trolier, S.E. (1987) Use of photolithography and chemical etching in the preparation of miniature piezoelectric devices from lead zirconate titanate (PZT) ceramics. M.S. Thesis, The Pennsyl-vania State University, University Park, PAGoogle Scholar
  56. Trolier-Mckinstry, S., Muralt, P. (2004) Thin film piezoelectrics for MEMS. J. Electroceram. 12: 7CrossRefGoogle Scholar
  57. Tsaur, J., Zhang, L., Maeda, R. (2002) 2D micro scanner actuated by sol-gel derived double layered PZT. IEEE MEMS Proc. 548Google Scholar
  58. Tuttle, B.A., Voigt, J.A., Garino, T.J. (1992) Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress. IEEE ISAF, 344Google Scholar
  59. Varadan, V.K., Varadan, V.V. (2000) Micro pump and venous valve by micro stereo lithography. SPIE Proc. 3990: 246CrossRefGoogle Scholar
  60. Wang, G.S., Remiens, D., Soyer, C. (2006) Combined annealing temperature and thickness effects on properties of PbZr0.53 Ti0.47 O3 films on LaNiO3 /Si substrate by sol-gel process. J. Cryst. Growth 293: 370CrossRefGoogle Scholar
  61. Wang, L.P., Wolf, R., Zhou, Q. (2001) Wet-etch patterning of lead zirconate titanate (PZT) thick films for microelectromechanical systems (MEMS) applications, MRS Proc. 657: 5Google Scholar
  62. Xu, F., Trolier-McKinstry, S., Ren, W. (2001) Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89: 1336CrossRefGoogle Scholar
  63. Yao, Z.J., Chen, S., Eshelman, S. (1999) Micromachined low-loss microwave switches. J. MEMS 8: 129-134Google Scholar
  64. Zeto, R.J., Rod, B.J., Dubey, M. (1998) High-resolution dry etch patterning of PZT for piezoelec-tric MEMS devices. ISAF 11: 89Google Scholar
  65. Zhang, Z., Park, J.H., Trolier-McKinstry, S. (2000) (001)-oriented LaNiO3 bottom electrodes and (001)-textured ferroelectric thin films on LaNiO3 . MRS Proc. 596: 73Google Scholar
  66. Zhou, Q., Cannata, J.M., Meyer, R.J., Jr. (2005) Fabrication and characterization of micromachined high-frequency tonpilz transducers derived by PZT thick films. IEEE Trans. Ultrason. Ferro-electr. Freq. Contr. 52: 350CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nazanin Bassiri-Gharb
    • 1
  1. 1.GeorgeW. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations