Advertisement

Piezoelectricity and Crystal Symmetry

  • A. L. Kholkin
  • N. A. Pertsev
  • A. V. Goltsev

In this chapter, the symmetry aspects of the piezoelectric effect in various materials (single crystals, ceramics, and thin films) are briefly overviewed. First, the third-rank tensor of piezoelectric coefficients defined in the crystallographic reference frame is discussed. On this basis, the orientation dependence of the longitudinal piezoelectric response in ferroelectric single crystals is described. This dependence is especially important for relaxor single crystals, where a giant piezoelectric effect is observed. Then, the effective piezoelectric constants of polydomain crystals, ceramics, and thin films and their dependence on crystal symmetry are discussed. The domain-wall contribution to the piezoelectric properties of ferroelectric ceramics and thin films is also described. Finally, the crystallographic principles of piezomagnetic, magnetoelectric, and multiferroic materials are presented.

Keywords

Domain Wall Piezoelectric Property Spontaneous Polarization Piezoelectric Effect Ferroelectric Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizu K (1969) Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J Phys Soc Jpn 27:387CrossRefGoogle Scholar
  2. Aizu K (1970) Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys Rev B 2:754-772CrossRefGoogle Scholar
  3. Aleshin VI, Pikalev EM (1990) Effect of internal mechanic tensions on properties of ferroceramics. Zh Tekh Fiz 60:129-134Google Scholar
  4. Arlt G (1990) Twinning in ferroelectric and ferroelastic ceramics - stress relief. J Mater Sci 25:2655-2666CrossRefGoogle Scholar
  5. Arlt G, Pertsev NA (1991) Force constant and effective mass of 90 ◦ domain walls in ferroelectric ceramics. J Appl Phys 70:2283-2289CrossRefGoogle Scholar
  6. Bondarenko EI et al. (1990) The effect of 90 ◦ domain wall displacements on piezoelectric and dielectric constants of perovskite ferroelectric ceramics. Ferroelectrics 110:53-56MathSciNetGoogle Scholar
  7. Brown WF et al. (1968) Upper bound on the magnetoelectric susceptibility. Phys Rev 168:574-577CrossRefGoogle Scholar
  8. Budimir M et al. (2003) Piezoelectric anisotropy-phase transition relations in perovskite single crystals. J Appl Phys 94:6753-6761CrossRefGoogle Scholar
  9. Budimir M et al. (2006) Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3 , PbTiO3 , and Pb(Zr,Ti)O3 . Phys Rev B 73:174106CrossRefGoogle Scholar
  10. Cady WG (1964) Piezoelectricity. Dover, New YorkGoogle Scholar
  11. Cheong SW, Mostovoy M (2007) Multiferroics: A magnetic twist for ferroelectricity. Nat Mater 6:13-20CrossRefGoogle Scholar
  12. Chrosch J, Salje EKH (1999) Temperature dependence of the domain wall width in LaAlO3 . J Appl Phys 85:722-727CrossRefGoogle Scholar
  13. Cox DE et al. (2001) Universal phase diagram for high-piezoelectric perovskite systems. Appl Phys Lett 79:400-402CrossRefGoogle Scholar
  14. Curie P, Curie J (1880) D éveloppement, par pression, de l’ électricit é polaire dans les cristaux h émi èdres à faces inclin ées. Comptes Rendus (France) 91:294-295Google Scholar
  15. Curie P, Curie J (1881) Contractions et dilatations produites par des tensions électriques dans les cristaux h émi èdres à faces inclin ées. Comptes Rendus (France) 93:1137-1140Google Scholar
  16. Damjanovic D et al. (2002) Crystal orientation dependence of the piezoelectric d33 coefficient in tetragonal BaTiO3 as a function of temperature. Appl Phys Lett 80:652-654CrossRefGoogle Scholar
  17. Davis M et al. (2005) Domain engineering of the transverse piezoelectric coefficient in perovskite ferroelectrics. J Appl Phys 98:014102CrossRefGoogle Scholar
  18. Davis M et al. (2007) Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys 101:054112CrossRefGoogle Scholar
  19. DeVeirman AEM et al. (1993) TEM and XRD characterization of epitaxially grown PbTiO3 pre-pared by pulsed-laser deposition. Philips J Res 47:185-201Google Scholar
  20. Di éguez O et al. (2004) Ab initio study of the phase diagram of epitaxial BaTiO3 . Phys Rev B 69:212101 CrossRefGoogle Scholar
  21. Dong SX et al. (2002) Circumferentially magnetized and circumferentially polarized magnetostric-tive/piezoelectric laminated rings. J Appl Phys 96:3382-3387CrossRefGoogle Scholar
  22. Eerenstein W et al. (2006) Multiferroic and magnetoelectric materials. Nature 442:759-765CrossRefGoogle Scholar
  23. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D: Appl Phys 38:R123-152CrossRefGoogle Scholar
  24. Fiebig M et al. (2002) Observation of coupled magnetic and electric domains. Nature 419:818-820CrossRefGoogle Scholar
  25. Fousek J, Janovec V (1969) The orientation of domain walls in twinned ferroelectric crystals. J Appl Phys 40:135-142CrossRefGoogle Scholar
  26. Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281-283CrossRefGoogle Scholar
  27. Guo R et al. (2000) Origin of the high piezoelectric response in PbZr1−xTixO3 . Phys Rev Lett 84:5423-5426CrossRefGoogle Scholar
  28. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric Ceramics. Academic Press, New YorkGoogle Scholar
  29. Koukhar VG et al. (2001) Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures. Phys Rev B 64:214103CrossRefGoogle Scholar
  30. Kukhar VG et al. (2006) Polarization states of polydomain epitaxial Pb(Zr1−xTix )O3 thin films and their dielectric properties. Phys Rev B 73:214103CrossRefGoogle Scholar
  31. Kwak BS et al. (1994) Domain formation and strain relaxation in epitaxial ferroelectric heterostruc-tures. Phys Rev B 49:14865-14879CrossRefGoogle Scholar
  32. Lee KS et al. (2001) In situ observation of ferroelectric 90 ◦ -domain switching in epitaxial Pb(Zr, Ti)O3 thin films by synchrotron X-ray diffraction. Appl Phys Lett 79:2444-2446CrossRefGoogle Scholar
  33. Lefki K, Dormans G J M (1994) Measurement of piezoelectric coefficients of ferroelectric thin films. J Appl Phys 76:1764-1767CrossRefGoogle Scholar
  34. Lippmann G (1881) Principe de la conservation de l’elecricit é. Ann de Chemie e de Physique (5 serie) 24:145Google Scholar
  35. Muralt P (2000) Ferroelectric thin films for micro-sensors and actuators: A review. J Micromech Microeng 10:136-146CrossRefGoogle Scholar
  36. Nan CW, Clarke DR (1996) Piezoelectric moduli of piezoelectric ceramics. J Am Ceram Soc 79:2563-2566CrossRefGoogle Scholar
  37. Noheda B et al. (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix )O3 solid solution. Appl Phys Lett 74:2059-2061CrossRefGoogle Scholar
  38. Noheda B et al. (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3 Nb2/3 O3 -8%PbTiO3 . Phys Rev Lett 86:003891CrossRefGoogle Scholar
  39. Nye JF (1957) Physical Properties of Crystals. Clarendon Press, OxfordMATHGoogle Scholar
  40. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelec-tric single crystals. J Appl Phys 82:1804-1811CrossRefGoogle Scholar
  41. Pertsev NA, Emelyanov AYu (1997) Domain-wall contribution to the piezoelectric response of epitaxial ferroelectric thin films. Appl Phys Lett 71:3646-3648CrossRefGoogle Scholar
  42. Pertsev NA, Salje EKH (2000) Thermodynamics of pseudoproper and improper ferroelastic inclu-sions and polycrystals: Effect of elastic clamping on phase transitions. Phys Rev B 61: 902-908CrossRefGoogle Scholar
  43. Pertsev NA et al. (1998a) Aggregate linear properties of ferroelectric ceramics and polycrys-talline thin films: Calculation by the method of effective piezoelectric medium. J Appl Phys 84:1524-1529CrossRefGoogle Scholar
  44. Pertsev NA et al. (1998b) Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988-1991CrossRefGoogle Scholar
  45. Pertsev NA et al. (2000) Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys Rev B 61:R825-R829CrossRefGoogle Scholar
  46. Pertsev NA et al. (2003) Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1−xTix )O3 thin films. Phys Rev B 67:054107CrossRefGoogle Scholar
  47. Ramesh R, Spaldin N (2007) Mutliferroics: Progress and prospects in thin films. Nat Mater 6:21-28 Ramesh R et al. (1993) Effect of crystallographic orientation on ferroelectric properties of PbZr0.2 Ti0.8 O3 thin films. Appl Phys Lett 63:731-733CrossRefGoogle Scholar
  48. Roitburd AL (1976) Equilibrium structure of epitaxial layers. Phys Status Solidi A 37:329-339CrossRefGoogle Scholar
  49. Sapriel J (1975) Domain-wall orientations in ferroelastics. Phys Rev B 12:5128-5140 Schmid H (1994) Multiferroic magnetoelectrics. Ferroelectrics 162:317-338 Google Scholar
  50. Tagantsev AK et al. (2002) Strain-induced diffuse dielectric anomaly and critical point in per-ovskite ferroelectric thin films. Phys Rev B 65:012104CrossRefGoogle Scholar
  51. Topolov VYu (2004) The remarkable orientation and concentration dependences of the electro-mechanical properties of 0.67Pb(Mg1/3 Nb2/3 )O3 -0.33PbTiO3 single crystals. J Phys Condens Matter 16:2115-2128CrossRefGoogle Scholar
  52. Turik AV (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Sov Phys Solid State 12:688Google Scholar
  53. Vanderbilt D, Cohen MH (2001) Monoclinic and triclinic phases in higher-order Devonshire the-ory. Phys Rev B 63:094108CrossRefGoogle Scholar
  54. Voigt W (1910) Lerbuch der Kristallphysik. Teubner, Leipzig-BerlinGoogle Scholar
  55. Ye ZG et al. (2001) Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 system. Phys Rev B 64:184114CrossRefGoogle Scholar
  56. Zembilgotov AG et al. (2005) Phase states of nanocrystalline ferroelectric ceramics and their di-electric properties. J Appl Phys 97:114315CrossRefGoogle Scholar
  57. Zhang R et al. (2003) Orientation dependence of piezoelectric properties of single domain 0.67Pb(Mn1/3 Nb2/3 )O3 -0.33PbTiO3 crystals. Appl Phys Lett 82:3737-3739CrossRefGoogle Scholar
  58. Zheng H et al. (2004) Multiferroic BaTiO3 -CoFe2 O4 nanostructures. Science 303:661-663CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. L. Kholkin
    • 1
    • 2
  • N. A. Pertsev
    • 3
  • A. V. Goltsev
    • 4
  1. 1.Center for Research in Ceramics and Composite Materials (CICECO) & Department of Ceramics and Glass EngineeringUniversity of AveiroPortugal
  2. 2.A. F. Ioffe Physico-Technical Institute of the Russian Academy of SciencesRussia
  3. 3.A.F. Ioffe Physico-Technical Institute of the Russian Academy of Sciences,Russia
  4. 4.Department of PhysicsUniversity of AveiroPortugal

Personalised recommendations