Piezoelectric Energy Harvesting using Bulk Transducers

  • Shashank Priya
  • Rachit Taneja
  • Robert Myers
  • Rashed Islam

Self-powered nodes can be developed by harvesting wasted mechanical vibration energy available in the environment. Piezoelectric converters have been found to be most suitable for transforming mechanical energy into electric energy where the charge generation is directly related to the extent to which the element is deformed. This chapter provides the strategy for the selection of the piezoelectric transducer depending upon the frequency and amplitude of the mechanical stress. The figure of merit for the material selection was found to be directly proportional to product (d · g), where d is the piezoelectric strain constant and g is the piezoelectric voltage constant. The criterion for maximization of the product (d · g) was found to be given as \(|d|\ =\ \varepsilon^n\), where n is the material constant which is fixed by the magnitude of the piezoelectric and dielectric constants. Results are reported on various devices utilizing piezoelectric bimorph transducers.


Fatigue Zirconate Brittle Reso Polyimide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando A, Hisaki T (1998) Piezoelectric ceramic and method for producing piezoelectric ceramic element. US Patent No: 5,798,052Google Scholar
  2. Bryant RG, Effinger IV RT, Aranda Jr I, Copeland Jr BM, Covington III EW (2002) Active Piezo-electric Diaphragms. Proc. SPIE, Smart Struc. and Materials - Active Materials: Behavior and Mechanics, Paper 4699-40, San Diego, CAGoogle Scholar
  3. Calaway Jr EH (2004) Wireless Sensor Networks. Auerbach, New York, NYGoogle Scholar
  4. Chen C, Priya S (2006) Electric energy generator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(3): 656-661CrossRefGoogle Scholar
  5. Colla EL, Morita T (2002) Piezoelectric technology for active vibration control. In: Piezoelectric Materials in Devices, N. Setter, ed., Ceramics Laboratory, EPFLGoogle Scholar
  6. Daue T (2006) Overview Using the MFC for Energy Harvesting and other Commercial Applica-tions. UTA Workshop on Energy Harvesting, Jan 27, 2006Google Scholar
  7. Do gan A, Uchino K, Newnham RE (1997) Composite piezoelectric transducer with truncated con-ical endcaps “Cymbal”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 597-605CrossRefGoogle Scholar
  8. Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active mate-rials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52: 584-595CrossRefGoogle Scholar
  9. Islam RA, Priya S (2006a) Realization of high-energy density polycrystalline piezoelectric ceram-ics. Appl. Phys. Lett. 88: 032903CrossRefGoogle Scholar
  10. Islam RA, Priya S (2006b) High energy density composition in the System PZT - PZNN. J. Am. Ceram. Soc. 89: 3147-3156CrossRefGoogle Scholar
  11. Kawano K, Sube M (1997) Piezoelectric ceramic compositions. US Patent No: 5,607,614Google Scholar
  12. Kim H (2006) Piezoelectric Energy Harvesting. PhD dissertation, The Pennsylvania State University, University Park, PAGoogle Scholar
  13. Kim H, Batra A, Priya S, Uchino K, Markley D, Newnham RE, Hofmann HF (2004) Energy harvesting a using piezoelectric “Cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys. 43: 6178-6183 CrossRefGoogle Scholar
  14. Kim H, Priya S, Uchino K, Newnham RE (2005) Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J. Electroceram. 15: 27-34CrossRefGoogle Scholar
  15. Kim H, Priya S, Uchino K (2006) Modeling of piezoelectric energy harvesting using cymbal trans-ducers. Jpn. J. Appl. Phys. Part 1-Reg. Papers 45(7): 5836-5840CrossRefGoogle Scholar
  16. Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. IEEE Trans. VLSI Syst. 9: 64-76CrossRefGoogle Scholar
  17. Myers R, Vickers M, Kim H, Priya S (2007) Small scale windmill. Appl. Phys. Lett. 90: 054106CrossRefGoogle Scholar
  18. Newnham RE, Do gan A, Markley DC, Tressler JF, Zhang J, Uzgur E, Meyer Jr RJ, Hladky-Hennion AC, Hughes WJ (2002) Size Effects in Capped Ceramic Underwater Sound Projectors. Oceans ‘02 MTS/IEEE 4: 2315-2321CrossRefGoogle Scholar
  19. Nishida M, Ouchi H (1976) Piezoelectric ceramic compositions. US Patent No: 3,998,748Google Scholar
  20. Nishida M, Ouchi H (1977) Piezoelectric ceramic compositions. US Patent No: 4,062,790Google Scholar
  21. Ottoman GK, Hoffmann HF, Bhatt AC, Lesieture GA (2002) Adaptive piezoelectric energy har-vesting circuit using wireless remote power supply. IEEE Trans. Power Electron. 17: 669-676CrossRefGoogle Scholar
  22. Ottoman GK, Hoffmann HF, Lesieture GA (2003) Optimized piezoelectric energy harvesting cir-cuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18: 696-703CrossRefGoogle Scholar
  23. Paradiso J, Starner T (2005) Energy scavenging for mobile and wireless electronics. Pervasive Comput. 4(1): 18-27CrossRefGoogle Scholar
  24. Priya S (2005) Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87: 184101CrossRefGoogle Scholar
  25. Priya S, Chen CT, Fye D, Zhand J (2005) Piezoelectric windmill - A novel solution to remote sensing. Jpn. J. Appl. Phys. 44: L104-L107CrossRefGoogle Scholar
  26. Richards CD, Anderson MJ, Bahr DF, Richards RF (2004) Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 14: 717-721CrossRefGoogle Scholar
  27. Rome LC (2006) Backpack for harvesting electrical energy during walking and for minimizing shoulder strain. US Patent No: 20060192386Google Scholar
  28. Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26: 1131-1144CrossRefGoogle Scholar
  29. Roundy S, Wright PK, Rabaey JM (2004) Energy Scavenging for Wireless Sensor Networks. Kluwer, Boston, MAGoogle Scholar
  30. Shenck N, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21: 30-42CrossRefGoogle Scholar
  31. Starner T, Paradiso JA (2004) Human-generated power for mobile electronics. In: Low-Power Electronics Design, C. Piguet, ed., CRC, Boca Raton, FL, Chapter 45, pp. 1-35Google Scholar
  32. Uppal N, Shiakolas P, Priya S (2005) Femtosecond laser micromachining of PZT ceramics. Ferro-elect. Lett. Sect. 32(3-4): 67-77CrossRefGoogle Scholar
  33. Williams CB, Sherwood C, Harradine MA, Mellor PH, Birch TS, Yates RB (2001) Development of an electromagnetic micro-generator. IEE Proc. Circuits Devices Syst. 148(6): 337-342CrossRefGoogle Scholar
  34. Yoo J, Lee Y, Yoon K, Hwang S, Suh S, Kim J, Yoo C (2001) Microstructural, electrical properties and temperature stability of resonant frequency in Pb(Ni1/2 W1/2 )O3 − Pb(Mn1/3 Nb2/3 )O3 − Pb(Zr,Ti)O3 ceramics for high-power piezoelectric transformer. Jpn. J. Appl. Phys. 40: 3256-3259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shashank Priya
    • 1
  • Rachit Taneja
    • 2
  • Robert Myers
    • 2
  • Rashed Islam
    • 2
  1. 1.Materials Science and EngineeringVirginia TechBlacksburgUSA
  2. 2.Materials Science and EngineeringUniversity of Texas ArlingtonUSA

Personalised recommendations