Skip to main content

Self-powered nodes can be developed by harvesting wasted mechanical vibration energy available in the environment. Piezoelectric converters have been found to be most suitable for transforming mechanical energy into electric energy where the charge generation is directly related to the extent to which the element is deformed. This chapter provides the strategy for the selection of the piezoelectric transducer depending upon the frequency and amplitude of the mechanical stress. The figure of merit for the material selection was found to be directly proportional to product (d · g), where d is the piezoelectric strain constant and g is the piezoelectric voltage constant. The criterion for maximization of the product (d · g) was found to be given as \(|d|\ =\ \varepsilon^n\), where n is the material constant which is fixed by the magnitude of the piezoelectric and dielectric constants. Results are reported on various devices utilizing piezoelectric bimorph transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando A, Hisaki T (1998) Piezoelectric ceramic and method for producing piezoelectric ceramic element. US Patent No: 5,798,052

    Google Scholar 

  • Bryant RG, Effinger IV RT, Aranda Jr I, Copeland Jr BM, Covington III EW (2002) Active Piezo-electric Diaphragms. Proc. SPIE, Smart Struc. and Materials - Active Materials: Behavior and Mechanics, Paper 4699-40, San Diego, CA

    Google Scholar 

  • Calaway Jr EH (2004) Wireless Sensor Networks. Auerbach, New York, NY

    Google Scholar 

  • Chen C, Priya S (2006) Electric energy generator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(3): 656-661

    Article  Google Scholar 

  • Colla EL, Morita T (2002) Piezoelectric technology for active vibration control. In: Piezoelectric Materials in Devices, N. Setter, ed., Ceramics Laboratory, EPFL

    Google Scholar 

  • Daue T (2006) Overview Using the MFC for Energy Harvesting and other Commercial Applica-tions. UTA Workshop on Energy Harvesting, Jan 27, 2006

    Google Scholar 

  • Do gan A, Uchino K, Newnham RE (1997) Composite piezoelectric transducer with truncated con-ical endcaps “Cymbal”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 597-605

    Article  Google Scholar 

  • Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active mate-rials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52: 584-595

    Article  Google Scholar 

  • Islam RA, Priya S (2006a) Realization of high-energy density polycrystalline piezoelectric ceram-ics. Appl. Phys. Lett. 88: 032903

    Article  Google Scholar 

  • Islam RA, Priya S (2006b) High energy density composition in the System PZT - PZNN. J. Am. Ceram. Soc. 89: 3147-3156

    Article  Google Scholar 

  • Kawano K, Sube M (1997) Piezoelectric ceramic compositions. US Patent No: 5,607,614

    Google Scholar 

  • Kim H (2006) Piezoelectric Energy Harvesting. PhD dissertation, The Pennsylvania State University, University Park, PA

    Google Scholar 

  • Kim H, Batra A, Priya S, Uchino K, Markley D, Newnham RE, Hofmann HF (2004) Energy harvesting a using piezoelectric “Cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys. 43: 6178-6183

    Article  Google Scholar 

  • Kim H, Priya S, Uchino K, Newnham RE (2005) Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J. Electroceram. 15: 27-34

    Article  Google Scholar 

  • Kim H, Priya S, Uchino K (2006) Modeling of piezoelectric energy harvesting using cymbal trans-ducers. Jpn. J. Appl. Phys. Part 1-Reg. Papers 45(7): 5836-5840

    Article  Google Scholar 

  • Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. IEEE Trans. VLSI Syst. 9: 64-76

    Article  Google Scholar 

  • Myers R, Vickers M, Kim H, Priya S (2007) Small scale windmill. Appl. Phys. Lett. 90: 054106

    Article  Google Scholar 

  • Newnham RE, Do gan A, Markley DC, Tressler JF, Zhang J, Uzgur E, Meyer Jr RJ, Hladky-Hennion AC, Hughes WJ (2002) Size Effects in Capped Ceramic Underwater Sound Projectors. Oceans ‘02 MTS/IEEE 4: 2315-2321

    Article  Google Scholar 

  • Nishida M, Ouchi H (1976) Piezoelectric ceramic compositions. US Patent No: 3,998,748

    Google Scholar 

  • Nishida M, Ouchi H (1977) Piezoelectric ceramic compositions. US Patent No: 4,062,790

    Google Scholar 

  • Ottoman GK, Hoffmann HF, Bhatt AC, Lesieture GA (2002) Adaptive piezoelectric energy har-vesting circuit using wireless remote power supply. IEEE Trans. Power Electron. 17: 669-676

    Article  Google Scholar 

  • Ottoman GK, Hoffmann HF, Lesieture GA (2003) Optimized piezoelectric energy harvesting cir-cuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18: 696-703

    Article  Google Scholar 

  • Paradiso J, Starner T (2005) Energy scavenging for mobile and wireless electronics. Pervasive Comput. 4(1): 18-27

    Article  Google Scholar 

  • Priya S (2005) Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87: 184101

    Article  Google Scholar 

  • Priya S, Chen CT, Fye D, Zhand J (2005) Piezoelectric windmill - A novel solution to remote sensing. Jpn. J. Appl. Phys. 44: L104-L107

    Article  Google Scholar 

  • Richards CD, Anderson MJ, Bahr DF, Richards RF (2004) Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 14: 717-721

    Article  Google Scholar 

  • Rome LC (2006) Backpack for harvesting electrical energy during walking and for minimizing shoulder strain. US Patent No: 20060192386

    Google Scholar 

  • Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26: 1131-1144

    Article  Google Scholar 

  • Roundy S, Wright PK, Rabaey JM (2004) Energy Scavenging for Wireless Sensor Networks. Kluwer, Boston, MA

    Google Scholar 

  • Shenck N, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21: 30-42

    Article  Google Scholar 

  • Starner T, Paradiso JA (2004) Human-generated power for mobile electronics. In: Low-Power Electronics Design, C. Piguet, ed., CRC, Boca Raton, FL, Chapter 45, pp. 1-35

    Google Scholar 

  • Uppal N, Shiakolas P, Priya S (2005) Femtosecond laser micromachining of PZT ceramics. Ferro-elect. Lett. Sect. 32(3-4): 67-77

    Article  Google Scholar 

  • Williams CB, Sherwood C, Harradine MA, Mellor PH, Birch TS, Yates RB (2001) Development of an electromagnetic micro-generator. IEE Proc. Circuits Devices Syst. 148(6): 337-342

    Article  Google Scholar 

  • Yoo J, Lee Y, Yoon K, Hwang S, Suh S, Kim J, Yoo C (2001) Microstructural, electrical properties and temperature stability of resonant frequency in Pb(Ni1/2 W1/2 )O3 − Pb(Mn1/3 Nb2/3 )O3 − Pb(Zr,Ti)O3 ceramics for high-power piezoelectric transformer. Jpn. J. Appl. Phys. 40: 3256-3259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Priya, S., Taneja, R., Myers, R., Islam, R. (2008). Piezoelectric Energy Harvesting using Bulk Transducers. In: Safari, A., Akdoğan, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76540-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76540-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76538-9

  • Online ISBN: 978-0-387-76540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics