Piezoelectric Actuator Designs

  • Aydin Dog̃an*
  • Erman Uzgur

Piezoelectric actuators are getting immiscible parts of many important electromechanical and smart systems. Smart systems consist mainly of sensors, actuators, and signal processing units. Actuators are the responding units of many smart systems including those for active vibration and noise control, valve, shutter, focal lens, and many others. Increased demand for actuators with high displacement, high generative force, and quick response time has led to a search for new actuator materials and new designs. In this chapter, first, piezoelectric actuators were compared with magnetically active and thermally active actuators. Second, piezoelectric actuators and their design, especially traditional piezoelectric transducers with newly designed flextensional transducers were compared. Finally, application-related issues have been reviewed.


Shape Memory Alloy Shape Memory Effect Piezoelectric Actuator Ultrasonic Motor Deformable Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aburatani H, Uchino K (1995) Destruction Mechanism and Destruction Detection Technique for Multilayer Ceramic Actuators. IEEE, Piscataway, NJ, 750-752.Google Scholar
  2. Cady WG (1964) Piezoelectricity. Mc Graw-Hill, New York.Google Scholar
  3. Cieminski VJ, Beige HJ (1991) High-Signal Electrostriction in Ferroelectric Materials. Phys. D 24:1182-1186.CrossRefGoogle Scholar
  4. Clark AE (1980) Magnetostrictive Materials. Ferromagn. Mater. 1:531.CrossRefGoogle Scholar
  5. Clark AE, Teter JP, McMasters OD (1988) Magnetostriction ‘Jumps’ in Twinned Tb0.3 Dy0.7 Fe1.9 . J. Appl. Phys. 63:3910-3912.CrossRefGoogle Scholar
  6. Cross LE (1967) Antiferroelectric-Ferroelectric Switching in a Simple ‘Kittel’ Antiferroelectric. J. Phys. Soc. Jpn. 23:77-82.CrossRefGoogle Scholar
  7. Cross LE, Young SJ, Newnham RE, Nomura S, Uchino K (1980) Large Electrostrictive Effects in Relaxor Ferroelectrics. Ferroelectrics. 23:187.Google Scholar
  8. Dalimier E, Dainty C (2005) Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics. Opt. Exp. 13:4275-4285.CrossRefGoogle Scholar
  9. Dausch DE (1997) Ferroelectric Polarization Fatigue in PZT-Based RAINBOWs and Bulk Ceram-ics. J. Am. Ceram. Soc. 80:2355-2360. Google Scholar
  10. Dausch DE, Wise SA (1998) Composition Effects on Electromechanical Degradation of RAIN-BOW Actuators. NASA, Hampton, VA, NASA/TM-1998-206282, 2-3.Google Scholar
  11. Do gan A, Uchino K, Newnham RE (1997) Composite Piezoelectric Transducer with Truncated Conical Endcaps, Cymbal. IEEE UFFC 44:597-605.Google Scholar
  12. Do gan A, Uzgur E (2006) Size and Material Effects on Cymbal Transducer for Actuator Applica-tions. Ferroelectrics 331:53-63.CrossRefGoogle Scholar
  13. Do gan A, Xu QC, Yoshikawa S, Uchino K, Newnham RE (1994) High Displacement Ceramic Metal Composite Actuators Moonies. Ferroelectrics 156:1-6.CrossRefGoogle Scholar
  14. Do gan A, Yoshikawa S, Uchino K, Newnham RE (1994) The Effect of Geometry on the Charac-teristics of the Moonies Transducer and Reliability Issue. ISAF-IEEE Proc. 2:935-939.Google Scholar
  15. Duering T, Melton KN, Stockel D, Wayman CM (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, Boston, MA.Google Scholar
  16. Furuka K, Uchino K (1986) Electric-Field-Induced Strain in (Pb,La)(Zr,Ti)O3 Ceramics. Adv. Ceram. Mater. 1:61-63.Google Scholar
  17. Goto H, Imanaka K (1991) Super Compact Dual Axis optical Scanning Unit Applying a Torsional Spring Resonator Driven by a Piezoelectric Actuator. SPIE Proc.1544:272-281.Google Scholar
  18. Haertling GH (1994) A New Type of Ultra-High-Displacement Actuator. Am. Ceram. Soc. Bull. 73:93-96.Google Scholar
  19. Haertling GH (1994) Chemically Reduced PLZT Ceramics for Ultra-High Displacement Actua-tors. Ferroelectrics 154:101-106.Google Scholar
  20. Haertling GH, Land C (1971) Hot-Pressed (Pb, La) (Zr, Ti) O3 Ferroelectric Ceramics for Elec-trooptic Applications. J. Am. Ceram. Soc. 54:1-11.CrossRefGoogle Scholar
  21. Hallbaum FR, Bryant RG, Fox RL (1997) Thin Layer Composite Unimorph Ferroelectric Driver and Sensor. US Patent 5,632,841.Google Scholar
  22. Hathaway KB, Clark AE (1993) Magnetostrictive Materials. MRS Bull. 18:34-41Google Scholar
  23. Hayes HC (1936) Sound Generating and Directing Apparatus. US Patent 2,064,911.Google Scholar
  24. Imanaka K (1992) Microhybrid Integrated Devices and Components, Micro Photonic Devices. SPIE Proc. 1751:343-353.CrossRefGoogle Scholar
  25. Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric Ceramics. Academic Press, New York. Kittel C (1951) Theory of Antiferroelectrics. Phys. Rev. 82:729.Google Scholar
  26. Kugel VD, Chandren S, Cross LE (1997) A Comparative Analysis of Piezoelectric Bending-Mode Actuators. SPIE Proc. Smart Struct. Mater. Smart Mater. Technol. 3040:70-80.Google Scholar
  27. Mamiya Y (2006) Application of Piezoelectric Actuator. NEC Technol. J. 1:82-86.Google Scholar
  28. Newnham RE, Do gan A (1998) Metal-Electroactive Ceramic Composite Transducer. US Patent 5,729,07.Google Scholar
  29. Newnham RE, Xu QC, Yoshikawa S (1991) US Patent 999,819.Google Scholar
  30. Oh KY, Furuta A, Uchino K (1990) Shape Memory Unimorph Actuators Using Lead Zirconate-Based Antiferroelectrics. J. Jpn. Ceram. Soc. 98:905-908.Google Scholar
  31. Onitsuka K, Do gan A, Tressler JF, Xu QC, Yoshikawa S, Newnham RE (1995) Metal-Ceramic Composite Transducer, The Moonie. J. Int. Mater. Syst. Struct. 6:447-455.CrossRefGoogle Scholar
  32. Pinkerton JL, Moses RW (1997) A feasibility Study to Control Airfoil Shape Using THUNDER. NASA, Hampton, VA, NASA TM 4767:6-7.Google Scholar
  33. Rolt KD (1990) History of Flextensional Electro-Acoustic Transducers. J. Acoust. Soc. Am. 87:1340-1345.CrossRefGoogle Scholar
  34. Royster LH (1968) Flextensional Underwater Acoustic Transducers. J. Acoust. Soc. Am. 45: 671-683.CrossRefGoogle Scholar
  35. Shih WY, Shih WH, Aksay I (1997) Scaling Analysis for the Axial Displacement and Pressure of Flextensional Transducers. J. Am. Ceram. Soc. 80:1073-1078.CrossRefGoogle Scholar
  36. Sugawara Y, Onitsuka K, Yoshikawa S, Xu QC, Newnham RE, Uchino K (1992) Metal-Ceramic Composite Actuator. J. Am. Ceram. Soc. 75:996-998.CrossRefGoogle Scholar
  37. Takahashi S (1989) Recent Developments in Multilayer Piezoelectric Ceramic Actuators and Their Applications. Ferroelectrics 91:293-302.Google Scholar
  38. Taleghani BK, Camphell JF (1999) Non-Linear FEM of Thunder Piezoelectric Actuators. NASA, Hampton, VA, NASA/TM-1999-209322:8-9.Google Scholar
  39. Tokin Co (1992) Multilayer Piezoelectric Actuators. Short Form Catalog, Tokyo.Google Scholar
  40. Toulis WJ (1966) Flexual-Extensional Electromechanical Transducer. US Patent 3,277,433.Google Scholar
  41. Tressler JF, Xu QC, Yoshikawa S, Uchino K, Newnham RE (1994) Composite Flextensional Trans-ducers for Sensing and Actuating. Ferroelectrics 156:67-72.Google Scholar
  42. Uchino K (1993) Ceramic Actuators Principles and Applications. MRS Bull. 18:42-48.Google Scholar
  43. Uchino K (1997) Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic, Boston.Google Scholar
  44. Uchino K (1989) Recent Topics of Ceramic Actuators. Ferroelectrics 91:281-292.Google Scholar
  45. Uchino K, Giniewicz JR (2002) Micromechatronics. Marcel Dekker, New York/Basel.Google Scholar
  46. Uchino K, Nomura S, Cross LE, Newnham RE (1980) Electrostriction in Perovskite Crystal and Its Applications for Transducers. J. Phys. Soc. Jpn. 49:45-48.Google Scholar
  47. Uchino K, Takahashi S (1996) Multilayer Ceramic Actuators. Solid State Mater. Sci. 1:698-705.Google Scholar
  48. Uzgur E, Do gan A, Markley D, Meyer RJ, Hladky-Henion AC, Newnham RE (2004) Materials for High Performance Cymbal Transducer. J. Electroceram. 13:403-407.CrossRefGoogle Scholar
  49. Uzgur E, Do gan A, Newnham RE (2002) Design Optimization of Piezoelectric Composite Trans-ducers using Finite Element Analysis. Key Eng. Mater. 206-213:129-1300.Google Scholar
  50. Xu QC, Do gan A, Tressler JF, Yoshikawa S, Newnham RE (1994) Ceramic Metal Composite Actuator. Ferroelectrics. 160:337-346.Google Scholar
  51. Wayman CM (1993) Shape Memory Alloys. MRS Bull. 18:49-56.Google Scholar
  52. Wayman CM, Shimizu K (1972) Shape Memory effects in Alloys. Met Sci. J. 6:175.CrossRefGoogle Scholar
  53. Welch S, Doel P, Greenaway A, Love G (2003) Smart Optics in Astronomy and Space. Smart Opt. 44:26-29.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Aydin Dog̃an*
    • 1
  • Erman Uzgur
    • 2
  1. 1.Department of Materials Science & EngineeringAnadolu UniversityEskisehirTurkey
  2. 2.Department of Materials Science & EngineeringOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations