Micropositioning is required in many industrial segments as well as in everyday life. It is often utilized, without being recognized, in applications such as cars, cameras, or even when looking at internet pictures from space taken by telescopes. In such applications, small but accurate movements can significantly improve the performance and usability of the device. For scientific and engineering purposes micropositioning is widely used in research and production facilities such as AFM (atomic force microscope), SEM (scanning electron microscope), FIB (focused ion beam), micromanipulators (e.g., cell manipulators), active vibration dampers, and assembling and production devices, for example, in electronics and semiconductor manufacturing (Hubbard et al. 2006). Demand for wider and more efficient utilization of micropositioning is growing due to trends toward miniaturization in electronics as well as its wider exploitation in application fields.

There are several different materials and actuation schemes upon which micropositioning systems can be based. If especially small size, low forces, and high frequency are required for the system, electrostatic actuators are a good option. However, they are able to produce only a limited range of displacement with high voltage unless a comb structure instead of the basic capacitor plate configuration is employed. For low-voltage applications, thermal as well as magnetic actuators are widely used. Thermal actuators are usually comparable in size to electrostatic actuators but suffer also from a limited range of motion that usually has to be amplified mechanically. In contrast, magnetic and magnetostrictive actuators provide relatively large displacement but require the use of coils to generate the magnetic field and therefore can be bulky and expensive. Additionally, these approaches rely on actuation by current and therefore consume power while holding a static position.

In this chapter, the general properties and requirements of piezoelectric micropositioners, their control and sensor techniques, and some commercial applications are discussed.


Sugar Combustion Zirconate Europe Torque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adda C, Laurent GJ, Le Fort-Piat N (2005) Learning to control a real micropositioning system in the STM-Q framework. In: Proc 2005 IEEE Int Conf Robotics and Automation, IEEE, Piscataway, NJ, 4569-4574.CrossRefGoogle Scholar
  2. Allahverdi M, Danforth SC, Jafari M, Safari A (2001) Processing of advanced electroceramic components by fused deposition technique. J Eur Ceram Soc 21: 1485-1490.CrossRefGoogle Scholar
  3. Aloisi G, Santucci A, Carla M, Dolci D, Lanzi L (2006) Electronic linearization of piezoelectric actuators and noise budget in scanning probe microscopy. Rev Sci Instrum 77: 073701.CrossRefGoogle Scholar
  4. Ang WT, Garm ón A, Khosla PK, Riviere CN (2003) Modeling rate-dependent hysteresis in piezo-electric actuators. In: Proc 2003 IEEE/RSJ Int Conf Intelligent Robots and Systems, IEEE, Piscataway, NJ, 1975-1980.Google Scholar
  5. Bexell M, Johansson S (1999) Characteristics of a piezoelectric miniature motor. Sens Actuator A Phys 75: 118-130.CrossRefGoogle Scholar
  6. Canon Inc. (2006) EF lens work III. slr educational tools/en/ef lens work iii en.asp (accessed 14 March 2007).
  7. Choi HD, Kim JH, Kim S, Kwak YK (2005) Development of the piezoelectric motor using mo-mentum generated by bimorphs. Rev Sci Instrum 76: 105-109.Google Scholar
  8. Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40(11): 2145-2187.CrossRefGoogle Scholar
  9. Comstock RH (1981) Charge control of piezoelectric actuators to reduce hysteresis effects. U.S. Patent 4,263,527.Google Scholar
  10. Davis M, Damjanovic D, Hayem D, Setter N (2005) Domain engineering of the transverse piezo-electric coefficient in perovskite ferroelectrics. J Appl Phys 98: 014102.CrossRefGoogle Scholar
  11. Davis M, Damjanovic D, Setter N (2006) Temperature dependence of the direct piezoelectric effect in relaxor-ferroelectric single crystals: Intrinsic and extrinsic contributions. J Appl Phys 100: 084103.CrossRefGoogle Scholar
  12. Dinulovic D, Gatzen HH (2006) Microfabricated inductive micropositioning sensor for measure-ment of a linear movement. IEEE Sens J 6(6): 1482-1487.CrossRefGoogle Scholar
  13. Dynamic Structures & Materials LLC, Catalog. actua-tors.html (accessed 13 March 2007).
  14. Feddema JT, Simon RW (1998) Visual servoing and CAD-driven microassembly. IEEE Robot Autom Mag 5(4): 18-24.CrossRefGoogle Scholar
  15. Furuta A, Munekata M, Higuchi T (2002) Precise positioning stage driven by multilayer piezo actuator using strain gauge. Jpn J Appl Phys 41: 6283-6286.CrossRefGoogle Scholar
  16. Germano C (1971) Flexure mode piezoelectric transducers. IEEE Trans Audio Electroacoust 19(1): 6-12.CrossRefGoogle Scholar
  17. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75(3): 949-982.CrossRefGoogle Scholar
  18. Haertling GH (1994) Rainbow ceramics - A new type of ultra-high-displacement actuator. Am Ceram Soc Bull 73(1): 93-96.Google Scholar
  19. Haertling GH (1997) Rainbow actuators and sensors: A new smart technology. In: Proc SPIE Int Soc for Optical Eng, SPIE, Bellingham, WA, 3040: 81-92.Google Scholar
  20. Haertling GH (1999) Ferroelectric ceramics: History and technology. J Am Ceram Soc 82(4): 797-818.Google Scholar
  21. Harb S, Smith ST, Chetwynd DG (1992) Subnanometer behavior of a capacitive feedback, piezoelectric displacement actuator. Rev Sci Instrum 63(2): 1680-1689. technology/picture/antiblur.html (accessed 8 February 2007). (accessed 18 April 2007).
  22. Hubbard NB, Culpepper ML, Howell LL (2006) Actuators for micropositioners and nanoposition-ers. Appl Mech Rev 59(6): 324-334.CrossRefGoogle Scholar
  23. Kallio P, Lind M, Kojola H, Zhou Q, Koivo HN (1996) An actuation system for parallel link micromanipulators. In: Proc 1996 IEEE/RJS Int Conf Intelligent Robots and System, IEEE, New York, 2: 856-862.Google Scholar
  24. Kallio P, Zhou Q, Koivo HN (1998) Control issues in micromanipulation. In: Proc 1998 Int Symp Micromechatronics and Human Science, IEEE, Piscataway, NJ, 135-141.Google Scholar
  25. Kim KY, Park KH, Park HC, Goo NS, Yoon KJ (2005) Performance evaluation of lightweight piezo-composite actuators. Sens Actuator A Phys 120: 123-129.CrossRefGoogle Scholar
  26. Ko H-P, Kang C-Y, Kim J-S, Borodin SN, Kim S, Yoon S-J (2006) Constructions and charac-teristics of a tiny piezoelectric linear motor using radial mode vibrations. J Electroceram 17: 603-608.CrossRefGoogle Scholar
  27. Ku S-S, Pinsopon U, Cetinkunt S, Nakajima S-I (2000) Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner. IEEE-ASME Trans Mechatron 5 (3): 273-280.CrossRefGoogle Scholar
  28. Li G, Furman E, Haertling GH (1997) Stress-enhanced displacements in PLZT Rainbow actuators. J Am Ceram Soc 80(6): 1382-1388.Google Scholar
  29. Li X, Shih WY, Aksay IA (1999) Electromechanical behaviour of PZT-brass unimorphs. J Am Ceram Soc 82(7): 1733-1740.CrossRefGoogle Scholar
  30. Lv Y, Wei Y (2004) Study on open-loop precision positioning control of a micropositioning plat-form using a piezoelectrical actuator. In: Proc Fifth World Congress on Intelligent Control and Automation, IEEE, Piscataway, 1255-1259.Google Scholar
  31. MacLachlan BJ, Elvin N, Blaurock C, Keegan NJ (2004) Piezoelectric valve actuator for flexible diesel operation. In: Proc SPIE Int Soc Optical Eng, SPIE, Bellingham WA, 5388: 167-178.Google Scholar
  32. May WG (1975) Piezoelectric electromechanical translation apparatus. U.S. Patent 3,902,084.Google Scholar
  33. Morozov M, Damjanovic D, Setter N (2005) The nonlinearity and subswitching hysteresis in hard and soft PZT. J Eur Ceram Soc 25: 2483-2486.CrossRefGoogle Scholar
  34. Nakamura K, Ando H, Shimizu H (1987) Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Appl Phys Lett 50(20): 1413-1414.CrossRefGoogle Scholar
  35. Niezrecki C, Brei D, Balakrishnan S, Moskalik A (2001) Piezoelectric actuation: State of the art. Shock Vib Dig 33(4): 269-280.CrossRefGoogle Scholar
  36. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelec-tric single crystals. J Appl Phys 82: 1804-1811.CrossRefGoogle Scholar
  37. Park T, Kim B, Kim M-H, Uchino K (2002) Characteristics of the first longitudinal-fourth bending mode linear ultrasonic motors. Jpn J Appl Phys 41: 7139-7143.CrossRefGoogle Scholar
  38. Pearce DH, Hooley A, Button TW (2002) On piezoelectric super-helix actuators. Sens Actuator A Phys 100: 281-286.CrossRefGoogle Scholar
  39. PI GmbH & Co (2001) Micropositioning, nanopositioning, nanoautomation solutions for cutting-edge technologies. PI catalog.Google Scholar
  40. Piezo Systems Inc. (2006) Catalog no. 7. (accessed 13 March 2007).
  41. Piezomechanik GmbH (2006) Catalogs. (accessed 13 March 2007).
  42. Piezosystem jena GmbH Datasheets. (accessed 13 March 2007).
  43. Pons JL, Rocon E (2006) Scaling of piezoelectric actuators: A comparision with traditional and other technologies. Bol Soc Esp Ceram Vidr 45(3): 132-138.Google Scholar
  44. Randall CA, Kelnberger A, Yang GY, Eitel RE, Shrout TR (2005) High strain piezoelectric multi-layer actuators - A material science and engineering challenge. J Electroceram 14: 177-191.CrossRefGoogle Scholar
  45. Ronkanen P, Kallio P, Koivo H (2002) Current control of piezoelectric actuators with power loss compensation. In: Proc 2002 IEEE/RSJ Int Conf Intelligent Robots and System, IEEE, Piscataway, NJ, 2: 1948-1953.Google Scholar
  46. Ru C-H, Sun L, Kong M-X (2005) Adaptive inverse control for piezoelectric actuator based on hys-teresis model. In: Proc Fourth Int Conf Machine Learning and Cybernetics, IEEE, Piscataway, NJ, 3189-3193.Google Scholar
  47. Sacconi A, Picotto GB, Pasin W (1999) The IMGC calibration setup for microdisplacement actu-ators. IEEE Trans Instrum Meas 48(2): 483-487.CrossRefGoogle Scholar
  48. Sawyer CB (1931) Piezoelectric device. U.S. Patent 1,802,782.Google Scholar
  49. Schaller R, Fantozzi G, Gremaud G (2001) Mechanical spectroscopy Q−1 2001: With applications to materials science. In: Materials Science Forum, vol. 366-368, Trans Tech, Switzerland.Google Scholar
  50. Schwartz RW, Moon Y-W (2001) Domain configuration and switching contributions to the en-hanced performance of Rainbow actuators. In: Proc Int Soc Optical Eng, SPIE, Bellingham WA, 4333: 408-417.Google Scholar
  51. Schwartz RW, Cross LE, Wang QM (2001) Estimation of the effective d31 coefficients of the piezoelectric layer in rainbow actuators. J Am Ceram Soc 84(11): 2563-2569.CrossRefGoogle Scholar
  52. Shen G, Wei Y (2006) Study on nonlinear model of piezoelectric actuator and accurate positioning control strategy. In: Proc Sixth World Congress on Intelligent Control and Automation, IEEE, Piscataway, NJ, 8356-8360.Google Scholar
  53. Spanner K (2006) Survey of the various operating principles of ultrasonic piezomotors. White pa-per available at surveyofthevariousoperatingprin-ciplesofultrasonicpiezomotors c.pdf.
  54. Sun L, Ru C, Rong W (2004) Hysteresis compensation for piezoelectric actuator based on adaptive inverse control. In: Proc Fifth World Congress on Intelligent Control and Automation, IEEE, Piscataway, NJ, 5036-5039.Google Scholar
  55. Tan KK, Ng SC, Huang SN (2004) Assisted reproduction system using piezo actuator. In: Proc Int Conf Communications, Circuits and Systems IEEE, Piscataway, NJ, 2: 1200-1203.Google Scholar
  56. Tenzer PE, Mrad RB (2004) On amplification in inchworm precision positioners. Mechatronics 14: 515-531.CrossRefGoogle Scholar
  57. Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer Academic, Boston.Google Scholar
  58. Uchino K (1998) Piezoelectric ultrasonic motors: Overview. Smart Mater Struct 7: 273-285.CrossRefGoogle Scholar
  59. Uchino K, Yoshizaki M, Kasai K, Yamamura H, Sakai N, Asakura H (1987) “Monomorph actua-tors” using semiconductive ferroelectrics. Jpn J Appl Phys 26(7): 1046-1049.Google Scholar
  60. Uchino K, Cagatay S, Koc B, Dong S, Bouchilloux P, Strauss M (2004) Micro piezoelectric ultra-sonic motors. J Electroceram 13: 393-401.CrossRefGoogle Scholar
  61. Veeco Instruments Inc. (2003) SPM Training Notebook 004-130-00 Revision E.Google Scholar
  62. Veeco Instruments Inc. (2004) Dimension 3100 Manual Revision D.Google Scholar
  63. Wang Q-M, Cross LE (1998) Determination of Young’s modulus of the reduced layer of a piezo-electric RAINBOW actuator. J Appl Phys 83 (10): 5358-5363.CrossRefGoogle Scholar
  64. Wang Q-M, Cross LE (1999) Tip deflection and blocking force of soft PZT-based cantilever RAIN-BOW actuators. J Am Ceram Soc 82(1): 103-110.CrossRefGoogle Scholar
  65. Wolff A, Cramer D, Hellebrand H, Probst I, Lubitz K (1994) Optical two channel elongation mea-surement of PZT piezoelectric multilayer stack actuators. In Proc Ninth IEEE Int Symp Appl Ferroelectrics, IEEE, New York, pp 755-757.Google Scholar
  66. Wolny WW (2000) Piezoceramic thick films - Technology and applications state of the art in Europe. In: Proc IEEE 12th Int Symp Appl Ferroelectrics, IEEE, Piscataway, NJ, 1: 257-262.Google Scholar
  67. Yanagihara H, Sato Y, Mizuta J (1997) A study of DI diesel combustion under uniform higher-dispersed mixture formation. JSAE Rev 18(3): 247-254.CrossRefGoogle Scholar
  68. Zhang QM, Zhao J (1999) Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans Ultrason Ferroelectr Freq Control 46(6): 1518-1526.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Juuti
    • 1
  • M. Leinonen
    • 1
  • H. Jantunen
    • 1
  1. 1.Microelectronics and Materials Physics LaboratoriesEMPART Research Group of Infotech Oulu, University of OuluOuluFinland

Personalised recommendations