Composition Gradient Actuators

  • Ralf Steinhausen
  • Horst Beige

Piezoelectric functionally graded materials (FGMs) are attractive alternatives to homogenous-single phase materials for actuator applications because of their reduced internal mechanical stresses and lower production costs. Furthermore, such FGM structures have increased band width if used as an ultrasonic transducer. One of the most effective ways to prepare piezoelectric and dielectric gradients based creating a gradient in chemical composition by powder processing prior to sintering. The sharp chemical interfaces between the green layers disappear because of diffusion during sintering. The chemical gradient is then transformed into a gradient in the piezoelectric properties by a poling process after sintering. Several models have been developed for the description of poling of layered systems, which is a formidable challenge. The ferroelectric properties, such as spontaneous polarization and coercive field strength, also depend on the local chemical composition. This causes an inhomogeneous electric field distribution, which is usually not stable in time because of conductive currents and space charges.

In this chapter, different types of composition gradients for bending actuators are described. Combinations of hard and soft piezoelectric ceramics and electrostrictive and electroconductive materials are presented. The theoretical results are compared with experimental data for lead-free systems based on barium titanate.


Piezoelectric Property Barium Titanate Piezoelectric Layer Remnant Polarization Poling Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arlt G and Pertsev NA (1991) Force constant and effective mass of 90° domain walls in ferroelec-tric ceramics. J. Appl. Phys. 70(4):2283-2289CrossRefGoogle Scholar
  2. Arlt G, Hennings D, de With G (1985) Dielectric properties of fine-grained barium titanate ceram-ics. J. Appl. Phys. 85(4):1619-1625CrossRefGoogle Scholar
  3. Haertling GH (1994) Rainbow ceramics - A new type of ultra-high-displacement actuator. Am. Ceram. Soc. Bull. 73(1):93Google Scholar
  4. Hall A, Allahverdi M, Akdo ğan EK, Safari A (2005) Piezoelectric/electrostrictive multimaterial PMN-PT monomorph actuators. J. Eur. Cer. Soc. 25:2991-2997.CrossRefGoogle Scholar
  5. Hauke T, Kouvatov AZ, Steinhausen R, Seifert W, Beige H, Langhammer HT, Abicht H (2000) Bending behavior of functionally gradient materials. Ferroelectrics 238:195-202CrossRefGoogle Scholar
  6. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric Ceramics. Academic Press, LondonGoogle Scholar
  7. Jeon JH, Hahn YD, Kim HD (2001) Microstructure and dielectric properties of barium-strontium titanate with a functionally graded structure. J. Eur. Cer. Soc. 21:1653-1656CrossRefGoogle Scholar
  8. Mayergoyz ID (1991) Mathematical Models of Hysteresis. Springer, New YorkMATHGoogle Scholar
  9. Miller SL, Nasby RD, Schwank JR, Rodgers MS, Dressendorfer PV (1990) Device modeling of ferroelectric capacitors. J. Appl. Phys. 68:6463-6471CrossRefGoogle Scholar
  10. Movchikova AA, Malyshkina OV, Suchaneck G, Gerlach G, Steinhausen R, Langhammer HT, Pientschke C, Beige H (2008) Study of the pyroelectric behavior of BaTi1−xSnxO3 piezo-ceramics. J. Electroceramics 20:43-46CrossRefGoogle Scholar
  11. Or YT, Wong CK, Ploss B, Shin FG (2003) Polarization behavior of ferroelectric multilayered composite structures. J. Appl. Phys. 93(7):4112-4119CrossRefGoogle Scholar
  12. Pientschke C, Steinhausen R, Kouvatov A, Seifert W, Beige H (2005) Polarisation kinetic of electrically connected electroconductive ferroelectric multilayer structures. J. Eur. Cer. Soc. 25:2547-2551CrossRefGoogle Scholar
  13. Preisach F (1935) Ueber die magnetische Nachwirkung. Zeitschrift fuer Physik 94:277-302CrossRefGoogle Scholar
  14. Sakamura J, Yamada K, Nakamura K (2000) Equivalent network analysis of functionally graded piezoelectric transducers. Jpn. J. Appl. Phys. 39:3150-3151CrossRefGoogle Scholar
  15. Shvartsman VV, Emelyanov AY, Kholkin AL, Safari A (2002) Local hysteresis and grain size effect in Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 thin films. Appl. Phys. Lett. 81(1):117-119CrossRefGoogle Scholar
  16. Steinhausen R, Kouvatov AZ, Pientschke C, Langhammer HT, Beige H (2004) Modelling of the poling process in functionally graded materials. In: Proc. IEEE Int. UFFC Joint 50th Anniver-sary Conf., Montreal, 118-121Google Scholar
  17. Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer, BostonGoogle Scholar
  18. Wang SF, Kumar U, Huebner W, Marsh P, Kankul H, Oakley CG (1992) Grain size effect on the induced piezoelectric properties of 0.9PMN-0.1PT ceramic. In: Proc. of the Eighth IEEE ISAF, 148-151Google Scholar
  19. Yasuda N, Ohwa H, Asano S (1996) Dielectric properties and phase transitions of Ba(Ti1−xSnx )O3 solid solution. Jpn. J. Appl. Phys. 35:5099-5103CrossRefGoogle Scholar
  20. Yasuoka M, Shirai T, Nishimura Y, Kinemuchi Y, Watari K (2006) Influence of microwave ir-radiation method on the sintering of barium titanate with liquid phase. J. Cer. Soc. Jpn. 114 (5):377-379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ralf Steinhausen
    • 1
  • Horst Beige
    • 1
  1. 1.Institute of PhysicsMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations