This chapter considers the status of piezoelectric fiber composite fabrication. The description is focused on three topics, the preparation of sol—gel-derived PZT fiber/polymer composites as the first exciting development phase of piezoelectric fiber composites, the soft-mold method with high achievement potential for preparing designed composites and understanding the structure—property relationships, and finally the preparation of powder suspension-derived PZT fiber/polymer composites as the technologically advanced and commercialized process. The use of piezoceramic fibers allows for the fabrication of high-quality fiber composites, covering performance data that cannot be achieved by the conventional dice and fill technique.


Acoustic Impedance Master Mold Electromechanical Property Spurious Mode IEEE Trans Ultrason Ferroelectric Freq 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulton JM (1992) Sol-Gel Derived PZT Fibers. Mat Res Soc Symp Proc 271:517-522Google Scholar
  2. Bowen LJ and French KW (1992) Fabrication of Piezoelectric Ceramic/Polymer Composites by Injection Molding. Proceedings of the 8th IEEE Int Symp on Appl of Ferroelectrics, ISAF’ 92:160-163CrossRefGoogle Scholar
  3. Cass RB (1991) Fabrication of Continuous Ceramic fiber by the Viscous Suspension Spinning Process. Am Ceram Bull 70:424-429Google Scholar
  4. French JD et al. (1997) Proc SPIE - Int Soc Opt Eng 3044:406-412Google Scholar
  5. Gebhardt S (2000) Herstellung und Charakterisierung von feinskaligen 1-3 Piezo-kompositen f ür Ultraschallwandler. Thesis TU Bergakademie FreibergGoogle Scholar
  6. Glaubitt W et al. (1994) Formk örper auf der Basis von PZT, Bleizirkonat-Titanat, Verfahren und Zwischenprodukt zu deren Herstellung. Patent application DE 4332831Google Scholar
  7. C1 Glaubitt W et al. (1995) Sol-Gel Processing of PZT Long Fibers. Adv Sci Technol 10: Intelligent Materials and Systems (Ed.: P Vinzenzini, Techna Srl):47-54Google Scholar
  8. Hagood NW and Bent AA (1993) Development of Piezoelectric Fiber Composites for Structural Actuation. Proc 43th AIAA/ASME, paper 93-1717Google Scholar
  9. Janas VF, Safari A (1995) Overview of Fine-Scale Piezoelectric Ceramic/Polymer Processing. J Am Ceram Soc 95:2945-2955CrossRefGoogle Scholar
  10. Kitaoka K et al. (1998) Preparation of lead lanthanum zirconate titanate (PLZT, (Pb,La)(Zr,Ti)O3 ) fibers by sol-gel method. J Am Ceram Soc 81:1189-1196Google Scholar
  11. Klicker KA et al. (1981) Composites of PZT and Epoxy f ür Hydrostatic Transducer Applications. J Am Soc 64:5-9Google Scholar
  12. Lubitz K et al. (1992) New Piezoelectric Composites for Ultrasonic Transducers. Ferroelectrics 92:21-26CrossRefGoogle Scholar
  13. Meyer R et al. (1998) Lead Zirconate Titanate Fine Fibers Derived from Alkoxide-Based Sol-Gel Technology. J Am Ceram Soc 81(4):861-868CrossRefGoogle Scholar
  14. Newnham RE et al. (1991) Smart Electroceramics. J Am Ceram Soc 74:463-480CrossRefGoogle Scholar
  15. Newnham RE et al. (1978) Connectivity and Piezoelectric-Pyroelectric Composites. Mat Res Bull 13:525-536CrossRefGoogle Scholar
  16. Rabe U, IZFP Saarbr ücken, Unpublished R ödig T et al. (2005) Design and Characterization of 1-3 Ultrasonic Composites using ATILA and Ultra Fast Laser Measurements (20 MHz), Proceedings 1:353-356Google Scholar
  17. Safari A et al. (1997) Development of Fin-Scale Piezoelectric Composites for Transducers. AIChE J 97:2849-2856CrossRefGoogle Scholar
  18. Savakus HP et al. (1981) PZT-Epoxy Piezoelectric Transducers: A Simplified Fabrication Proce-dure. Mat Res Bull 16:677-680CrossRefGoogle Scholar
  19. Seth VK and Schulze WA (1990) Fabrication and Characterization of Ferroelectric PLZT 7/65/35 Ceramic Thin Films and Fibers. Ferroelectrics 112:283-307Google Scholar
  20. Shimono I et al. (1993) Preparation of Pb(Zr,Ti)O3 Fibers by the Alginate Method. J Ceram Soc Jpn (Int Ed) 101:700-703Google Scholar
  21. Smith WA (1993) Modeling 1-3 Composite Piezoelectrics: Hydrostatic Response. IEEE Trans Ultrason Ferroelectrics Freq Cntr 40(1):41-49 CrossRefGoogle Scholar
  22. Smith WA and Auld A (1991) Modeling 1-3 Composite Piezoelectrics: Thickness Mode Oscilla-tion. IEEE Trans Ultrason Ferroelectrics Freq Cntr 38(1):40-47CrossRefGoogle Scholar
  23. Smith WA et al. (1989) Design of Piezocomposites for Ultrasonic Transducers. Ferroelectrics 91:155-162Google Scholar
  24. Sporn D and Sch önecker A (1999) Composites with Piezoelectric Thin Fibers - First Evidence of Piezoelectric Behaviour. Mat Res Innovat 2:303-308CrossRefGoogle Scholar
  25. Starke S et al. (1998) Fine Scale Piezoelectric 1-3 Composites: A New Approach of Cost Effective Fabrication. Proc 11th IEEE International Symposium on the Applications of Ferroelectrics, ISAF’98 Vol. I: 393-396Google Scholar
  26. Steinhausen R et al. (1999) Finescaled Piezoelectric 1-3 Composites: Properties and Modeling. J Europ Ceram Soc 19:1289-1293CrossRefGoogle Scholar
  27. Steinhausen R et al. (2002) A New Method for the Determination of Elastic Properties of Thin Piezoelectric PZT Fibers. Ferroelectrics 268:53-58CrossRefGoogle Scholar
  28. Steinhausen R et al. (2004) Finite Element Analysis of the Thickness Mode Resonance of Piezo-electric 1-3 Fibre Composites. 2004 IEEE Ultrason Symp Proc: 1678-1681Google Scholar
  29. Teager E et al. (1998) Lyocell products with build-in functional properties. Chem Fibers Int 48:32-35Google Scholar
  30. Toyoma M et al. (1995) Fabrication of Pb(Zr,Ti)O3 Ceramic Fibers by Sol-Gel Processing II. Viscosity Change and Spinnability of Pb, Ti, Zr Complex Alkoxide Solutions and Hydrolysis and Morphology of Pb(Zr,Ti)O3 Ceramic Fibers. Nippon Kagaku Kaishi: 150-155Google Scholar
  31. Watzka et al. (1996) Dielectric and Ferroelectric Properties of 1-3 Composites Containing Thin PZT-Fibers. Proceedings of the 10th IEEE - Int Symp Appl Ferroelectrics, ISAF’96 Vol. II:569-572Google Scholar
  32. Yoshikawa S et al. (1994) Ferroelectrics 154:325-330Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andreas Schönecker
    • 1
  1. 1.Fraunhofer Institute for Ceramic Technologies and SystemsDresdenGermany

Personalised recommendations