Advertisement

Piezoelectric Transducer Design for Medical Diagnosis and NDE

  • Marc Lethiecq
  • Franck Levassort
  • Dominique Certon
  • Louis Pascal Tran-Huu-Hue

The number one technique for medical imaging and non-destructive evaluation (NDE) is ultrasound. This is due to its non-ionizing character, low cost and to the fact that images and measurements contain data linked to several physical and structural parameters of the explored media.

The overall performance of an ultrasonic system is mainly determined by the transducer characteristics. Consequently, each application having its specific requirements, very different transducers need to be designed. Furthermore, the measurement techniques and imaging modalities are in constant evolution, requiring higher performance and versatility of the transducers. Not only must frequency bandwidth and sensitivity be increased, but transducers must also be able to operate in various modes such as pulse-echo (classical A, B or C modes), burst (Doppler or other velocity measurements) or harmonic reception (non-linear acoustics). Innovations such as ultrasound stimulated elastography and combination of different techniques such as ultrasound and MRI or ultrasound therapy and imaging are only possible if specific transducers are developed.

Keywords

Piezoelectric Material Radiation Pattern Acoustic Impedance Coupling Factor Lead Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arditi M, Foster FS, Hunt JW (1981) Transient fields of concave annular arrays. Ultrasonics Imag-ing, vol. 3, pp. 37-61.CrossRefGoogle Scholar
  2. Assaad J, Dubus B, Hamonic B, Decarpigny JN, Debus JC (1991) Finite element modelling of ultrasonic transducers using the ATILA code. Proceedings of Ultrasonics International, pp. 371-374.Google Scholar
  3. Banno H (1983) Recent development of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics, vol. 50, pp. 329-338.Google Scholar
  4. Bove T, Wolny W, Ringaard E, Pedersen A (2001) New piezoceramic PZT-PNN material for med-ical diagnosis applications. Journal of the European Ceramic Society, vol. 21, pp. 1469-1472.CrossRefGoogle Scholar
  5. Desilets CS, Fraser JD, Kino GS (1978) The design of efficient broadband piezoelectric transduc-ers. Ultrasonics, vol. 25, pp. 115-125.Google Scholar
  6. Desmare R, Tran-Huu-Hue LP, Levassort F, Lethiecq M (1999) Modeling of multilayer piezoelec-tic structures. Ferroelectrics, vol. 224, pp. 623-630.CrossRefGoogle Scholar
  7. Ferroperm Piezoceramics (2007) www.ferroperm-piezo.com.
  8. Gentry KL, Zara JM, Bu S, Eom C, Smith SW (2000) Thick film sol PZT transducer using dip coating. IEEE Ultrasonics Symposium Proceedings, vol. 2, pp. 977-980.Google Scholar
  9. Goldberg RL, Smith SW (1994) Multilayer piezoelectric ceramics for 2D array transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 41, pp. 761-771.CrossRefGoogle Scholar
  10. Hashimoto KY, Yamaguchi M (1986) Elastic, piezoelectric and dielectric properties of composite materials. IEEE Ultrasonics Symposium Proceedings, pp. 697-702.Google Scholar
  11. IEEE (1987) Standard on Piezoelectricity ANSI/IEEE Std.Google Scholar
  12. Inoue T, Ohta M, Takahashi S (1987) Design of ultrasonic transducers with multiple acoustic matching layers for medical application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 34, pp. 8-16.CrossRefGoogle Scholar
  13. Kawai M (1969) The piezoelectricity of polyvinilydene fluoride. Japanese Journal of Applied Physics, vol. 8, pp. 975-976.CrossRefGoogle Scholar
  14. Kino GS (1987) Acoustic waves: devices imaging and analog signal processing: processing. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  15. Kobayashi M, Olding TR, Zou L, Sayer M, Jen CK, Rehman AU (2000) Piezoelectric thick film ul-trasonic transducers fabricated by spray technique. IEEE Ultrasonics Symposium Proceedings, vol. 2, pp. 985-989.Google Scholar
  16. Kossof G. (1966) The effects of backing and matching on the performance of piezoelectric ceramic transducers. IEEE Transactions on Sonics and Ultrasonics, vol. 13, pp. 20-30.Google Scholar
  17. Krimholtz R, Leedom DA, Matthei GL (1970) New equivalent circuit for elementary piezoelectric transducers. Electronic letters, vol. 38, pp. 338-339. Google Scholar
  18. Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 system. Ferroelectrics, vol. 37, pp. 579-582.Google Scholar
  19. Kuwata J, Uchino K, Nomura S (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Japanese Journal of Applied Physics, vol. 21, pp. 1298-1302.CrossRefGoogle Scholar
  20. Kwok KW, Chan HLW, Choy CL (1997) Evaluation of the material parameters of piezoelectric materials by various method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, pp. 733-742.CrossRefGoogle Scholar
  21. Levassort F, Lethiecq M, Certon D, Patat F (1997) A matrix method for modeling electroelastic moduli of 0-3 piezo-composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-quency Control, vol. 44, pp. 445-452.CrossRefGoogle Scholar
  22. Levassort F, Lethiecq M, Millar CE, Pourcelot L (1998) Modeling of highly loaded 0-3 piezoelec-tric composites using a matrix method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, pp. 1497-1505.CrossRefGoogle Scholar
  23. Levassort F, Tran-Huu-Hue LP, Lethiecq M, Bove T, Wolny W (2000) New piezoceramics films for high resolution medical imaging applications. IEEE Ultrasonics Symposium Proceedings, vol. 2, pp. 1125-1128.Google Scholar
  24. Levassort F, Tran-Huu-Hue LP, Holc J, Bove T, Kosec M, Lethiecq M (2001) High performance piezoceramic films on substrates for high frequency imaging. IEEE Ultrasonics Symposium Proceedings.Google Scholar
  25. Levassort F, Filoux E, Lou-Møller R, Ringgaard E, Lethiecq M, Nowicki A (2006) Curved piezo-electric thick films for high resolution medical imaging. Proceedings of IEEE International Ultrasonics Symposium, pp. 2361-2364.Google Scholar
  26. Levassort F, Holc J, Ringgaard E, Bove T, Kosec M, Lethiecq M (2007) Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications. Journal of Electroceramics, vol. 19, pp. 125-137.Google Scholar
  27. Lukacs M, Olding T, Sayer M, Tasker R, Sherrit S (1999) Thickness mode material constants of a supported piezoelectric film. Journal of Applied Physics, vol. 85, pp. 2835-2843.CrossRefGoogle Scholar
  28. Millar CE, Wolny WW, Pardo L (1992) Field dependence of the electromechanical properties of fine grained hydrothermally process lead titanate ceramics. IEEE ISAF Proceedings, pp. 59.Google Scholar
  29. Millar E, Pedersen L, Pardo L, Ricote J, Alemany C, Jimenez B, Feuillard G, Lethiecq M (1994) Effect of processing on surface acoustic wave properties of modified lead titanate ceramic. IEEE ISAF Proceedings, pp. 138-141.Google Scholar
  30. Najamura K, Kawamura Y (2000) Orientation dependance of electromechanical coupling factors in KnbO3. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 750-755.CrossRefGoogle Scholar
  31. Newnham RE (1986) Composite electroceramics. Ferroelectrics, vol. 68, pp. 1-32.Google Scholar
  32. Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric compos-ites. Mat. Res. Bull., vol. 13, pp. 525-536.CrossRefGoogle Scholar
  33. Nguyen TN, Lethiecq M, Levassort F, Pourcelot L (1996) Experimental verification of elastic prop-erties using scattering approximation in (0-3) connectivity composite materials. IEEE Trans-actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, pp. 640-645.CrossRefGoogle Scholar
  34. Oakley CG, Zipparo MJ (2000) Single crystal piezoelectrics: a revolutionary development for transducers. IEEE Ultrasonics Symposium Proceedings, vol. 1, pp. 1157-1167.Google Scholar
  35. Omote K, Park KS, Li G, Ohigashi H (1994) Performance of multilayered ultrasonics transducers comprising vinylidene fluoride and trifluorethylene copolymer films and ferroelectric ceramic plates. Japanese Journal of Applied Physics, vol. 33, pp. 2966-2971.CrossRefGoogle Scholar
  36. Penttinen A, Luukkala M (1976) The impulse response and pressure nearfield of a curved ultra-sonics radiators. Journal of Physics D: Applied Physics, vol. 9, pp. 1547-1557.CrossRefGoogle Scholar
  37. Powers JE (1980) An ultrasonic annular array based on quadrature sampling. Ph. D. Thesis, Washington University, Saint Louis, MO.Google Scholar
  38. Rittenmeyer K, Shrout TR, Schulze WA, Newnham RE (1982) Piezoelectric 3-3 composites. Ferroelectrics, vol. 41, pp. 289-295. Google Scholar
  39. Ritter T, Shung KK, Geng X, Lopath PD, Park SE, Shrout TR (2000) Single crystal PZN-PT-polymer composites for ultrasound transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 792-800.CrossRefGoogle Scholar
  40. Saitoh S, Kobayashi T, Harada K, Shimanuki S, Yamashita Y (1998) A 20 MHz single-element ultrasonic probe using 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, pp. 1071-1076.CrossRefGoogle Scholar
  41. Saitoh S, Imuzi M, Shimanuki S, Hashimoto S, Yamashita Y (1999a) US Patent 5,295,487.Google Scholar
  42. Saitoh S, Takeuchi T, Kobayashi T, Harada K, Shimanuki S, Yamashita Y (1999b) Forty-channel phased array ultrasonic probe using 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, pp. 152-157.CrossRefGoogle Scholar
  43. Savakus HP, Klicker KA, Newnham RE (1981) PZT-epoxy piezoelectric transducers: a simpliflied fabrication procedure. Mat. Res. Bull., vol. 16, pp. 677-680.CrossRefGoogle Scholar
  44. Selfridge AR, Kino GS, Khury-Yakub BT (1980) A theory for the radiation pattern of a narrow strip acoustic transducer. Applied Physics Letters, vol. 37, pp. 35-36.CrossRefGoogle Scholar
  45. Shrout TR, Chang ZP, Kim N, Markgraf S (1990) Dielectric behavior of single crystals near the (1-x)Pb(Zn1/3Nb2/3)O3-(x)PbTiO3 morphotropic phase boundary. Ferroelectrics Letters Sec-tion, vol. 12, pp. 63-69.CrossRefGoogle Scholar
  46. Sung KM (1984) Piezoelectric multilayer transducers for ultrasonic pulse compression. Ultrason-ics, pp. 61-68.Google Scholar
  47. Tran-Huu-Hue LP, Levassort F, Lethiecq M, Certon D, Patat F (1997) Characterization of the piezoelectric and dielectric relaxation parameters of 0-3 composite and PVDF materials in thickness mode. Ultrasonics, vol. 34, pp. 317-324.CrossRefGoogle Scholar
  48. Tran-Huu-Hue LP, Levassort F, Felix N, Damjanovic D, Wolny W, Lethiecq M (2000) Comparison of several methods to characterize the high frequency behavior of piezoelectric ceramics for transducer applications. Ultrasonics, vol. 38, pp. 219-223.CrossRefGoogle Scholar
  49. Tran-Huu-Hue LP, Levassort F, Vander Meulen F, Holc J, Kosec M, Lethiecq M (2001) Preparation and electromechanical properties of PZT/PGO thick films on alumina substrate. Journal of the European Ceramic Society, vol. 21, pp. 1445-1449.CrossRefGoogle Scholar
  50. Vechembre J, Sagalowicz L, Setter N (1999) Screen printed PZT layer-fabrication and properties. Ferroelectrics, vol. 224, pp. 145-152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marc Lethiecq
    • 1
  • Franck Levassort
    • 1
  • Dominique Certon
    • 1
  • Louis Pascal Tran-Huu-Hue
    • 1
  1. 1.Ultrasonics Group (LUSSI)Francois Rabelais UniversityToursFrance

Personalised recommendations