Advertisement

An SOI-Based 3D Circuit Integration Technology

  • James Burns
  • Brian Aull
  • Robert Berger
  • Nisha Checka
  • Chang-Lee Chen
  • Chenson Chen
  • Pascale Gouker
  • Craig Keast
  • Jeffrey Knecht
  • Antonio Soares
  • Vyshnavi Suntharalingam
  • Brian Tyrrell
  • Keith Warner
  • Bruce Wheeler
  • Peter Wyatt
  • Peter Wyatt
  • Donna Yost
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Introduction

Lincoln Laboratory has developed a wafer-scale three-dimensional (3D) integrated circuit (IC) technology whereby 3D chips are constructed by transferring, bonding together, and electrically connecting the active sections of ICs that were fabricated on silicon-on-insulator (SOI) substrates [1]. Layer transfer techniques were originally developed at Lincoln Laboratory to transfer thin GaAs strips fabricated on a GaAs template for the fabrication of solar cell devices [2]. This concept was later applied to the fabrication of displays by Kopin Corp. [3], who transferred ICs fabricated on SOI substrates; the transferred layer consisted of the buried oxide (BOX), the thin SOI film, and the multilevel interconnect. Further work at Kopin, Northeastern University, and Lincoln Laboratory led to an enhanced wafer-scale 3D IC technology. The building blocks of that 3D technology were SOI circuit fabrication, low-temperature wafer–wafer adhesive bonding, transfer of SOI analog and...

Keywords

Defense Advance Research Project Agency Lincoln Laboratory Annulus Opening Wafer Pair Overlay Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This authors wish to acknowledge the dedication and persistence of the Microelectronics Laboratory staff and the editorial assistance of Karen Challberg.

The work was sponsored by the Defense Advanced Research Projects Agency under Air Force contract #FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

References

  1. 1.
    Burns JA, Aull BF, Chen CK, Chen CL, Keast CL, Knecht JM, Suntharalingam V, Warner K, Wyatt PW, Yost DRW (2006) A wafer-scale 3-D circuit integration technology. IEEE Trans Electron Devices 53(10):2507–2516.CrossRefGoogle Scholar
  2. 2.
    McClelland RW, Bozler CO, Fan JCC (1980) TP-A2 the cleft process: a technique for producing many epitaxial single-crystal GaAs films by employing one reusable substrate. IEEE Trans Electron Devices 27(11):2188.CrossRefGoogle Scholar
  3. 3.
    Sailer PM, Singhal P, Hopwood J, Kaeli DR, Zavracky PM, K. Warner K, Vu DP (1997) Creating 3D circuits using transferred films. IEEE Circuits Devices Mag 13(6):27–30.CrossRefGoogle Scholar
  4. 4.
    Burns J, McIlrath L, Hopwood J, Keast C, Vu DP, Warner K, Wyatt P (2000) An SOI-based three-dimensional integrated circuit technology. In: IEEE international SOI conference proceedings, pp 20–21.Google Scholar
  5. 5.
    Burns J, McIlrath L, Keast C, Lewis C, Loomis A, Warner K, Wyatt P (2001) Three-dimensional integrated circuits for low-power, high-bandwidth systems on a chip. In: Digest of technical papers of IEEE international solid-state circuits conference, pp 268–269.Google Scholar
  6. 6.
    Reif R, Fan A, Chen KN, Das S (2002) Fabrication technologies for three-dimensional integrated circuits. In: Proceedings of the IEEE international symposium quality electronic design, pp 33–37.Google Scholar
  7. 7.
    Chan VWC, Chan PCH, Chan M (2000) Three dimensional CMOS integrated circuits on large grain polysilicon films. In: Technical digest of IEEE international electron devices meeting, pp 161–164.Google Scholar
  8. 8.
    Fukushima T, Yamada Y, Kikuchi H, Koyanagi M (2005) New three-dimensional integration technology using self-assembly technique. In: Technical digest of IEEE international electron devices meeting, pp 359–362.Google Scholar
  9. 9.
    Lea R, Jalowiecki I, Boughton D, Yamaguchi J, Pepe A, Ozguz V, Carson J (1999) A 3-D stacked chip packaging solution for miniaturized massively parallel processing. IEEE Trans Adv Packaging 22(6):424–432.CrossRefGoogle Scholar
  10. 10.
    Fukushima T, Yamada Y, Kikuchi H, Koyanagi M (2005) New three-dimensional integration technology using self-assembly technique. In: Technical digest of IEEE international electron devices meeting, pp 359–362.Google Scholar
  11. 11.
    Topol A, Tulipe D, Shi S, Alam S, Frank D, Steen S, Vichiconti J, Posillico D, Cobb M, Medd S, Patel J, Goma S, DiMilia D, Farinelli M, Wang C, Conti R, Canaperi D, Deligianni L, Kumar A, Kwietniak T, D’Emic C, Ott J, Young A, Ieong M (2005) Enabling SOI-based assembly technology for three-dimensional (3D) integrated circuits (ICs). In: Technical digest of IEEE international electron devices meeting, pp 363–366.Google Scholar
  12. 12.
    MITLL Low-Power FDSOI CMOS Process Design Guide, Revision (2006:7), Advanced Silicon Technology Group, MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02420, USA.Google Scholar
  13. 13.
    Warner K, Chen C, D’Onofrio R, Keast C, Poesse S (2004) An investigation of wafer-to-wafer alignment tolerances for three-dimensional integrated circuit fabrication. In: IEEE international SOI conference proceedings, pp 71–72.Google Scholar
  14. 14.
    Metra 2100 Process Engineer’s Manual, Optical Specialties Inc., 1993.Google Scholar
  15. 15.
    Chen CK, Warner K, Yost DRW, Knecht JM, Suntharalingam V, Chen CL, Burns JA, Keast CL (2007) Scaling three-dimensional SOI integrated-circuit technology. In: IEEE international SOI conference proceedings, pp 87–88.Google Scholar
  16. 16.
    Warner K, Burns J, Keast C, Kunz R, Lennon D, Loomis A, Mowers W, Yost D (2002) Low-temperature oxide-bonded three-dimensional integrated circuits. In: IEEE international SOI conference proceedings, pp 123–124.Google Scholar
  17. 17.
    Maszara WP, Goetz G, Caviglia A, McKitterick JB (1988) Bonding of silicon wafers for silicon-on-insulator. J Appl Phys 64(10):4943–4950.CrossRefGoogle Scholar
  18. 18.
    Knecht J, Yost D, Burns J, Chen C, Keast C, Warner K (2005) 3D via etch development for 3D circuit integration in FDSOI. In: IEEE international SOI conference proceedings, pp 104–105.Google Scholar
  19. 19.
    Burns J, Warner K, Gouker P (2001) Characterization of fully depleted SOI transistors after removal of the silicon substrate. In: IEEE international SOI conference proceedings, pp 113–114.Google Scholar
  20. 20.
    Gouker P, Burns J, Wyatt P, Warner K, Austin E, Milanowski R (2003) Substrate removal and BOX thinning effects on total dose response of FDSOI NMOSFET. IEEE Trans Nucl Sci 50(6):1776–1783.CrossRefGoogle Scholar
  21. 21.
    Chen CL, Chen CK, Burns JA, Yost DR, Warner K, Knecht JM, Wyatt PW, Shibles DA, Keast CL (2007) Thermal effects of three dimensional integrated circuits stacks. In: IEEE international SOI conference proceedings, pp 91–92.Google Scholar
  22. 22.
    Mentor Graphics, IC Nanometer Design Tool Suite.Google Scholar
  23. 23.
    Cadence Virtuoso Design Tool.Google Scholar
  24. 24.
    Courtesy of Dr. Rhett Davis, North Carolina State University.Google Scholar
  25. 25.
    Reber M, Tielert R (1996) Benefits of vertically stacked integrated circuits for sequential logic. In: Proceedings IEEE international symposium circuits systems, vol. 4, pp 121–124.Google Scholar
  26. 26.
    Tyrrell B (2004) Development of an architectural design tool for 3-D VLSI sensors. MS Thesis, Massachusetts Institute of Technology, Department of Electrical Engineering.Google Scholar
  27. 27.
    Aull B, Burns J, Chen C, Felton B, Hanson H, Keast C, Knecht J, Loomis A, Renzi M, Soares A, Suntharalingam V, Warner K, Wolfson D, Yost D, Young D (2006) Laser radar imager based on three-dimensional integration of Geiger-mode avalanche photodiodes with two SOI timing-circuit layers. In: Dig. tech. papers IEEE international solid-state circuits conference, pp 304–305.Google Scholar
  28. 28.
    Courtesy of Dr. J. McDonald, Rensselaer Polytechnic Institute.Google Scholar
  29. 29.
    Lee SM, Park H, Wooley BA (2006) Per-pixel floating-point ADCs with electronic shutters for a high dynamic range, high frame rate infrared focal plane array. In: Proc. IEEE Custom Integrated Circuits Conf., pp. 647–650.Google Scholar
  30. 30.
    Gu Q, Xu Z, Ko J, Chang MCF (2007) Two 10 Gb/s/pin low power interconnect methods for 3D ICs. In: Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf., pp. 364–365.Google Scholar
  31. 31.
    Culurciello E, Weerakoon P (2007) Three-dimensional photodetectors in 3D silicon-on-insulator technology. IEEE Electron Device Lett 28(2):117–119.CrossRefGoogle Scholar
  32. 32.
    Aull BF, Loomis AH, Gregory J, Young D (1998) Geiger-mode avalanche photodiode arrays integrated with CMOS timing circuits. In: IEEE annual device research conference Dig., pp 58–59.Google Scholar
  33. 33.
    Suntharalingam V, Berger R, Burns JA, Chen CK, Keast CL, Knecht JM, Lambert RD, Newcomb KL, O’Mara DM, Rathman DD, Shaver DC, Soares AM, Stevenson CN, Tyrrell BM, Warner K, Wheeler BD, Yost DRW, Young DJ (2005) Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology. In: Dig. tech. papers IEEE international solid-state circuits conference, pp 356–357.Google Scholar
  34. 34.
    Warner K, Oakley DC, Donnelly JP, Keast CL, Shaver DC (2006) Layer transfer of FDSOI CMOS to 150 mm InP substrates for mixed-material integration. In: International conference indium phosphide related materials, pp 226–228.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James Burns
    • 1
  • Brian Aull
  • Robert Berger
  • Nisha Checka
  • Chang-Lee Chen
  • Chenson Chen
  • Pascale Gouker
  • Craig Keast
  • Jeffrey Knecht
  • Antonio Soares
  • Vyshnavi Suntharalingam
  • Brian Tyrrell
  • Keith Warner
  • Bruce Wheeler
  • Peter Wyatt
  • Peter Wyatt
  • Donna Yost
  1. 1.Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations