Skip to main content

An SOI-Based 3D Circuit Integration Technology

  • Chapter
  • First Online:
Wafer Level 3-D ICs Process Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns JA, Aull BF, Chen CK, Chen CL, Keast CL, Knecht JM, Suntharalingam V, Warner K, Wyatt PW, Yost DRW (2006) A wafer-scale 3-D circuit integration technology. IEEE Trans Electron Devices 53(10):2507–2516.

    Article  Google Scholar 

  2. McClelland RW, Bozler CO, Fan JCC (1980) TP-A2 the cleft process: a technique for producing many epitaxial single-crystal GaAs films by employing one reusable substrate. IEEE Trans Electron Devices 27(11):2188.

    Article  Google Scholar 

  3. Sailer PM, Singhal P, Hopwood J, Kaeli DR, Zavracky PM, K. Warner K, Vu DP (1997) Creating 3D circuits using transferred films. IEEE Circuits Devices Mag 13(6):27–30.

    Article  Google Scholar 

  4. Burns J, McIlrath L, Hopwood J, Keast C, Vu DP, Warner K, Wyatt P (2000) An SOI-based three-dimensional integrated circuit technology. In: IEEE international SOI conference proceedings, pp 20–21.

    Google Scholar 

  5. Burns J, McIlrath L, Keast C, Lewis C, Loomis A, Warner K, Wyatt P (2001) Three-dimensional integrated circuits for low-power, high-bandwidth systems on a chip. In: Digest of technical papers of IEEE international solid-state circuits conference, pp 268–269.

    Google Scholar 

  6. Reif R, Fan A, Chen KN, Das S (2002) Fabrication technologies for three-dimensional integrated circuits. In: Proceedings of the IEEE international symposium quality electronic design, pp 33–37.

    Google Scholar 

  7. Chan VWC, Chan PCH, Chan M (2000) Three dimensional CMOS integrated circuits on large grain polysilicon films. In: Technical digest of IEEE international electron devices meeting, pp 161–164.

    Google Scholar 

  8. Fukushima T, Yamada Y, Kikuchi H, Koyanagi M (2005) New three-dimensional integration technology using self-assembly technique. In: Technical digest of IEEE international electron devices meeting, pp 359–362.

    Google Scholar 

  9. Lea R, Jalowiecki I, Boughton D, Yamaguchi J, Pepe A, Ozguz V, Carson J (1999) A 3-D stacked chip packaging solution for miniaturized massively parallel processing. IEEE Trans Adv Packaging 22(6):424–432.

    Article  Google Scholar 

  10. Fukushima T, Yamada Y, Kikuchi H, Koyanagi M (2005) New three-dimensional integration technology using self-assembly technique. In: Technical digest of IEEE international electron devices meeting, pp 359–362.

    Google Scholar 

  11. Topol A, Tulipe D, Shi S, Alam S, Frank D, Steen S, Vichiconti J, Posillico D, Cobb M, Medd S, Patel J, Goma S, DiMilia D, Farinelli M, Wang C, Conti R, Canaperi D, Deligianni L, Kumar A, Kwietniak T, D’Emic C, Ott J, Young A, Ieong M (2005) Enabling SOI-based assembly technology for three-dimensional (3D) integrated circuits (ICs). In: Technical digest of IEEE international electron devices meeting, pp 363–366.

    Google Scholar 

  12. MITLL Low-Power FDSOI CMOS Process Design Guide, Revision (2006:7), Advanced Silicon Technology Group, MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02420, USA.

    Google Scholar 

  13. Warner K, Chen C, D’Onofrio R, Keast C, Poesse S (2004) An investigation of wafer-to-wafer alignment tolerances for three-dimensional integrated circuit fabrication. In: IEEE international SOI conference proceedings, pp 71–72.

    Google Scholar 

  14. Metra 2100 Process Engineer’s Manual, Optical Specialties Inc., 1993.

    Google Scholar 

  15. Chen CK, Warner K, Yost DRW, Knecht JM, Suntharalingam V, Chen CL, Burns JA, Keast CL (2007) Scaling three-dimensional SOI integrated-circuit technology. In: IEEE international SOI conference proceedings, pp 87–88.

    Google Scholar 

  16. Warner K, Burns J, Keast C, Kunz R, Lennon D, Loomis A, Mowers W, Yost D (2002) Low-temperature oxide-bonded three-dimensional integrated circuits. In: IEEE international SOI conference proceedings, pp 123–124.

    Google Scholar 

  17. Maszara WP, Goetz G, Caviglia A, McKitterick JB (1988) Bonding of silicon wafers for silicon-on-insulator. J Appl Phys 64(10):4943–4950.

    Article  Google Scholar 

  18. Knecht J, Yost D, Burns J, Chen C, Keast C, Warner K (2005) 3D via etch development for 3D circuit integration in FDSOI. In: IEEE international SOI conference proceedings, pp 104–105.

    Google Scholar 

  19. Burns J, Warner K, Gouker P (2001) Characterization of fully depleted SOI transistors after removal of the silicon substrate. In: IEEE international SOI conference proceedings, pp 113–114.

    Google Scholar 

  20. Gouker P, Burns J, Wyatt P, Warner K, Austin E, Milanowski R (2003) Substrate removal and BOX thinning effects on total dose response of FDSOI NMOSFET. IEEE Trans Nucl Sci 50(6):1776–1783.

    Article  Google Scholar 

  21. Chen CL, Chen CK, Burns JA, Yost DR, Warner K, Knecht JM, Wyatt PW, Shibles DA, Keast CL (2007) Thermal effects of three dimensional integrated circuits stacks. In: IEEE international SOI conference proceedings, pp 91–92.

    Google Scholar 

  22. Mentor Graphics, IC Nanometer Design Tool Suite.

    Google Scholar 

  23. Cadence Virtuoso Design Tool.

    Google Scholar 

  24. Courtesy of Dr. Rhett Davis, North Carolina State University.

    Google Scholar 

  25. Reber M, Tielert R (1996) Benefits of vertically stacked integrated circuits for sequential logic. In: Proceedings IEEE international symposium circuits systems, vol. 4, pp 121–124.

    Google Scholar 

  26. Tyrrell B (2004) Development of an architectural design tool for 3-D VLSI sensors. MS Thesis, Massachusetts Institute of Technology, Department of Electrical Engineering.

    Google Scholar 

  27. Aull B, Burns J, Chen C, Felton B, Hanson H, Keast C, Knecht J, Loomis A, Renzi M, Soares A, Suntharalingam V, Warner K, Wolfson D, Yost D, Young D (2006) Laser radar imager based on three-dimensional integration of Geiger-mode avalanche photodiodes with two SOI timing-circuit layers. In: Dig. tech. papers IEEE international solid-state circuits conference, pp 304–305.

    Google Scholar 

  28. Courtesy of Dr. J. McDonald, Rensselaer Polytechnic Institute.

    Google Scholar 

  29. Lee SM, Park H, Wooley BA (2006) Per-pixel floating-point ADCs with electronic shutters for a high dynamic range, high frame rate infrared focal plane array. In: Proc. IEEE Custom Integrated Circuits Conf., pp. 647–650.

    Google Scholar 

  30. Gu Q, Xu Z, Ko J, Chang MCF (2007) Two 10 Gb/s/pin low power interconnect methods for 3D ICs. In: Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf., pp. 364–365.

    Google Scholar 

  31. Culurciello E, Weerakoon P (2007) Three-dimensional photodetectors in 3D silicon-on-insulator technology. IEEE Electron Device Lett 28(2):117–119.

    Article  Google Scholar 

  32. Aull BF, Loomis AH, Gregory J, Young D (1998) Geiger-mode avalanche photodiode arrays integrated with CMOS timing circuits. In: IEEE annual device research conference Dig., pp 58–59.

    Google Scholar 

  33. Suntharalingam V, Berger R, Burns JA, Chen CK, Keast CL, Knecht JM, Lambert RD, Newcomb KL, O’Mara DM, Rathman DD, Shaver DC, Soares AM, Stevenson CN, Tyrrell BM, Warner K, Wheeler BD, Yost DRW, Young DJ (2005) Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology. In: Dig. tech. papers IEEE international solid-state circuits conference, pp 356–357.

    Google Scholar 

  34. Warner K, Oakley DC, Donnelly JP, Keast CL, Shaver DC (2006) Layer transfer of FDSOI CMOS to 150 mm InP substrates for mixed-material integration. In: International conference indium phosphide related materials, pp 226–228.

    Google Scholar 

Download references

Acknowledgments

This authors wish to acknowledge the dedication and persistence of the Microelectronics Laboratory staff and the editorial assistance of Karen Challberg.

The work was sponsored by the Defense Advanced Research Projects Agency under Air Force contract #FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burns, J. et al. (2008). An SOI-Based 3D Circuit Integration Technology. In: Tan, C., Gutmann, R., Reif, L. (eds) Wafer Level 3-D ICs Process Technology. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76534-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76534-1_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76532-7

  • Online ISBN: 978-0-387-76534-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics