Cu/Sn Solid–Liquid Interdiffusion Bonding

  • A. Munding
  • H. Hübner
  • A. Kaiser
  • S. Penka
  • P. Benkart
  • E. Kohn
Part of the Integrated Circuits and Systems book series (ICIR)

The concept of solid–liquid interdiffusion (SLID) is known as a metallurgical joining technique since the 1960s [7] and has gained significance in semiconductor bonding during the last decades. It has raised particular interest in three-dimensional (3D)-integration technology because of its attractive properties, mainly its iterative applicability in chip stacking, which it owes to the irreversible nature of diffusion. The concept is also known as isothermal solidification and transient liquid phase (TLP) bonding [30], and its beneficial properties are particularly prominent in the Cu–Sn system.

Figure 7.1visualizes the future shrinking of solder ball dimensions. Balls with a diameter of 0.5 mm and a pitch of 1 mm are currently in use for ball grid arrays (BGAs) for the connection of the package to the board. Micro bumps, which are used inside the packages, have diameters below 100 μm. Irrespective of the solder volume, the thickness of the intermetallic compound (IMC) layers stays...


Solder Joint Solder Ball Solder Bump Isothermal Solidification Intermetallic Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work consists of contributions of several authors, which are listed here according to their affiliations:

Institute of Electron Devices and Circuits, University of Ulm, Germany

Andreas Munding, now with Liebherr-Elektronik GmbH, Lindau, Germany

Alexander Kaiser, now with Reinhardt Microtech GmbH, Ulm, Germany

Peter Benkart, now with MicroGaN GmbH, Ulm, Germany

Erhard Kohn

Qimonda AG, Munich, Germany

Holger Hübner

Infineon Technologies AG, Munich, Germany

Sabine Penka


  1. 1.
    Adamson AW (1990) Physical chemistry of surfaces. ISBN 0-471-61019-4, John Wiley & Sons Inc, New YorkGoogle Scholar
  2. 2.
    Bader S (1990) Erzeugung thermisch stabiler Mikroverbindungen durch isotherme Erstarrung (in German). Dissertation, Fakultät für Chemie, Universität StuttgartGoogle Scholar
  3. 3.
    Bader S, Gust W, Hieber H (1995) Rapid formation of intermetallic compounds interdiffusion in the Cu–Sn and Ni–Sn systems. Acta Met et Mat 43:329–337Google Scholar
  4. 4.
    Beer SZ (1972) Liquid metals, chemistry and physics. ISBN 0-8247-1032-0, Marcel Dekker Inc, New YorkGoogle Scholar
  5. 5.
    Benkart P, Kaiser A, Munding A, Bschorr M, Pfleiderer H, Kohn E, Heittmann A, Hübner H, Ramacher U (2005) 3D chip stack technology using through-chip interconnects. IEEE Des Test Comput 22:512–518CrossRefGoogle Scholar
  6. 6.
    Benkart P, Munding A, Kaiser A, Kohn E, Heittmann A, Hübner H, Ramacher U (2007) 3-Dimensional integration scheme with a thermal budget below 300°C. Sens Act A 139: 350–355CrossRefGoogle Scholar
  7. 7.
    Bernstein L, Bartholomew H (1966) Applications of solid–liquid interdiffusion (SLID) bonding in integrated-circuit fabrication. Trans Met Soc AIME 236:405–412Google Scholar
  8. 8.
    Bhardwaj J, Ashraf H, McQuarrie A (1997) Dry silicon etching for MEMS. In: Proc Symp on Microstructures and Microfabricated Systems. ECS Annual Meeting, Montreal, Quebec, Canada, May 4–9Google Scholar
  9. 9.
    Bonkohara M, Takahashi K, Ishino M (2005) Trends and opportunities of system-in-a-package and three-dimensional integration. Electron Comm Jpn Pt 2 88:37–49CrossRefGoogle Scholar
  10. 10.
    Fields RJ, Low SR (2002) Physical and mechanical properties of intermetallic compounds commonly found in solder joints. Research Report, NIST, Metallurgy DivisionGoogle Scholar
  11. 11.
    Frear DR, Burchett SN, Morgan HS, Lau JH (1994) The mechanics of solder alloy interconnects. Van Nostrand Reinhold, New York, p 60 ffGoogle Scholar
  12. 12.
    Frear D (2007) Issues related to the implementation of Pb-free electronic solders in consumer electronics. J Mat Sci: Mat Elec 18:319–330CrossRefGoogle Scholar
  13. 13.
    Hübner H, Ehrmann O, Eigner M, Gruber W, Klumpp A, Merkel R, Ramm P, Roth M, Weber J, Wieland R (2002) Face-to-face chip integration with full metal interface. In: Melnick BM, Cale TS, Zaima S, Ohta T (eds) Advanced Metallization Conference, San Diego, V18:53–58Google Scholar
  14. 14.
    Hübner H, Penka S, Eigner M, Gruber W, Nobis M, Kristen G, Schneegans M, Barchmann B, Janka S (2006) Micro contacts with sub-30 μm pitch for 3D chip-on-chip integration. MAM, GenobleGoogle Scholar
  15. 15.
    Humpston G, Jacobson DM (1993) Principles of soldering and brazing. ISBN 0-87170-462-5, ASM InternationalGoogle Scholar
  16. 16.
    Kaiser A (2007) Dreidimensionale Systemintegration: Technologische Entwicklung und Anwendung (in German). Dissertation, Fakultät für Ingenieurwissenschaften und Informatik, Universität UlmGoogle Scholar
  17. 17.
    Kaiser A, Kück D, Benkart P, Munding A, Prinz GM, Heittmann A, Hübner H, Sauer R, Kohn E (2006) Concept for diamond 3-D integrated UV sensor. Diam Relat Mater 15:1967–1971CrossRefGoogle Scholar
  18. 18.
    Kempen ATW (2001) Solid State Phase Transformation Kinetics. Dissertation, Faculty of Chemistry, University of StuttgartGoogle Scholar
  19. 19.
    Kim J-M, Fujimoto K (2003) Parametric design for resin self-alignment capability. IEICE Trans Electron E86(10):2129–2136Google Scholar
  20. 20.
    Klumpp A, Merkel R, Wieland R, Ramm P (2003) Chip-to-wafer stacking technology for 3D system integration. In: Proc 53rd ECTC, pp 1080–1083Google Scholar
  21. 21.
    Klumpp A, Ramm P, Wieland R, Merkel R (2003) Integration Technologies for 3D Systems. Int Workshop 3D System Integration, MunichGoogle Scholar
  22. 22.
    Kostner H, Hübner H (2003) New Flip-Chip on Chip Process Supercedes Embedded Technologies. EMPC 2003, FriedrichshafenGoogle Scholar
  23. 23.
    Lin W, Lee YC (1999) Study of fluxless soldering using formic acid vapor. IEEE Trans Adv Pack 22:592–601CrossRefGoogle Scholar
  24. 24.
    Lärmer F, Schilp A (1994) Method of Anisotropically Etching Silicon. German Patent DE 4241045.Google Scholar
  25. 25.
    Munding A (2007) Interconnect technology for three-dimensional chip integration. Dissertation, faculty of engineering and computer science, University of Ulm. ISBN 978-3-86727-406-7, Cuvillier-Verlag, Göttingen, GermanyGoogle Scholar
  26. 26.
    Munding A, Kaiser A, Benkart P, Kohn E, Heittmann A, Hübner H, Ramacher U (2006) Scaling aspects of microjoints for 3D chip interconnects. In: Proc 36th ESSDERC, pp 262–265Google Scholar
  27. 27.
    Rahn A (1993) The basics of soldering. ISBN 0-471-58471-1, John Wiley & Sons Inc, New YorkGoogle Scholar
  28. 28.
    Ramm P, Bollmann D, Braun R, Buchner R, Cao-Minh U, Engelhardt M, Ehrmann G, Grassl T, Hieber K, Hübner H (1997) Three dimensional metallization for vertically integrated circuits. Microelectron Eng 37/38:39–47CrossRefGoogle Scholar
  29. 29.
    Ramm P, Klumpp A, Merkel R, Weber J, Wieland R, Ostmann A, Wolf J (2003) 3D System Integration Technologies. In: Proc MRS Symp 766, pp 3–14Google Scholar
  30. 30.
    Schmid-Fetzer R (1995) Fundamentals of bonding by isothermal solidification for high temperature semiconductor applications. In: Design Fundamentals of High Temperature Composites, Intermetallics, and Metal-Ceramics Systems, ISBN 0-87339-310-4, The Minerals, Metals and Materials Society, 75–98Google Scholar
  31. 31.
    Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions. J Electrochem Soc 137:3626–3632CrossRefGoogle Scholar
  32. 32.
    Shim J, Oh C, Lee B, Lee DN (1996) Thermodynamic assessment of the Cu–Sn system. Z Metallk (Int J Mat Res) 87:205–212Google Scholar
  33. 33.
    Takahashi K, Taguchi Y, Hoshino M, Tanida K, Umemoto M, Yonezawa T, Kondo K (2005) Development of less expensive process technologies for three-dimensional chip stacking with through-vias. Electron Comm Jpn Pt 2, 88:50–60CrossRefGoogle Scholar
  34. 34.
    Tanida K, Umemoto M, Tanaka N, Tomita Y, Takahashi K (2004) Micro Cu bump interconnection on 3D chip stacking technology. Jpn J App Phys 43:2264–2270CrossRefGoogle Scholar
  35. 35.
    Tu KN (2003) Recent advances on electromigration in very-large-scale-integration of interconnects. J App Phys 94:5451–5473CrossRefGoogle Scholar
  36. 36.
    Tu KN, Thompson RD (1982) Kinetics of interfacial reaction in bimetallic Cu–Sn thin films. Acta Met 30:947–952CrossRefGoogle Scholar
  37. 37.
    Umemoto M, Tanida K, Nemoto Y, Hoshino M, Kojima K, Shirai Y, Takahashi K (2004) High-performance vertical interconnection for high-density 3D chip stacking package. In: Proc 54th ECTC, pp 616–623Google Scholar
  38. 38.
    Wang SQ, Suthar S, Hoeflich C, Burrow, BJ (1993) Diffusion barrier properties of TiW between Si and Cu. J App Phys 73:2301–2320CrossRefGoogle Scholar
  39. 39.
    Wieland R, Bonfert D, Klumpp A, Merkel R, Nebrich L, Weber J, Ramm P (2005) 3D Integration of CMOS transistors with ICV-SLID technology. Microelectron Eng 82:529–533CrossRefGoogle Scholar
  40. 40.
    Xie H, Erdmann L, Zhu X, Gabriel KJ, Fedder GK (2002) Post-CMOS processing for high-aspect-ratio integrated silicon microstructures. IEEE J MEMS 11:93–101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Munding
    • 1
  • H. Hübner
  • A. Kaiser
  • S. Penka
  • P. Benkart
  • E. Kohn
  1. 1.Institute of Electron Devices and CircuitsUniversity of UlmUlmGermany

Personalised recommendations