Monolithic 3D Integrated Circuits

  • Christopher Petti
  • S. Brad Herner
  • Andrew Walker
Part of the Integrated Circuits and Systems book series (ICIR)


Monolithic three-dimensional integrated circuits (3D ICs) – defined here to be ICs in which circuit elements are fabricated on a substrate, and at least one layer above this substrate, in a single linear process flow with no material bonding required – were first touted in the literature in the early 1980s as a way to get around what were then perceived as scaling limits in silicon complementary metal-oxide semiconductor (CMOS) devices. Moreover, monolithic 3D ICs were envisioned as one way to reduce interconnect delay bottlenecks in 2D ICs [1].

However, conventional 2D CMOS devices have consistently been scaled beyond all these perceived limits; thus, simply scaling CMOS circuits has been more cost-effective than building-in the third dimension. There have been exceptions: polyload static random access memories (SRAMs), for example, where the elements placed in the third dimension are as simple (and as cheaply made) as possible.

Recently, the amount of interest in...


Laser Annealing Static Random Access Memory NAND Flash CMOS Inverter Tunnel Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Saraswat KC, Souri SJ, Subramanian V, Joshi AR, Wang AW (1999) Novel 3-D structures [ICs]. In: Proceedings of the 1999 IEEE International SOI Conference, pp 54–55Google Scholar
  2. 2.
    Gat A, Gerzberg L, Gibbons JF, Magee TJ, Peng J, Hong JD (1979) cw laser anneal of polycrystalline silicon: Crystalline structure, electrical properties. Appl Phys Lett 33:775–778CrossRefGoogle Scholar
  3. 3.
    Lee KF, Gibbons JF, Saraswat KC (1979) Thin film MOSFET’s fabricated in laser-annealed polycrystalline silicon. Appl Phys Lett 35:173–175CrossRefGoogle Scholar
  4. 4.
    Geis MW, Flanders DC, Antoniadis DA, Smith HI (1979) Crystalline Silicon on insulators by graphoepitaxy. In: 1979 IEDM Technical Digest, pp 210–212Google Scholar
  5. 5.
    Akiyama S, Ogawa S, Yoneda M, Yoshii N, Terui Y (1983) Multilayer CMOS device fabricated on laser recrystallized Silicon islands. In: 1983 IEDM Technical Digest, pp 352–355Google Scholar
  6. 6.
    Yamazaki K, Yoneda M, Ogawa S, Ueda M, Akiyama S, Terui Y (1986) Fabrication technologies for dual 4-Kbit stacked SRAM. In: 1986 IEDM Technical Digest, pp 435–438Google Scholar
  7. 7.
    Kunio T, Oyama K, Hayashi Y, Morimoto M (1989) Three dimensional ICs, having four stacked active device layers. In: 1989 IEDM Technical Digest, pp 837–890Google Scholar
  8. 8.
    Nishimura T, Inoue Y, Sugahara K, Kusunoki S, Kunamoto T, Nakagawa S, Makaya M, Horiba Y, Akasaka Y (1987) Three dimensional IC for high performance image signal processor. In: 1987 IEDM Technical Digest, pp 111–114Google Scholar
  9. 9.
    Crnogorac F, Witte DJ, Xia Q, Rajendran B, Pickard DS, Liu Z, Mehta A, Sharma S, Yasseri A, Kamins TI, Chou SY, Pease RFW (2007) Nano-graphoepitaxy of semiconductors for 3D integration. Microelectron Eng 84:891–894CrossRefGoogle Scholar
  10. 10.
    Zingg RP, Friedrich JA, Neudeck GW, Höfflinger B (1990) Three-dimensional stacked MOS transistors by localized silicon epitaxial overgrowth. IEEE Trans Electron Devices 37:\INTbreak; 1452–1461CrossRefGoogle Scholar
  11. 11.
    Zellama K, Germain P, Squelard S, Bourgoin JC, Thomas PA (1979) Crystallization in amorphous silicon. J Appl Phys 50:6995–700CrossRefGoogle Scholar
  12. 12.
    Katoh T (1988) Characteristics of MOSFET’s on large-grain polysilicon films. IEEE Trans Electron Devices 35:923–928CrossRefGoogle Scholar
  13. 13.
    Subramanian V, Saraswat KC (1998) High-performance Germanium-seeded laterally crystallized TFT’s for vertical device integration. IEEE Trans Electron Devices 45:1934–1939CrossRefGoogle Scholar
  14. 14.
    Wang H, Chan M, Jagar S, Wang Y, Ko P (2000) Submicron super TFTs for 3-D VLSI applications. IEEE Electron Device Lett 21:439–441CrossRefGoogle Scholar
  15. 15.
    Gibbons JF, Lee KF (1980) One-gate-wide CMOS inverter on laser-recrystallized polysilicon. IEEE Electron Device Lett EDL-1:117–118CrossRefGoogle Scholar
  16. 16.
    Colinge J-P, Demoulin E (1981) A high density CMOS inverter with stacked transistors. IEEE Elecctron Device Lett EDL-2:250–251CrossRefGoogle Scholar
  17. 17.
    Colinge J-P, Demoulin E, Lobet M (1982) Stacked transistors CMOS (ST-MOS), an NMOS technology modified to CMOS. IEEE Trans Electron Devices ED-29:585–589CrossRefGoogle Scholar
  18. 18.
    Höfflinger B, Liu ST, Vajdic B (1984) A three-dimensional CMOS design methodology. IEEE Trans Electron Devices ED-31:171–173CrossRefGoogle Scholar
  19. 19.
    Roos G, Höfflinger B (1992) Complex 3D CMOS circuits based on a triple-decker cell. IEEE J Solid-State Circuits 27:1067–1072CrossRefGoogle Scholar
  20. 20.
    Kawamura S, Sasaki N, Iwai T, Nakano M, Takagi M (1983) Three-dimensional CMOS ICs fabricated by using beam recrystallization. IEEE Electron Device Lett EDL-4:366–368CrossRefGoogle Scholar
  21. 21.
    Oyama K, Kunio T, Koh R, Hayashi Y, Kajiyana K, Tsunenari K (1990) High density dial-active-device-layer (DUAL)-CMOS structure with vertical tungsten plug-in wirings. In: 1990 IEDM Technical Digest, pp 59–62Google Scholar
  22. 22.
    Jung SM, Lim H, Cho W, Cho H, Yeo C, Kang Y, Bae D, Na J, Kwak B, Kim S, Jeong J, Chang Y, Jang J, Kim J, Kim K, Ryu B (2004) Highly area efficient and cost effective double stacked S3 (Stacked Single-crystal Si) peripheral CMOS SSTFT and SRAM cell technology for 512 M bit density SRAM. In: 2004 IEDM Technical Digest, pp 265–268Google Scholar
  23. 23.
    Jung SM, Jang J, Cho W, Cho H, Jeong J, Chang Y, Kim J, Rah Y, Son Y, Park J, Song M, Kim K, Lim J, Kim K (2006) Three dimensionally stacked NAND flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30 nm Nod. In: 2006 IEDM Technical Digest, pp 1–4Google Scholar
  24. 24.
    Minato O, Masuhara T, Sasaki T, Sakai Y, Kubo M, Uchibori K, Yasui T (1979) A high-speed, low-power Hi-CMOS 4 K static RAM. IEEE Trans Electron Devices ED-26:882–885CrossRefGoogle Scholar
  25. 25.
    Yamanaka T, Hashimoto T, Hashimoto N, Nishida T, Shimizu A, Ishibashi K, Sakai Y, Shimohigashi K, Takeda E (1988) A 25 μm2, new poly-Si PMOS load (PPL) SRAM cell having excellent soft error immunity. In: 1988 IEDM Technical Digest, pp 48–51Google Scholar
  26. 26.
    Yoshida T, Kinugawa M, Kanabayashi S, Onga S, Ishihara M, Mikata Y (1991) Crystallization technology for low voltage operated TFT. In: 1991 IEDM Technical Digest, pp 843–846Google Scholar
  27. 27.
    Itabashi K, Mizutani K, Koga T, Masato M, Kawashima S, Sakata M, Ema T, Yabu T, Yoyoda K, Suzuki N, Shimada H (1991) A split wordline cell for 16 Mb SRAM using polysilicon sidewall contacts. In: 1991 IEDM Technical Digest, pp 477–480Google Scholar
  28. 28.
    Helm M, Kavanaugh W, Liew BK, Petti C, Stolmeijer A, Ben-Tzur M, Bornstein J, Lilygren J, Ting W, Trammel P, Allan J, Gray G, Hartranft M, Radigan S, Shanmugan JK, Shrivastava R (1993) A low-cost, microprocessor compatible, 18.4 μm2 6-T bulk cell technology for high speed SRAMS. In: Symposium on VLSI Technology, 1993, Digest of Technical Papers, pp 65–66Google Scholar
  29. 29.
    Chen Y-C, Chen CF, Chen CT, Yu JY, Wu S, Lung SL, Liu R, Lu C-Y (2003) An access-transistor-free (0/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching self-rectifying chalcogenide device. In: 2003 IEDM Technical Digest, pp 905–908Google Scholar
  30. 30.
    Baek IG, Kim DC, Lee MJ, Kim HJ, Yim EK, Lee MS, Lee JE, Ahn SE, Seo S, Lee JH, Park JC, Cha YK, Park SO, Kim HS, Yoo IK, Chung U-I, Moon JT, Ryu BI (2005) Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In: 2005 IEDM Technical Digest, pp 750–753Google Scholar
  31. 31.
    Crowley M, Al-Shamma A, Bosch D, Farmwald M, Fasoli L, Ilkbahar A, Johnson M, Kleveland B, Lee T, Liu T-Y, Nguyen Q, Scheuerlein R, So K, Thorp T (2003) 512 Mb PROM with 8 layers of antifuse/diode cells. In: 2003 IEEE International Solid State Circuits Conference Digest of Technical Papers, p 284Google Scholar
  32. 32.
    Herner SB, Bandyopadhyay A, Dunton SV, Eckert V, Gu J, Hsia KJ, Hu S, Jahm C, Kidwell D, Konevecki M, Mahajani M, Park K, Petti C, Radigan SR, Raghuram U, Vienna J, Vyvoda MA (2004) Vertical p-i-n polysilicon diode with antifuse for stackable field-programmable ROM. IEEE Electron Device Lett. 25:271–273CrossRefGoogle Scholar
  33. 33.
    Herner SB, Bandyopadhyay A, Jahn C, Kidwell D, Petti CJ, Walker AJ (2006) Polycrystalline memory switching: Electrothermal-induced order. IEEE Trans Electron Devices 53: 2320–2326CrossRefGoogle Scholar
  34. 34.
    Kroon MA, van Swaajj RACMM (2001) Spatial effects on ideality factor of amorphous silicon pin diodes. J Appl Phys 90:994–1000CrossRefGoogle Scholar
  35. 35.
    Johnson M, Al-Shamma A, Bosch D, Crowley M, Farmwald M, Fasoli L, Ilkbahar A, Kleveland B, Lee T, Liu T-Y, Nguyen Q, Scheuerlein R, So K, Thorp T (2003) 512 Mb PROM with a three-dimensional array of diode/antifuse cells. IEEE J Solid-State Circuits 38:1920–1927CrossRefGoogle Scholar
  36. 36.
    Wegener H, Lincoln A, Pao H, O’Connell M, Oleksiak R (1967) The variable threshold transistor, a new electrically-alterable, non-destructive read-only storage device. In: 1967 IEDM Technical Digest, p 70Google Scholar
  37. 37.
    White M, Adams D, Bu J (2000) On the go with SONOS. In: 2000 IEEE Circuits and Devices Magazine 16, pp 22–31CrossRefGoogle Scholar
  38. 38.
    Walker A, Nallamothu S, Chen E, Mahajani M, Herner SB, Clark M, Cleeves J, Dunton V, Eckert V, Gu J, Hu S, Knall J, Konevecki M, Petti C, Radigan S, Raghuram U, Vienna J, Vyvoda M (2003) 3D TFT-SONOS memory cell for ultra-high density file storage applications. In: 2003 Symposium on VLSI Technology, pp 29–30Google Scholar
  39. 39.
    Lai E, Lue H, Hsiao Y, Hsieh J, Lee S, Lu C, Wang S, Yang L, Chen K, Gong J, Hsieh K, Ku J, Liu R, Lu C (2006) A highly stackable thin-film transistor (TFT) NAND-type flash memory. In: 2006 Symposium on VLSI Technology, pp 46–47Google Scholar
  40. 40.
    Prall K (2007) Scaling non-volatile memory below 30 nm. In: 2007 22 nd IEEE Non-Volatile Semiconductor Memory Workshop, pp 5–10Google Scholar
  41. 41.
    Wong S, El-Gamal A, Griffin P, Nishi Y, Pease F, Plummer J (2007) Monolithic 3D integrated circuits. In: 2007 International Symposium on VLSI Technology, Systems and Applications, pp 1–4Google Scholar
  42. 42.
    Stan MR, Rose GS, Zielger M (2006) Hybrid CMOS/molecular circuits. In: Proceedings of the 19th International Conference on VLSI Design, pp 703–708Google Scholar
  43. 43.
    Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sarnpaio J, Raymo F, Stoddart JF, Heath JR (2000) A [2]Catenane-based solid state electronically reconfigurable switch. Science 289:1172–1179CrossRefGoogle Scholar
  44. 44.
    Chen W, Liu X, Tan Z, Likharev KK, Lukens JE, Mayr A (2006) Fabrication and characterization of novel cross point structures for molecular electronic integrated circuits. J Vac Sci Technol B. 24:3217–3220CrossRefGoogle Scholar
  45. 45.
    Ahn JH, Kim HS, Lee KJ, Jeon S, Kang SJ, Sun Y, Nuzzo RG, Rogers JA (2006) Heterogeneous three dimensional electronics by use of printed semiconductor nanomaterials. Science 314:1754–1757CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christopher Petti
    • 1
  • S. Brad Herner
  • Andrew Walker
  1. 1.SanDisk CorporationMilpitasUSA

Personalised recommendations