Trapping Phenomena in Nanocrystalline Semiconductors

  • Magdalena Lidia Ciurea
Part of the Nanostructure Science and Technology book series (NST)


In this chapter, trapping phenomena in nanocrystalline semiconductors (materials and devices) are presented and analyzed. The small number of atoms in a nanocrystalline semiconductor makes the contributions of the traps to different phenomena much more important as compared to a bulk semiconductor. The conventional (experimental) methods most frequently used for the investigation of traps are described. I also discuss which methods are suitable to be used for the trap investigation in nanocrystalline semiconductors and what are the trap parameters that can thus be obtained. The application of these methods, together with different non-conventional methods, to the study of the traps in nanocrystalline semiconductors, is presented. The role of the traps in possible applications as well as functioning problems of different devices is outlined.


Deep Level Transient Spectroscopy Surface Trap Trapping Center Coulomb Blockade Thermally Stimulate Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was partially supported from the CEEX-CERES 13/2006 Project in the frame of the First National Plan for Research and Development.


  1. 1.
    R. H. Bube, Photoelectronic properties of semiconductors. Cambridge University Press, pp. 1–70, 149–188 (1992).Google Scholar
  2. 2.
    S. M. Ryvkin, Photoelectric effects in semiconductors, Consultant Bureau, New York, pp. 1–19, 88–156 (1964).Google Scholar
  3. 3.
    D. A. Faux, J. R. Downes, and E. P. O’Reilly, J. Appl. Phys. 82, 3754 (1997).CrossRefGoogle Scholar
  4. 4.
    A. Benfilda, Proc. 1st Int. Workshop Semicond. Nanocryst. SEMINANO, Budapest 2005, 1, 123 (2005).Google Scholar
  5. 5.
    S. Huang, and S. Oda, Appl. Phys. Lett. 87, 173107 (2005).CrossRefGoogle Scholar
  6. 6.
    J. Heitmann, F. Müller, L. X. Yi, M. Zacharias, D. Kovalev, and F. Eichhorn, Phys. Rev. B 69, 195309 (2004).CrossRefGoogle Scholar
  7. 7.
    M. L. Ciurea, V. S. Teodorescu, V. Iancu, and I. Balberg, Chem. Phys. Lett. 423, 225 (2006).CrossRefGoogle Scholar
  8. 8.
    M. L. Ciurea, V. Iancu, and R. M. Mitroi, Solid St. Electron. 51, 1328 (2007).Google Scholar
  9. 9.
    E. Lusky, Y. Shacham-Diamand, A. Shappir, I. Bloom, and B. Eitan, Appl. Phys. Lett. 85, 669 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Huang, S. Banerjee, and S. Oda, Mat. Res. Soc. Symp. Proc. 686, A8.8.1 (2002).Google Scholar
  11. 11.
    S. Huang, S. Banerjee, R. T. Tung, and S. Oda, J. Appl. Phys. 93, 576 (2003).CrossRefGoogle Scholar
  12. 12.
    G. Bersuker, A. Korkin, Y. Jeon, and H. R. Huff, Appl. Phys. Lett. 80, 832 (2002).CrossRefGoogle Scholar
  13. 13.
    A. Neugroschel, L. Wang, and G. Bersuker, J. Appl. Phys. 96, 388 (2004).CrossRefGoogle Scholar
  14. 14.
    J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan, Appl. Phys. Lett. 87, 204106 (2005).CrossRefGoogle Scholar
  15. 15.
    D. V. Lang, J. Appl. Phys. 45, 3023 (1974).CrossRefGoogle Scholar
  16. 16.
    D. Cavalcoli, A. Cavallini, M. Rossi, and S. Pizzini, Fizika i Tehnika Poluprovodnikov 41, 435 (2007).Google Scholar
  17. 17.
    G. L. Miller, IEEE Trans. Electron. Devices ED-19, 1103 (1972).CrossRefGoogle Scholar
  18. 18.
    J. C. Balland, J. P. Zielinger, C. Noguet, and M. Tapiero, J. Phys. D. 19, 57 (1986).CrossRefGoogle Scholar
  19. 19.
    J. C. Balland, J. P. Zielinger, M. Tapiero, J. G. Gross, and C. Noguet, J. Phys. D. 19, 71 (1986).CrossRefGoogle Scholar
  20. 20.
    O. V. Brodovoy, V. A. Skryshevsky, and V. A. Brodovoy, Sol. St. Electron. 46, 83 (2002).CrossRefGoogle Scholar
  21. 21.
    I. S. Virt, M. Bester, M. Kuzma, and V. D. Popovych, Thin Solid Films 451–452, 184 (2004).CrossRefGoogle Scholar
  22. 22.
    T. Behnke, M. Doucet, N. Ghodbane, and A. Imhof, Nucl. Phys. B – Proc. Suppl. 125, 263 (2002).CrossRefGoogle Scholar
  23. 23.
    M. L. Ciurea, I. Baltog, M. Lazar, V. Iancu, S. Lazanu, and E. Pentia, Thin Solid Films 325, 271 (1998).CrossRefGoogle Scholar
  24. 24.
    P. Müller, Phys. Stat. Sol. A 23, 165 (1974).CrossRefGoogle Scholar
  25. 25.
    P. Müller, Phys. Stat. Sol. A 23, 393 (1974).CrossRefGoogle Scholar
  26. 26.
    T. Botila, and N. Croitoru, Phys. Stat. Sol. A. 19, 357 (1973).CrossRefGoogle Scholar
  27. 27.
    M. L. Ciurea, M. Draghici, S. Lazanu, V. Iancu, A. Nasiopoulou, V. Ioannou, and V. Tsakiri, Appl. Phys. Lett. 76, 3067 (2000).CrossRefGoogle Scholar
  28. 28.
    V. Iancu, M. L. Ciurea, and M. Draghici, J. Appl. Phys. 94, 216 (2003).CrossRefGoogle Scholar
  29. 29.
    J. Walters, G. I. Bourianoff, and H. A. Atwater, Nat. Mater. 4, 143 (2005).CrossRefGoogle Scholar
  30. 30.
    E. A. Boer, M. L. Brongersma, H. A. Atwater, R. C. Flagan, and L. D. Bell, Appl. Phys. Lett. 79, 791 (2001).CrossRefGoogle Scholar
  31. 31.
    M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet, and S. Deleonibus, Eur. Phys. J. B 54, 299 (2006).CrossRefGoogle Scholar
  32. 32.
    M. L. Ciurea, V. Iancu, V. S. Teodorescu, L. C. Nistor, and M. G. Blanchin, J. Electrochem. Soc. 146, 3516 (1999).CrossRefGoogle Scholar
  33. 33.
    M. Draghici, M. Miu, V. Iancu, A. Nassiopoulou, I. Kleps, A. Angelescu, and M. L. Ciurea, Phys. Stat. Sol. A 182, 239 (2000).CrossRefGoogle Scholar
  34. 34.
    V. Ioannou-Sougleridis, A.G. Nassiopoulou, M. L. Ciurea, F. Bassani, and F. Arnaud d’Avitaya, Mater. Sci. Eng. C 15, 45 (2001).CrossRefGoogle Scholar
  35. 35.
    M. Draghici, L. Jdira, V. Iancu, V. Ioannou-Sougleridis, A. Nassiopoulou, and M. L. Ciurea, Proc. IEEE CN 02TH8618, Int. Semicond. Conf. CAS 2002, 1, 119 (2002).Google Scholar
  36. 36.
    G. Bersuker, P. Zeitzoff, J. H. Sim, B. H. Lee, R. Choi, G. Brown, and C. D. Young, Appl. Phys. Lett. 87, 042905 (2005).CrossRefGoogle Scholar
  37. 37.
    D. J. Meyer, N. A. Bohna, P. M. Lenahan, and A. J. Lelis, Appl. Phys. Lett. 84, 3406 (2004).CrossRefGoogle Scholar
  38. 38.
    D. J. Lepine, Phys. Rev. B 6, 436 (1972).CrossRefGoogle Scholar
  39. 39.
    P. S. Dorozhkin and Z.-C. Dong, Appl. Phys. Lett. 85, 4490 (2004).CrossRefGoogle Scholar
  40. 40.
    K. H. Kim, K. N. Oh, and S. U. Kim, J. Kor. Phys. Soc. 41, 471 (2002).Google Scholar
  41. 41.
    R. Verberk, A. M. van Oijen, and M. Orrit, Phys. Rev. B 66, 233202 (2002).CrossRefGoogle Scholar
  42. 42.
    D. E. Gómez, J. van Embden, J. Jasieniak, T. A. Smith, and P. Mulvaney, Small 2, 204 (2006).Google Scholar
  43. 43.
    C. McGinley, H. Borchert, D. V. Talapin, S. Adam, A. Lobo, A. R. B. de Castro, M. Haase, H. Weller, and T. Möller, Phys. Rev. B 69, 045301 (2004).CrossRefGoogle Scholar
  44. 44.
    M. Gal, L. V. Dao, E. Kraft, M. B. Johnston, C. Carmody, H. H. Tan, and C. Jagadish, J. Luminesc. 96, 287 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Magdalena Lidia Ciurea
    • 1
  1. 1.National Institute of Materials PhysicsBucharestRomania

Personalised recommendations