Skip to main content

Trapping Phenomena in Nanocrystalline Semiconductors

  • Chapter
Nanoelectronics and Photonics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, trapping phenomena in nanocrystalline semiconductors (materials and devices) are presented and analyzed. The small number of atoms in a nanocrystalline semiconductor makes the contributions of the traps to different phenomena much more important as compared to a bulk semiconductor. The conventional (experimental) methods most frequently used for the investigation of traps are described. I also discuss which methods are suitable to be used for the trap investigation in nanocrystalline semiconductors and what are the trap parameters that can thus be obtained. The application of these methods, together with different non-conventional methods, to the study of the traps in nanocrystalline semiconductors, is presented. The role of the traps in possible applications as well as functioning problems of different devices is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. H. Bube, Photoelectronic properties of semiconductors. Cambridge University Press, pp. 1–70, 149–188 (1992).

    Google Scholar 

  2. S. M. Ryvkin, Photoelectric effects in semiconductors, Consultant Bureau, New York, pp. 1–19, 88–156 (1964).

    Google Scholar 

  3. D. A. Faux, J. R. Downes, and E. P. O’Reilly, J. Appl. Phys. 82, 3754 (1997).

    Article  CAS  Google Scholar 

  4. A. Benfilda, Proc. 1st Int. Workshop Semicond. Nanocryst. SEMINANO, Budapest 2005, 1, 123 (2005).

    Google Scholar 

  5. S. Huang, and S. Oda, Appl. Phys. Lett. 87, 173107 (2005).

    Article  Google Scholar 

  6. J. Heitmann, F. Müller, L. X. Yi, M. Zacharias, D. Kovalev, and F. Eichhorn, Phys. Rev. B 69, 195309 (2004).

    Article  Google Scholar 

  7. M. L. Ciurea, V. S. Teodorescu, V. Iancu, and I. Balberg, Chem. Phys. Lett. 423, 225 (2006).

    Article  CAS  Google Scholar 

  8. M. L. Ciurea, V. Iancu, and R. M. Mitroi, Solid St. Electron. 51, 1328 (2007).

    Google Scholar 

  9. E. Lusky, Y. Shacham-Diamand, A. Shappir, I. Bloom, and B. Eitan, Appl. Phys. Lett. 85, 669 (2004).

    Article  CAS  Google Scholar 

  10. S. Huang, S. Banerjee, and S. Oda, Mat. Res. Soc. Symp. Proc. 686, A8.8.1 (2002).

    Google Scholar 

  11. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, J. Appl. Phys. 93, 576 (2003).

    Article  CAS  Google Scholar 

  12. G. Bersuker, A. Korkin, Y. Jeon, and H. R. Huff, Appl. Phys. Lett. 80, 832 (2002).

    Article  CAS  Google Scholar 

  13. A. Neugroschel, L. Wang, and G. Bersuker, J. Appl. Phys. 96, 388 (2004).

    Article  Google Scholar 

  14. J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan, Appl. Phys. Lett. 87, 204106 (2005).

    Article  Google Scholar 

  15. D. V. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  CAS  Google Scholar 

  16. D. Cavalcoli, A. Cavallini, M. Rossi, and S. Pizzini, Fizika i Tehnika Poluprovodnikov 41, 435 (2007).

    Google Scholar 

  17. G. L. Miller, IEEE Trans. Electron. Devices ED-19, 1103 (1972).

    Article  Google Scholar 

  18. J. C. Balland, J. P. Zielinger, C. Noguet, and M. Tapiero, J. Phys. D. 19, 57 (1986).

    Article  CAS  Google Scholar 

  19. J. C. Balland, J. P. Zielinger, M. Tapiero, J. G. Gross, and C. Noguet, J. Phys. D. 19, 71 (1986).

    Article  CAS  Google Scholar 

  20. O. V. Brodovoy, V. A. Skryshevsky, and V. A. Brodovoy, Sol. St. Electron. 46, 83 (2002).

    Article  CAS  Google Scholar 

  21. I. S. Virt, M. Bester, M. Kuzma, and V. D. Popovych, Thin Solid Films 451–452, 184 (2004).

    Article  Google Scholar 

  22. T. Behnke, M. Doucet, N. Ghodbane, and A. Imhof, Nucl. Phys. B – Proc. Suppl. 125, 263 (2002).

    Article  Google Scholar 

  23. M. L. Ciurea, I. Baltog, M. Lazar, V. Iancu, S. Lazanu, and E. Pentia, Thin Solid Films 325, 271 (1998).

    Article  CAS  Google Scholar 

  24. P. Müller, Phys. Stat. Sol. A 23, 165 (1974).

    Article  Google Scholar 

  25. P. Müller, Phys. Stat. Sol. A 23, 393 (1974).

    Article  Google Scholar 

  26. T. Botila, and N. Croitoru, Phys. Stat. Sol. A. 19, 357 (1973).

    Article  CAS  Google Scholar 

  27. M. L. Ciurea, M. Draghici, S. Lazanu, V. Iancu, A. Nasiopoulou, V. Ioannou, and V. Tsakiri, Appl. Phys. Lett. 76, 3067 (2000).

    Article  CAS  Google Scholar 

  28. V. Iancu, M. L. Ciurea, and M. Draghici, J. Appl. Phys. 94, 216 (2003).

    Article  CAS  Google Scholar 

  29. J. Walters, G. I. Bourianoff, and H. A. Atwater, Nat. Mater. 4, 143 (2005).

    Article  CAS  Google Scholar 

  30. E. A. Boer, M. L. Brongersma, H. A. Atwater, R. C. Flagan, and L. D. Bell, Appl. Phys. Lett. 79, 791 (2001).

    Article  CAS  Google Scholar 

  31. M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet, and S. Deleonibus, Eur. Phys. J. B 54, 299 (2006).

    Article  CAS  Google Scholar 

  32. M. L. Ciurea, V. Iancu, V. S. Teodorescu, L. C. Nistor, and M. G. Blanchin, J. Electrochem. Soc. 146, 3516 (1999).

    Article  CAS  Google Scholar 

  33. M. Draghici, M. Miu, V. Iancu, A. Nassiopoulou, I. Kleps, A. Angelescu, and M. L. Ciurea, Phys. Stat. Sol. A 182, 239 (2000).

    Article  CAS  Google Scholar 

  34. V. Ioannou-Sougleridis, A.G. Nassiopoulou, M. L. Ciurea, F. Bassani, and F. Arnaud d’Avitaya, Mater. Sci. Eng. C 15, 45 (2001).

    Article  Google Scholar 

  35. M. Draghici, L. Jdira, V. Iancu, V. Ioannou-Sougleridis, A. Nassiopoulou, and M. L. Ciurea, Proc. IEEE CN 02TH8618, Int. Semicond. Conf. CAS 2002, 1, 119 (2002).

    Google Scholar 

  36. G. Bersuker, P. Zeitzoff, J. H. Sim, B. H. Lee, R. Choi, G. Brown, and C. D. Young, Appl. Phys. Lett. 87, 042905 (2005).

    Article  Google Scholar 

  37. D. J. Meyer, N. A. Bohna, P. M. Lenahan, and A. J. Lelis, Appl. Phys. Lett. 84, 3406 (2004).

    Article  CAS  Google Scholar 

  38. D. J. Lepine, Phys. Rev. B 6, 436 (1972).

    Article  CAS  Google Scholar 

  39. P. S. Dorozhkin and Z.-C. Dong, Appl. Phys. Lett. 85, 4490 (2004).

    Article  CAS  Google Scholar 

  40. K. H. Kim, K. N. Oh, and S. U. Kim, J. Kor. Phys. Soc. 41, 471 (2002).

    CAS  Google Scholar 

  41. R. Verberk, A. M. van Oijen, and M. Orrit, Phys. Rev. B 66, 233202 (2002).

    Article  Google Scholar 

  42. D. E. Gómez, J. van Embden, J. Jasieniak, T. A. Smith, and P. Mulvaney, Small 2, 204 (2006).

    Google Scholar 

  43. C. McGinley, H. Borchert, D. V. Talapin, S. Adam, A. Lobo, A. R. B. de Castro, M. Haase, H. Weller, and T. Möller, Phys. Rev. B 69, 045301 (2004).

    Article  Google Scholar 

  44. M. Gal, L. V. Dao, E. Kraft, M. B. Johnston, C. Carmody, H. H. Tan, and C. Jagadish, J. Luminesc. 96, 287 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was partially supported from the CEEX-CERES 13/2006 Project in the frame of the First National Plan for Research and Development.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ciurea, M.L. (2008). Trapping Phenomena in Nanocrystalline Semiconductors. In: Korkin, A., Rosei, F. (eds) Nanoelectronics and Photonics. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76499-3_8

Download citation

Publish with us

Policies and ethics