Skip to main content

Density Functional Theory of High-k Dielectric Gate Stacks

  • Chapter
Nanoelectronics and Photonics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Density functional theory has proved to be a useful tool in device engineering, particularly at nanoscale and when novel materials are involved. In this chapter we briefly introduce the theoretical background necessary for understanding the modern theory of solid state and review recent theoretical results in the area of advanced gate stack materials engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born and R. Oppenheimer, Ann. Phys. 84, 458 (1927).

    Google Scholar 

  2. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Article  Google Scholar 

  3. W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  4. J.R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).

    Article  CAS  Google Scholar 

  5. M.C. Payne, M.P. Teter, D.C. Alan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  6. J.C. Philips and L. Kleinman, Phys. Rev. 116, 287 (1959).

    Article  Google Scholar 

  7. D. Hamann, M. Schluter, Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    Google Scholar 

  8. N. Trulier, and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  Google Scholar 

  9. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  10. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, (Clarendon Press, New York, 1988).

    Google Scholar 

  11. D.M. Bylander and L. Kleinman, Phys. Rev. B 36, 3229 (1987).

    Article  CAS  Google Scholar 

  12. C.G. Van de Walle and R.M. Martin, Phys. Rev. B 39, 1871 (1989).

    Article  Google Scholar 

  13. R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Article  CAS  Google Scholar 

  14. G. Kresse and J. Furtmuller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  15. V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, and R.H. Nobes, J. Quant. Chem. 77, 895 (2000).

    CAS  Google Scholar 

  16. J.P. Lewis, K.R. Glaesemann, G.A. Voth, J. Fritsch, A.A. Demkov, J. Ortega, and O.F. Sankey, Phys. Rev. B 64, 195103 (2001).

    Article  Google Scholar 

  17. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter14, 2745 (2002).

    Article  CAS  Google Scholar 

  18. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    CAS  Google Scholar 

  19. M.J. Frisch et al., GAUSSIAN 98, (Gaussian, Inc., Pittsburgh, PA, 1998).

    Google Scholar 

  20. S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, Plane wave self-consistent field (URL: http://www.pwscf.org).

  21. X. Gonze, D.C. Allan, M.P. Teter, Phys. Rev. Lett. 68, 3603 (1992). (URL: http://www.abinit.org.).

    Google Scholar 

  22. M. Städele, J.A. Majewski, P. Vogl, and A. Görling, Phys. Rev. Lett. 79, 2089 (1997); M. Städele, M. Moukara, J. A. Majewski, and P. Vogl, Phys. Rev. B 59, 10031 (1999).

    Google Scholar 

  23. F. Aryasetiawan and O. Gunnarsson, Phys. Rev. Lett. 74, 3221 (1995).

    Article  CAS  Google Scholar 

  24. M. Rohlfing and S.G. Louie, Phys. Rev. B 62, 4927 (2000).

    Article  CAS  Google Scholar 

  25. A.A. Demkov and A. Navrotsky, Eds., Materials Fundamentals of Gate Dielectrics, (Springer, Dordrecht, 2005).

    Google Scholar 

  26. R.O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689 (1989).

    Article  CAS  Google Scholar 

  27. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  28. M. Arai and T. Fujiwara, Phys. Rev. B 51, 1477 (1995).

    Article  CAS  Google Scholar 

  29. A. Filippetti and N.A. Spaldin, Phys. Rev. B 67, 125109 (2003).

    Article  Google Scholar 

  30. V.I. Anisimov and P. Kuiper, et al., Phys. Rev. B 50, 8257(1994).

    Article  CAS  Google Scholar 

  31. K.W. Lee and W.E. Pickett, Phys. Rev. B 73, 174428 (2006).

    Article  Google Scholar 

  32. N.I. Medvedeva, V.P. Zhukov, M. Ya Khodos, and V.A. Gubanov, Phys. Status Solidi B 160, 517 (1990).

    Google Scholar 

  33. J.E. Lowther, J.K. Dewhurst, J.M. Leger, et al., Phys. Rev. B 60, 14485 (1999).

    Article  CAS  Google Scholar 

  34. A.A. Demkov, Phys. Stat. Sol. B 226, 57 (2001).

    Article  CAS  Google Scholar 

  35. X.Y. Zhao and D. Vanderbilt, Phys. Rev. B 65, 075105 (2002).

    Article  Google Scholar 

  36. X.Y. Zhao and D. Vanderbilt, Phys. Rev. B 65, 233106 (2002).

    Article  Google Scholar 

  37. R. Terki, H. Feraoun, G. Bertrand, et al., Comp. Mat. Sci. 33, 44 (2005).

    Article  CAS  Google Scholar 

  38. G.M. Rignanese, X. Gonze, G. Jun, et al., Phys. Rev. B 69, 184301 (2004).

    Article  Google Scholar 

  39. D. Vanderbilt, X.Y. Zhao, and D. Ceresoli, Thin. Solid Films 486, 125 (2005); X.Y. Zhao, D. Ceresoli, and D. Vanderbilt, Phys. Rev. B 71, 085107 (2005).

    Google Scholar 

  40. R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828 (1994).

    Article  CAS  Google Scholar 

  41. K. Parlinski, Z.Q. Li, et al., Phase Transitions 67, 681 (1999).

    Article  CAS  Google Scholar 

  42. D. Vanderbilt and W. Zhong, Ferroelectrics 206, 181 (1998).

    Article  Google Scholar 

  43. W. Zhong, D. Vanderbilt, and K.M. Rabe, Phys. Rev. B 52, 6301 (1995).

    Article  CAS  Google Scholar 

  44. P. Ghosez, E. Cockayne, U.V. Waghmare, et al., Phys. Rev. B 60, 836 (1999).

    Article  CAS  Google Scholar 

  45. M.T. Dove, Amer. Mineral. 82, 213 (1997).

    CAS  Google Scholar 

  46. M. Sternik and K. Parlinski, J. Chem. Phys. 123, 204708 (2005).

    CAS  Google Scholar 

  47. K. Parlinski, Z.Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).

    Article  CAS  Google Scholar 

  48. A.P. Mirgorodsky, M.B. Smirnov, T. Merle-Mejean, et al., J. Mat. Sci. 34, 4845 (1999).

    CAS  Google Scholar 

  49. S. Fabris, A.T. Paxton, and M.W. Finnis, Phys. Rev. B 63, 094101 (2001).

    Article  Google Scholar 

  50. S. Zafar, B.H. Lee, and J.H. Stathis, IEEE Electron Device Lett. 25, 153 (2004).

    Article  CAS  Google Scholar 

  51. M. Houssa, M. Aoulaice, S. Van Elshocht, S De Gent, G. Groeseneken, and M.M. Heyns, Appl. Phys. Lett. 86, 173509 (2005).

    Article  Google Scholar 

  52. A.S. Foster, F. Lopes Gejo, A.L. Shluger, and R.M. Neiminen, Phys. Rev. B 65, 174117 (2002).

    Google Scholar 

  53. K. Xiong, J. Robertson, Microelectronics Engineering 80, 408 (2005).

    Article  CAS  Google Scholar 

  54. B. Kralik, E.K. Chang, and S.G. Louie, Phys. Rev. B. 57, 7027 (1998).

    Article  CAS  Google Scholar 

  55. W.L. Scopel, A.J.R. da Silva, W. Orellana, and A. Fazzio, Appl. Phys. Lett. 84, 1492 (2004).

    Google Scholar 

  56. A. Christensen and E. Carter, Phys. Rev. B 58, 8050 (1998).

    Article  CAS  Google Scholar 

  57. A.B. Mukhopadhyay, J.F. Sanz, and C.B. Musgrave, Phys. Rev. B 73, 115330 (2006).

    Article  Google Scholar 

  58. A.A. Demkov and O.F. Sankey, Phys. Rev. Lett. 83, 2038 (1999).

    Article  CAS  Google Scholar 

  59. J. Neaton, D. Muller, and N. Ashcroft, Phys. Rev. Lett. 85, 1298 (2000).

    Article  CAS  Google Scholar 

  60. V. Fiorentini and G. Gulleri, Phys. Rev. Lett. 89, 266101 (2002).

    Article  Google Scholar 

  61. J. Robertson, J. Non-Crystalline Solids 303, 94–100 (2002).

    Article  CAS  Google Scholar 

  62. R. Puthenkovilakam, E.A. Carter, and J.P. Chang, Phys. Rev. B 69, 155329 (2004).

    Article  Google Scholar 

  63. Y.F. Dong, S.J. Wang, Y.P. Feng, and A.C.H. Huan, Phys. Rev. B 73, 045302 (2006).

    Article  Google Scholar 

  64. L.R.C. Fonseca, A.A. Demkov and A. Knizhnik, Phys. Stat. Sol. B 239, 48 (2003).

    Article  CAS  Google Scholar 

  65. M. Evans, X. Zhang, J. Joannopoulos, and S. Pantelides, Phys. Rev. Lett. 95, 106802 (2005).

    Article  CAS  Google Scholar 

  66. J. Robertson and C.W. Chen, Appl. Phys. Lett. 74, 1168 (1999)

    Article  CAS  Google Scholar 

  67. W. Schottky, Zeits. Physik 118, 539 (1942).

    Article  CAS  Google Scholar 

  68. J. Bardeen, Phys. Rev. 71, 717 (1947).

    Article  Google Scholar 

  69. J. Tersoff, Phys. Rev. B 30, 4874 (1984).

    Article  CAS  Google Scholar 

  70. A.A. Demkov, L. Fonseca, E. Verret, J. Tomfohr, and O.F. Sankey, Phys. Rev. B 71, 195306 (2005).

    Article  Google Scholar 

  71. S. Tang, R.M. Wallace, A. Sebaugh, and D. King-Smith, Appl. Surf. Sci. 135, 137 (1998).

    Article  CAS  Google Scholar 

  72. B. Tuttle, Phys. Rev. B 67, 155324 (2003).

    Article  Google Scholar 

  73. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).

    Article  CAS  Google Scholar 

  74. Y.T. Hou, M.F. Li, H.Y. Yu, and K.L. Kwong, Proceedings of the 2003 Symposia on VLSI Technology and Circuits (VLSI 2003).

    Google Scholar 

  75. M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Thin Solid Films 250, 72 (1994); P. Kisch et al., J. Appl. Phys. (2006).

    Google Scholar 

  76. R. Chau, IEEE Elec. Dev. Lett. 25, 408 (2004).

    Article  CAS  Google Scholar 

  77. O. Sharia, A.A. Demkov, G. Bersuker, and B.-H. Lee, Phys. Rev. B. 75, 035306 (2007).

    Google Scholar 

  78. S.M. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981).

    Google Scholar 

  79. C.C. Hobbs, L.R.C. Fonseca, A. Knizhnik, V. Dhandapani, S.B. Samavedam, W.J. Taylor, J.M. Grant, L.G. Dip, D.H. Triyoso, R.I. Hegde, D.C. Gilmer, R. Garcia, D. Roan, M.L. Lovejoy, R.S. Rai, E.A. Hebert, H.-H. Tseng, S.G.H. Anderson, B.E. White, and P.J. Tobin, IEEE Trans. Elec. Dev. 51, 971 and 978 (2004).

    Article  CAS  Google Scholar 

  80. A.A. Demkov, Phys. Rev. B 74, 085310 (2206).

    Google Scholar 

  81. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank many colleagues for insightful discussions we have had over the years and my graduate students at the University of Texas, Onise Sharia, Xuhui Luo and Jaekwang Lee, for their hard work and help with the manuscript. This work in part is supported by the National Science Foundation under grants DMR-0548182 and DMR-0606464 and by the Office of Naval Research under grant N000 14-06-1-0362.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Demkov, A.A. (2008). Density Functional Theory of High-k Dielectric Gate Stacks. In: Korkin, A., Rosei, F. (eds) Nanoelectronics and Photonics. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76499-3_7

Download citation

Publish with us

Policies and ethics