Advertisement

Transport in Nanostructures

  • Stephen M. Goodnick
Part of the Nanostructure Science and Technology book series (NST)

Introduction

The past decade has witnessed an enormous growth of a quite diverse set of multidisciplinary science and engineering disciplines broadly falling under an umbrella called ‘nanotechnology’. Nanotechnology literally implies technology at nanometer scale dimensions (10–9m). From that standpoint, nanotechnology is not a recent phenomenon; nanostructured materials have been used for centuries to enhance the properties of tools, ceramics, building materials, etc. (tempered steel used for sword making is a good example). However, the historical applications of nanotechnology were purely empirical, with no underlying knowledge of the nanoscale material structure. In contrast, the current nanotechnology revolution is driven by and large by our ability to probe, analyze, and manipulate matter at this size scale. The transition from the ‘macro’ to ‘micro’ to ‘nano’ is not abrupt, but occurs smoothly over multiple length scales. As a result, there is quite a bit of ambiguity, in what...

Keywords

Single Electron Tunnel Junction Coulomb Blockade Boltzmann Transport Equation Resonant Tunneling Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Binnig and H. Rohrer, Appl. Phys. Lett. 40, 178 (1982).CrossRefGoogle Scholar
  2. 2.
    2006 International Technology Roadmap of Semiconductors, http://public.itrs.net/
  3. 3.
    R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, IEEE Trans. Nanotechnol. 4, 153 (2005).CrossRefGoogle Scholar
  4. 4.
    D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge University Press, Cambridge, 1997.CrossRefGoogle Scholar
  5. 5.
    M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaegne, and M. M. Heyns, Solid-State Electron. 38, 1465 (1995).CrossRefGoogle Scholar
  6. 6.
    M. Leong, H.-S. Wong, E. Nowak, J. Kedzierski, and E. Jones, Proceedings of the International Symposium on QED2002, 492 (2002).Google Scholar
  7. 7.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
  8. 8.
    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, and D. C. Peacock, J. Phys. C 21, L209 (1988).CrossRefGoogle Scholar
  9. 9.
    S. Washburn, in Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb (eds.) (Elsevier, North-Holland, Amsterdam, 1991) pp. 1–36.Google Scholar
  10. 10.
    R. E. Prange and S. M. Girvin (eds.) The Quantum Hall Effect, 2 nd Edition (Springer-Verlag, New York, 1990)Google Scholar
  11. 11.
    F. Sols, M. Macucci, U. Ravaioli, and K. Hess, J. Appl. Phys. 66, 3892 (1989).CrossRefGoogle Scholar
  12. 12.
    S. Datta, Superlatt. Microstruct. 6, 83 (1989).CrossRefGoogle Scholar
  13. 13.
    A. Weisshaar, J. Lary, S. M. Goodnick, and V. K. Tripathi, Appl. Phys. Lett. 55, 2114 (1989).CrossRefGoogle Scholar
  14. 14.
    L. Worschech, B. Weidner, S. Reitzenstein, and A. Forchel, Appl. Phys. Lett. 78, 3325 (2001).CrossRefGoogle Scholar
  15. 15.
    K. Hieke and M. Ulfward, Phys. Rev. B 62, 16727 (2000).CrossRefGoogle Scholar
  16. 16.
    K. K. Likharev, Proc. IEEE 87, 606 (1999).CrossRefGoogle Scholar
  17. 17.
    Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures, H. Grabert and M. H. Devoret (eds.) NATO ASI Series B 294 (Plenum Press, New York, 1992).Google Scholar
  18. 18.
    K. Likharev, IBM J. Res. Dev. 32, 144 (1988).CrossRefGoogle Scholar
  19. 19.
    L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 54, 2691 (1990).CrossRefGoogle Scholar
  20. 20.
    L. P. Kouwenhouven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).CrossRefGoogle Scholar
  21. 21.
    H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H. Devoret, Europhys. Lett. 17, 249 (1992).CrossRefGoogle Scholar
  22. 22.
    D. H. Kim, S.-K. Sung, K. R. Kim, J. D. Lee, B.-G. Park, B. Ho Choi, S. W. Hwang, and D. Ahn, IEEE Trans. ED 49, 627 (2002).CrossRefGoogle Scholar
  23. 23.
    C. Wasshuber, H. Kosina, S. Selberherr, IEEE Trans. CAD 16, 937 (1997).Google Scholar
  24. 24.
    Y. Cui and C. M. Lieber, Science 291, 851 (2001).CrossRefGoogle Scholar
  25. 25.
    R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 87, 256805 (2001).CrossRefGoogle Scholar
  26. 26.
    M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).CrossRefGoogle Scholar
  27. 27.
    L. Zhuang, L. Guo, and S. Y. Chou, Appl. Phys. Lett. 72, 1205 (1998).CrossRefGoogle Scholar
  28. 28.
    D. H. Kim, S.-K. Sung, K. R. Kim, J. D. Lee, B.-G. Park, B. Ho Choi, S. W. Hwang, and D. Ahn, IEEE Trans. ED 49, 627 (2002).CrossRefGoogle Scholar
  29. 29.
    K. Hiruma, M. Yazawa, T. Katsuyama, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995).CrossRefGoogle Scholar
  30. 30.
    H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, Nature 375, 769 (1995).CrossRefGoogle Scholar
  31. 31.
    Y. Cui, X. Duan, J. Hu, and C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000).CrossRefGoogle Scholar
  32. 32.
    M. T. Björk, B. J. Ohlsoon, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenbeg, and L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002).CrossRefGoogle Scholar
  33. 33.
    M. T. Björk, B. J. Ohlsoon, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenbeg, and L. Samuelson, Nano Lett. 2, 87 (2002).CrossRefGoogle Scholar
  34. 34.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, Inc., New York (1996).Google Scholar
  35. 35.
    D. K. Ferry, Semiconductors, Macmillan, New York, 1991.Google Scholar
  36. 36.
    D. Vasileska and S. M. Goodnick, “Computational Electronics,” Mater. Sci. Eng. Rep. R38, 181 (2002).CrossRefGoogle Scholar
  37. 37.
    L. I. Schiff, Quantum Mechanics, McGraw-Hill Inc., New York, 1955.Google Scholar
  38. 38.
    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer-Verlag, Vienna, 1989.Google Scholar
  39. 39.
    S. Yamakawa, S. Aboud, M. Saraniti, and S. M. Goodnick, Semicond. Sci. Technol. 19, S475 (2004).CrossRefGoogle Scholar
  40. 40.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).CrossRefGoogle Scholar
  41. 41.
    G. Bastard, J. A. Brum, and R. Ferreira, Solid State Phys. 44, 437 (1982)Google Scholar
  42. 42.
    R. Dingle, H. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).CrossRefGoogle Scholar
  43. 43.
    L. Pfeiffer et al., Appl. Phys. Lett. 55, 1888 (1989).CrossRefGoogle Scholar
  44. 44.
    B. J. F. Lin, D. C. Tsui, M. A. Paalanen, and A. C. Gossard, Appl. Phys. Lett. 45, 695 (1984).CrossRefGoogle Scholar
  45. 45.
    K. Hiruma, M. Yazawa, T. Katsuyama, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995).CrossRefGoogle Scholar
  46. 46.
    H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, Nature 375, 769 (1995).CrossRefGoogle Scholar
  47. 47.
    Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 149 (2003).CrossRefGoogle Scholar
  48. 48.
    X. Duan, C. Niu, V. Sahl, J. Chen, J. W. Parce, S. Empedocies, and J. L. Goldman, Nature 425, 274 (2003).CrossRefGoogle Scholar
  49. 49.
    M. T. Björk, B. J. Ohlsoon, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenbeg, and L. Samuelson, Appl. Phys. Lett. 81, 4458 (2002).CrossRefGoogle Scholar
  50. 50.
    C. Thelander, T. Martensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 83, 2052 (2003).CrossRefGoogle Scholar
  51. 51.
    Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, Science 302, 1377–1379 (2003).CrossRefGoogle Scholar
  52. 52.
    P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotechnol. 1, 78 (2002)CrossRefGoogle Scholar
  53. 53.
    E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, IEEE Trans. Nanotechnol. 6, 113 (2007).CrossRefGoogle Scholar
  54. 54.
    H. Majima, H. Ishikuro, and T. Hiramoto, IEEE Electron Device Lett. 21, 396 (2000).CrossRefGoogle Scholar
  55. 55.
    E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, J. Comput. Electron. accepted for publication (2008).Google Scholar
  56. 56.
    S. Iijama, Nature 363, 603 (1993).CrossRefGoogle Scholar
  57. 57.
    T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4, 35 (2004).CrossRefGoogle Scholar
  58. 58.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).CrossRefGoogle Scholar
  59. 59.
    L. Balents and M. P. A. Fisher, Phys. Rev. B 55, 11973 (1997).CrossRefGoogle Scholar
  60. 60.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).CrossRefGoogle Scholar
  61. 61.
    Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).CrossRefGoogle Scholar
  62. 62.
    R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).CrossRefGoogle Scholar
  63. 63.
    L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).CrossRefGoogle Scholar
  64. 64.
    T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Appl. Phys. Lett. 43, 588 (1983).CrossRefGoogle Scholar
  65. 65.
    S. Luryi, Appl. Phys. Lett. 47, 490 (1985).CrossRefGoogle Scholar
  66. 66.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957).CrossRefGoogle Scholar
  67. 67.
    R. Landauer, Philos. Mag. 21, 863 (1970).CrossRefGoogle Scholar
  68. 68.
    R. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).CrossRefGoogle Scholar
  69. 69.
    K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y. Simmons, M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie, Phys. Rev. B 58, 4846 (1998).CrossRefGoogle Scholar
  70. 70.
    G. Timp, Semiconductors and Semimetals, vol. 35, pp. 113–190, M. A. Reed (ed.) (Academic Press, New York, 1992).Google Scholar
  71. 71.
    J. C. Wu, M. N. Wybourne, A. Weisshaar, and S. M. Goodnick, J. Appl. Phys. 74, 4590 (1993).CrossRefGoogle Scholar
  72. 72.
    T. Palm and L. Thylén, Appl. Phys. Lett. 60, 237 (1992).CrossRefGoogle Scholar
  73. 73.
    T. Palm, Phys. Rev. B 52, 13773 (1995).CrossRefGoogle Scholar
  74. 74.
    J.-O. J Wesström, Phys. Rev. Lett. 82, 2564 (1999).CrossRefGoogle Scholar
  75. 75.
    H. Q. Xu, Appl. Phys. Lett. 78, 2064 (2001).CrossRefGoogle Scholar
  76. 76.
    H. Q. Xu, Appl. Phys. Lett. 80, 853 (2002).CrossRefGoogle Scholar
  77. 77.
    K. Hieke and M. Ulfward, Phys. Rev. B 62, 16727 (2000).CrossRefGoogle Scholar
  78. 78.
    L. Worschech, H. Q. Xu, A. Forchel, and L. Samuelson, Appl. Phys. Lett. 79, 3287 (2002).CrossRefGoogle Scholar
  79. 79.
    I. Shorubalko, H. Q. Xu, I. Maximov, P. Omling, L. Samuelson, and W. Seifert, Appl. Phys. Lett. 79, 1384 (2001).CrossRefGoogle Scholar
  80. 80.
    S. Kasai and H. Hasegawa, IEEE Electron Device Lett. 23, 446 (2002).CrossRefGoogle Scholar
  81. 81.
    H. Grabert and M. H. Devoret (eds.) Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures, NATO ASI Series B 294 (Plenum Press, New York, 1992).Google Scholar
  82. 82.
    C. Wasshuber, Computational Single-Electronics, Springer, New York, 2001.Google Scholar
  83. 83.
    T. A. Fulton and G. J. Dolan, Phy. Rev. Lett. 59, 109 (1987).CrossRefGoogle Scholar
  84. 84.
    L. S. Kuz’min and K. K. Likharev, JETP Lett. 45, 495 (1987).Google Scholar
  85. 85.
    D. V. Averin and K. K. Likharev, Single Electronics: A Correlated Transfer of Single Electrons and Cooper Pairs in Systems of Small Tunnel Junctions, B. L. Altshuler, P. A. Lee, and R. A. Webb (eds.) Mesoscopic Phenomena in Solids, pp. 173–271 (Amsterdam, Oxford, New York, Tokyo, 1991).Google Scholar
  86. 86.
    D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).CrossRefGoogle Scholar
  87. 87.
    C. Pasquier, U. Meirav, F. I. B. Williams, D. G. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 70, 69 (1993).CrossRefGoogle Scholar
  88. 88.
    R. H. Chen, A. N. Korotkov, and K. K. Likharev, Appl. Phys. Lett. 68, 1954 (1996).CrossRefGoogle Scholar
  89. 89.
    M. Kirihara, N. Kuwamura, K. Taniguchi, and C. Hamaguchi, Proceedings of the International Conference on Solid State Devices and Materials, Yokohama, 1994, pp. 328–330.Google Scholar
  90. 90.
    C. Wasshuber and H. Kosina, Superlattices and Microstructures 21, 37 (1997).CrossRefGoogle Scholar
  91. 91.
    L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 54, 2691 (1990)CrossRefGoogle Scholar
  92. 92.
    U. Meirav, M. A. Kastner, and S. J. Wind, Phys. Rev. Lett. 65, 771 (1990); M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).Google Scholar
  93. 93.
    L. P. Kouwenhouven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 67, 1626 (1991); Zeitschrift Physik B 85, 381 (1991).Google Scholar
  94. 94.
    F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Phys. Rev. Lett. 75, 705 (1995).CrossRefGoogle Scholar
  95. 95.
    E. S. Snow and P. M. Cambell, Science 270, 1639 (1995).CrossRefGoogle Scholar
  96. 96.
    K. Matsumoto, Phys. B 227, 92 (1996).CrossRefGoogle Scholar
  97. 97.
    H. Matsuoka and S. Kimura, Appl. Phys. Lett. 66, 613 (1995).CrossRefGoogle Scholar
  98. 98.
    M. Khoury, M. J. Rack, A. Gunther, and D. K. Ferry, Appl. Phys. Lett. 74, 1576 (1999); A. Gunther, M. Khoury, S. Milicic, D. Vasileska, T. Thornton, and S. M. Goodnick, Superlatt. Microstruct. 27, 373 (2000).Google Scholar
  99. 99.
    F. Simmel, D. Abusch-Magder, D. A. Wharam, M. A. Kastner, and J. P. Kotthaus, Phys. Rev. B 59, R10441 (1999).CrossRefGoogle Scholar
  100. 100.
    L. Zhuang, L. Guo, and S. Y. Chou, Appl. Phys. Lett. 72, 1205 (1998).CrossRefGoogle Scholar
  101. 101.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).CrossRefGoogle Scholar
  102. 102.
    M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Nano Lett. 4, 1621–1625 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen M. Goodnick
    • 1
  1. 1.Department of Electrical EngineeringArizona State UniversityTempeUSA

Personalised recommendations