Advertisement

Fundamentals of Spintronics in Metal and Semiconductor Systems

  • Roland K. Kawakami
  • Kathleen McCreary
  • Yan Li
Part of the Nanostructure Science and Technology book series (NST)

Introduction

Spintronics is a new paradigm for electronics which utilizes the electron’s spin in addition to its charge for device functionality [1, 2]. The primary areas for applications or potential applications are information storage, computing, and quantum information. In terms of materials, the study of spin in solids now includes metallic multilayers [1], inorganic semiconductors [2, 3], transition metal oxides [4, 5], organic semiconductors [6, 7, 8, 9, 10], and carbon nanostructures [11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22]. The diversity of materials studied for spintronics is a testament to the advances in synthesis, measurement, and interface control that lie at the heart of nano-electronics. In terms of technology, the discoveries of giant magnetoresistance (GMR) [23], tunneling magnetoresistance (TMR) [24], and spin torque [25] in metallic multilayers have led to significant advances in high-density hard drives and non-volatile random access memory. Advances in...

Keywords

Spin Polarization Orbit Coupling Spin Valve Free Layer Magnetic Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

RKK thanks his former research advisors—Z. Q. Qiu, D. D. Awschalom, and A. C. Gossard—for providing him with the opportunity to pursue research in these areas.

References

  1. 1.
    G. A. Prinz, Science 282, 1660 (1998).Google Scholar
  2. 2.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science 294, 1488 (2001).Google Scholar
  3. 3.
    D. D. Awschalom, N. Samarth, and D. Loss, Semiconductor Spintronics and Quantum Computation (Springler-Verlag, Berlin, 2002).Google Scholar
  4. 4.
    J. M. D. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999).Google Scholar
  5. 5.
    M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).Google Scholar
  6. 6.
    V. Dediu, M. Murgia, E. C. Matacotta, et al., Solid State Commun. 122, 181 (2002).Google Scholar
  7. 7.
    Z. H. Xiong, D. Wu, Z. V. Vardeny, et al., Nature 427, 821 (2004).Google Scholar
  8. 8.
    J. Petta, S. K. Slater, and D. C. Ralph, Phys. Rev. Lett. 93, 136601 (2004).Google Scholar
  9. 9.
    S. Majumdar, H. S. Majumdar, R. Laiho, et al., J. Alloys Compd. 423, 169 (2006).Google Scholar
  10. 10.
    S. Pramanik, C.-G. Stefanita, S. Patibandla, et al., Nat. Nanotechnol. 2, 216 (2007).Google Scholar
  11. 11.
    K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999).Google Scholar
  12. 12.
    B. Zhao, I. Monch, H. Vinzelberg, et al., Appl. Phys. Lett. 80, 3144 (2002).Google Scholar
  13. 13.
    J.-R. Kim, H. M. So, J.-J. Kim, et al., Phys. Rev. B 66, 233401 (2002).Google Scholar
  14. 14.
    S. Sahoo, T. Kontos, J. Furer, et al., Nat. Phys. 1, 99 (2005).Google Scholar
  15. 15.
    H. T. Man, J. W. Wever, and A. F. Morpurgo, Phys. Rev. B (Rapid Commun.) 73, 241401 (2006).Google Scholar
  16. 16.
    N. Tombros, S. J. van der Molen, and B. J. van Wees, Phys. Rev. B 73, 233403 (2006).Google Scholar
  17. 17.
    R. Thamankar, S. Niyogi, B. Y. Yoo, et al., Appl. Phys. Lett. 89, 033119 (2006).Google Scholar
  18. 18.
    L. E. Hueso, J. M. Pruneda, V. Ferrari, et al., Nature 445, 410 (2007).Google Scholar
  19. 19.
    N. Tombros, C. Jozsa, M. Popinciuc, et al., Nature 448, 571 (2007).Google Scholar
  20. 20.
    M. Nishioka and A. M. Goldman, Appl. Phys. Lett. 90, 252505 (2007).Google Scholar
  21. 21.
    W. H. Wang, K. Pi, Y. Li, et al., Phys. Rev. B (Rapid Commun.) 77, 020402 (2008).Google Scholar
  22. 22.
    S. Cho, Y.-F. Chen, and M. S. Fuhrer, Appl. Phys. Lett. 91, 123105 (2007).Google Scholar
  23. 23.
    M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
  24. 24.
    J. S. Moodera, L. R. Kinder, T. M. Wong, et al., Phys. Rev. Lett. 74, 3273 (1995).Google Scholar
  25. 25.
    E. B. Myers, D. C. Ralph, J. A. Katine, et al., Science 285, 867 (1999).Google Scholar
  26. 26.
    P. A. M. Dirac, The Principle Of Quantum Mechanics (Oxford University Press, Oxford, UK, 1958).Google Scholar
  27. 27.
    P. W. Shor, Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994), p. 124.Google Scholar
  28. 28.
    L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).Google Scholar
  29. 29.
    C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).Google Scholar
  30. 30.
    L. M. K. Vandersypen, S. M., G. Breyta, et al., Nature 414, 883 (2001).Google Scholar
  31. 31.
    J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).Google Scholar
  32. 32.
    J. M. Kikkawa, I. P. Smorchkova, N. Samarth, et al., Science 277, 1284 (1997).Google Scholar
  33. 33.
    S. Ghosh, V. Sih, W. H. Lau, et al., Appl. Phys. Lett. 86, 232507 (2005).Google Scholar
  34. 34.
    J. Z. Sun, Phys. Rev. B 62, 570 (2000).Google Scholar
  35. 35.
    M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).Google Scholar
  36. 36.
    F. J. Jedema, H. B. Heersche, A. T. Filip, et al., Nature 416, 713 (2002).Google Scholar
  37. 37.
    P. R. Hammar and M. Johnson, Phys. Rev. Lett. 88, 066806 (2002).Google Scholar
  38. 38.
    X. Lou, C. Adelmann, S. A. Crooker, et al., Nat. Phys. 3, 197 (2007).Google Scholar
  39. 39.
    P. Grunberg, R. Schreiber, Y. Pang, et al., Phys. Rev. Lett. 57, 2442 (1986).Google Scholar
  40. 40.
    P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192 (1971).Google Scholar
  41. 41.
    M. Julliere, Phys. Lett. 54A, 225 (1974).Google Scholar
  42. 42.
    S. S. P. Parkin, IBM J. Res. Dev. 42, 3 (1998).Google Scholar
  43. 43.
    M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).Google Scholar
  44. 44.
    T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).Google Scholar
  45. 45.
    K. Yosida, Phys. Rev. 106, 893 (1957).Google Scholar
  46. 46.
    S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).Google Scholar
  47. 47.
    P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).Google Scholar
  48. 48.
    P. Bruno and C. Chappert, Phys. Rev. B 46, 261 (1992).Google Scholar
  49. 49.
    J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991).Google Scholar
  50. 50.
    Z. Q. Qiu, J. Pearson, A. Berger, et al., Phys. Rev. Lett. 68, 1398 (1992).Google Scholar
  51. 51.
    P. J. H. Bloemen, M. T. Johnson, M. T. H. van de Vorst, et al., Phys. Rev. Lett. 72, 764 (1994).Google Scholar
  52. 52.
    M. D. Stiles, Phys. Rev. B 48, 7238 (1993).Google Scholar
  53. 53.
    P. Bruno, Phys. Rev. B 52, 411 (1995).Google Scholar
  54. 54.
    J. E. Ortega and F. J. Himpsel, Phys. Rev. Lett. 69, 844 (1992).Google Scholar
  55. 55.
    R. K. Kawakami, E. Rotenberg, E. J. Escorcia-Aparicio, et al., Phys. Rev. Lett. 80, 1754 (1998).Google Scholar
  56. 56.
    R. E. Camley and J. Barnas, Phys. Rev. Lett. 63, 664 (1989).Google Scholar
  57. 57.
    P. M. Levy, S. Zhang, and A. Fert, Phys. Rev. Lett. 65, 1643 (1990).Google Scholar
  58. 58.
    D. M. Edwards, J. Mathon, R. B. Muniz, et al., Phys. Rev. Lett. 67, 493 (1991).Google Scholar
  59. 59.
    J. M. George, L. G. Pereira, A. Barthelemy, et al., Phys. Rev. Lett. 72, 408 (1994).Google Scholar
  60. 60.
    J. P. Renard, P. Bruno, R. Megy, et al., Phys. Rev. B. 51, 12821 (1995).Google Scholar
  61. 61.
    S. S. P. Parkin, Phys. Rev. Lett. 71, 1641 (1993).Google Scholar
  62. 62.
    W. P. Pratt Jr., S.-F. Lee, J. M. Slaughter, et al., Phys. Rev. Lett. 66, 3060 (1991).Google Scholar
  63. 63.
    T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).Google Scholar
  64. 64.
    T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).Google Scholar
  65. 65.
    M. Bowen, V. Cros, F. Petroff, et al., Appl. Phys. Lett. 79, 1655 (2001).Google Scholar
  66. 66.
    J. Faure-Vincent, C. Tiusan, E. Jouguelet, et al., Appl. Phys. Lett. 82, 4507 (2003).Google Scholar
  67. 67.
    S. S. P. Parkin, C. Kaiser, A. Panchula, et al., Nat. Mater. 3, 862 (2004).Google Scholar
  68. 68.
    S. Yuasa, T. Nagahama, A. Fukushima, et al., Nat. Mater. 3, 868 (2004).Google Scholar
  69. 69.
    S. Yuasa, A. Fukushima, H. Kubota, et al., Appl. Phys. Lett. 89, 042505 (2006).Google Scholar
  70. 70.
    P. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, Phys. Rev. Lett. 85, 1088 (2000).Google Scholar
  71. 71.
    W. H. Butler, X.-G. Zhang, T. C. Schulthess, et al., Phys. Rev. B 63, 054416 (2001).Google Scholar
  72. 72.
    J. Mathon and A. Umerski, Phys. Rev. B (Rapid Commun.) 63, 220403 (2001).Google Scholar
  73. 73.
    X.-G. Zhang and W. H. Butler, Phys. Rev. B 70, 172407 (2004).Google Scholar
  74. 74.
    L. Berger, Phys. Rev. B 54, 9353 (1996).Google Scholar
  75. 75.
    J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).Google Scholar
  76. 76.
    M. Tsoi, A. G. M. Jansen, J. Bass, et al., Phys. Rev. Lett. 80, 4281 (1998).Google Scholar
  77. 77.
    M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407 (2002).Google Scholar
  78. 78.
    J. A. Katine, F. J. Albert, R. A. Buhrman, et al., Phys. Rev. Lett. 84, 3149 (2000).Google Scholar
  79. 79.
    I. Krivorotov, N. C. Emley, J. C. Sankey, et al., Science 307, 228 (2005).Google Scholar
  80. 80.
    Y. Acremann, J. P. Strachan, V. Chembrolu, et al., Phys. Rev. Lett. 96, 217202 (2006).Google Scholar
  81. 81.
    S. Kaka, M. R. Pufall, W. H. Rippard, et al., Nature 437, 389 (2005).Google Scholar
  82. 82.
    F. B. Mancoff, N. D. Rizzo, B. N. Engel, et al., Nature 437, 393 (2005).Google Scholar
  83. 83.
    Z. Diao, D. Apalkov, M. Pakala, et al., Appl. Phys. Lett. 87, 232502 (2005).Google Scholar
  84. 84.
    G. D. Fuchs, J. A. Katine, S. I. Kiselev, et al., Phys. Rev. Lett. 96, 186603 (2006).Google Scholar
  85. 85.
    N. Vernier, D. A. Allwood, D. Atkinson, et al., Europhys. Lett. 65, 526 (2004).Google Scholar
  86. 86.
    A. Yamaguchi, T. Ono, S. Nasu, et al., Phys. Rev. Lett. 92, 077205 (2004).Google Scholar
  87. 87.
    M. Yamanouchi, D. Chiba, F. Matsukura, et al., Nature 428, 539 (2004).Google Scholar
  88. 88.
    E. Saitoh, H. Miyajima, T. Yamaoka, et al., Nature 432, 203 (2004).Google Scholar
  89. 89.
    M. Klaui, P.-O. Jubert, R. Allenspach, et al., Phys. Rev. Lett. 95, 026601 (2005).Google Scholar
  90. 90.
    L. Thomas, M. Hayashi, X. Jiang, et al., Science 315, 1553 (2007).Google Scholar
  91. 91.
    T. Kimura, Y. Otani, and J. Hamrle, Phys. Rev. Lett. 96, 037201 (2006).Google Scholar
  92. 92.
    W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).Google Scholar
  93. 93.
    W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).Google Scholar
  94. 94.
    J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).Google Scholar
  95. 95.
    A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).Google Scholar
  96. 96.
    W. J. Gallagher, S. S. Parkin, Y. Lu, et al., J. Appl. Phys. 81, 3741 (1997).Google Scholar
  97. 97.
    B. N. Engel, J. Akerman, B. Butcher, et al., IEEE Trans. Magn. 41, 132 (2005).Google Scholar
  98. 98.
    J. Akerman, Science 308, 508 (2005).Google Scholar
  99.  99.
    W. J. Gallagher and S. S. P. Parkin, IBM J. Res. Dev. 50, 5 (2006).Google Scholar
  100. 100.
    H. Ohno, Science 281, 951 (1998).Google Scholar
  101. 101.
    H. Ohno, D. Chiba, F. Matsukura, et al., Nature 408, 944 (2000).Google Scholar
  102. 102.
    H. Boukari, P. Kossacki, M. Bertolini, et al., Phys. Rev. Lett. 88, 207204 (2002).Google Scholar
  103. 103.
    S. Koshihara, A. Oiwa, M. Hirasawa, et al., Phys. Rev. Lett. 78, 4617 (1997).Google Scholar
  104. 104.
    R. Fiederling, M. Keim, G. Reuscher, et al., Nature 402, 787 (1999).Google Scholar
  105. 105.
    Y. Ohno, D. K. Young, B. Beschoten, et al., Nature 402, 790 (1999).Google Scholar
  106. 106.
    R. K. Kawakami, Y. Kato, M. Hanson, et al., Science 294, 131 (2001).Google Scholar
  107. 107.
    R. J. Epstein, I. Malajovich, R. K. Kawakami, et al., Phys. Rev. B 65, 121202 (2002).Google Scholar
  108. 108.
    H. Ohno, H. Munekata, T. Penney, et al., Phys. Rev. Lett. 68, 2664 (1992).Google Scholar
  109. 109.
    H. Ohno, A. Shen, F. Matsukura, et al., Appl. Phys. Lett. 69, 363 (1996).Google Scholar
  110. 110.
    Y. D. Park, A. T. Hanbicki, S. C. Erwin, et al., Science 295, 651 (2002).Google Scholar
  111. 111.
    F. Tsui, L. He, L. Ma, et al., Phys. Rev. Lett. 91, 177203 (2003).Google Scholar
  112. 112.
    C. Liu, F. Yun, and H. Morkoc, J. Mater. Sci. 16, 555 (2005).Google Scholar
  113. 113.
    S. J. Potashnik, K. C. Ku, S. H. Chun, et al., Appl. Phys. Lett. 79, 1495 (2001).Google Scholar
  114. 114.
    K. C. Ku, S. J. Potashnik, R. F. Wang, et al., Appl. Phys. Lett. 82, 2302 (2003).Google Scholar
  115. 115.
    F. Matsukura, H. Ohno, A. Shen, et al., Phys. Rev. B (Rapid Commun.) 57, 2037 (1998).Google Scholar
  116. 116.
    C. Zener, Phys. Rev. 81, 440 (1951).Google Scholar
  117. 117.
    T. Dietl, H. Ohno, F. Matsukura, et al., Science 287, 1019 (2000).Google Scholar
  118. 118.
    T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).Google Scholar
  119. 119.
    K. M. Yu, W. Walukiewicz, T. Wojtowicz, et al., Phys. Rev. B (Rapid Commun.) 65, 201303 (2002).Google Scholar
  120. 120.
    S. C. Erwin and A. G. Petukhov, Phys. Rev. Lett. 89, 227201 (2002).Google Scholar
  121. 121.
    B. Beschoten, P. A. Crowell, I. Malajovich, et al., Phys. Rev. Lett. 83, 3073 (1999).Google Scholar
  122. 122.
    K. S. Burch, D. B. Shrekenhamer, E. J. Singley, et al., Phys. Rev. Lett. 97, 087208 (2006).Google Scholar
  123. 123.
    R. K. Kawakami, E. Johnston-Halperin, L. F. Chen, et al., Appl. Phys. Lett. 77, 2379 (2000).Google Scholar
  124. 124.
    A. M. Nazmul, S. Sugahara, and M. Tanaka, Phys. Rev. B (Rapid Commun.) 67, 241308 (2003).Google Scholar
  125. 125.
    D. Chiba, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 162505 (2006).Google Scholar
  126. 126.
    A. M. Nazmul, S. Kobayashi, S. Suguhara, et al., Phys. E 21, 937 (2004).Google Scholar
  127. 127.
    S. A. Crooker, J. J. Baumberg, F. Flack, et al., Phys. Rev. Lett. 77, 2814 (1996).Google Scholar
  128. 128.
    J. M. Kikkawa and D. D. Awschalom, Nature 397, 139 (1999).Google Scholar
  129. 129.
    Y. Kato, R. C. Myers, A. C. Gossard, et al., Nature 427, 50 (2004).Google Scholar
  130. 130.
    G. Salis, Y. Kato, K. Ensslin, et al., Nature 414, 619 (2001).Google Scholar
  131. 131.
    J. A. Gupta, R. Knobel, N. Samarth, et al., Science 292, 2458 (2001).Google Scholar
  132. 132.
    F. Meier and B. P. Zachachrenya, Optical Orientation, Modern Problems in Condensed Matter Science (Elsevier Science Ltd. North-Holland, Amsterdam, 1984).Google Scholar
  133. 133.
    B. Beschoten, E. Johnston-Halperin, D. K. Young, et al., Phys. Rev. B (Rapid Commun.) 63, 121202 (2001).Google Scholar
  134. 134.
    Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).Google Scholar
  135. 135.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955).Google Scholar
  136. 136.
    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).Google Scholar
  137. 137.
    S. A. Crooker and D. L. Smith, Phys. Rev. Lett. 94, 236601 (2005).Google Scholar
  138. 138.
    G. Schmidt, D. Ferrand, L. W. Molenkamp, et al., Phys. Rev. B (Rapid Commun.) 62, 4790 (2000).Google Scholar
  139. 139.
    E. I. Rashba, Phys. Rev. B (Rapid Commun.) 62, 16267 (2000).Google Scholar
  140. 140.
    A. Fert and H. Jaffres, Phys. Rev. B 64, 184420 (2001).Google Scholar
  141. 141.
    H. J. Zhu, M. Ramsteiner, H. Kostial, et al., Phys. Rev. Lett. 87, 016601 (2001).Google Scholar
  142. 142.
    A. T. Hanbicki, B. T. Jonker, G. Itskos, et al., Appl. Phys. Lett. 80, 1240 (2002).Google Scholar
  143. 143.
    J. Strand, B. D. Schultz, A. F. Isakovic, et al., Phys. Rev. Lett. 91, 036602 (2003).Google Scholar
  144. 144.
    A. T. Hanbicki, O. M. J. van’t Erve, R. Magno, et al., Appl. Phys. Lett. 82, 4092 (2003).Google Scholar
  145. 145.
    V. F. Motsnyi, J. De Boeck, J. Das, et al., Appl. Phys. Lett. 81, 265 (2002).Google Scholar
  146. 146.
    X. Jiang, R. Wang, R. M. Shelby, et al., Phys. Rev. Lett. 94, 056601 (2005).Google Scholar
  147. 147.
    H. Dery and L. J. Sham, Phys. Rev. Lett. 98, 046602 (2007).Google Scholar
  148. 148.
    C. Ciuti, J. P. McGuire, and L. J. Sham, Phys. Rev. Lett. 89, 156601 (2002).Google Scholar
  149. 149.
    J. Stephens, J. Berezovsky, J. P. McGuire, et al., Phys. Rev. Lett. 93, 097602 (2004).Google Scholar
  150. 150.
    S. A. Crooker, M. Furis, X. Lou, et al., Science 309, 2191 (2005).Google Scholar
  151. 151.
    S. O. Valenzuela, D. J. Monsma, C. M. Marcus, et al., Phys. Rev. Lett. 94, 196601 (2005).Google Scholar
  152. 152.
    C. Ciuti, J. P. McGuire, and L. J. Sham, Appl. Phys. Lett. 81, 4781 (2002).Google Scholar
  153. 153.
    H. Dery, P. Dalal, L. Cywinski, et al., Nature 447, 573 (2007).Google Scholar
  154. 154.
    T. Schapers, J. Nitta, H. B. Heersche, et al., Phys. Rev. B 64, 125314 (2000).Google Scholar
  155. 155.
    M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).Google Scholar
  156. 156.
    S. O. Valenzuela and M. Tinkham, Appl. Phys. Lett. 85, 5914 (2004).Google Scholar
  157. 157.
    Y. Ji, A. Hoffman, J. Pearson, et al., Appl. Phys. Lett. 88, 052509 (2006).Google Scholar
  158. 158.
    I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).Google Scholar
  159. 159.
    Y. K. Kato, R. C. Myers, A. C. Gossard, et al., Science 306, 1910 (2004).Google Scholar
  160. 160.
    J. Wunderlich, B. Kaestner, J. Sinova, et al., Phys. Rev. Lett. 94, 047204 (2005).Google Scholar
  161. 161.
    S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).Google Scholar
  162. 162.
    T. Kimura, Y. Otani, T. Sato, et al., Phys. Rev. Lett. 98, 156601 (2007).Google Scholar
  163. 163.
    E. Saitoh, M. Ueda, H. Miyajima, et al., Appl. Phys. Lett. 88, 182509 (2006).Google Scholar
  164. 164.
    J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).Google Scholar
  165. 165.
    S. Zhang, Phys. Rev. Lett. 85, 393 (2000).Google Scholar
  166. 166.
    H.-A. Engel, B. I. Halperin, and E. I. Rashba, Phys. Rev. Lett. 95, 166605 (2005).Google Scholar
  167. 167.
    W.-K. Tse and S. Das Sarma, Phys. Rev. Lett. 96, 056601 (2006).Google Scholar
  168. 168.
    S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).Google Scholar
  169. 169.
    J. Sinova, D. Culcer, Q. Niu, et al., Phys. Rev. Lett. 92, 126603 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Roland K. Kawakami
    • 1
  • Kathleen McCreary
  • Yan Li
  1. 1.Department of Physics and Astronomy, Center for Nanoscale Science and EngineeringUniversity of CaliforniaRiverside

Personalised recommendations