Two-Photon Polymerization – High Resolution 3D Laser Technology and Its Applications

  • Aleksandr Ovsianikov
  • Boris N. Chichkov
Part of the Nanostructure Science and Technology book series (NST)


The development of high-precision fabrication techniques is an essential factor and a driving power for the increasing progress in the field of nanotechnology. The femtosecond (10–15 s) laser technology opens a broad range of opportunities for cost-efficient manufacturing with high resolution and unprecedented flexibility. In this chapter we discuss principles and advances in two-photon activated laser processing.


Photonic Crystal Femtosecond Laser Photonic Bandgap Saturable Absorber Photosensitive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge very important contribution from their colleagues, who have been involved in different parts of this work: J. Serbin, C. Reinhardt, S. Passinger, R. Kiyan, and R. Cotton. Biomedical applications of the 2 PP technique have been studied in cooperation with A. Doraiswamy, T. Platz, R. Narayan, R. Modi, R. Auyeung, D.B. Chrisey, and O. Adunka. This work has been supported by the DFG “Photonic crystals” research program SPP1113.


  1. 1.
  2. 2.
    “Leistungsbilanz der allgemeinen Stromversorgung in Deutschland 2004 bis 2010” Verband der Netzbetreiber – VDN – e.V. beim VDEW (2003)Google Scholar
  3. 3.
    Zewail AH (2000) Angew. Chem. Int. Ed., 39:2587–2631Google Scholar
  4. 4.
    Göppert-Mayer M (1931) Ann. Physik, 9:273CrossRefGoogle Scholar
  5. 5.
    Kaiser W, Garrett CGB (1961) Phys. Rev. Lett. 7:229CrossRefGoogle Scholar
  6. 6.
    Shen YR (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  7. 7.
    Sun HB, Kawata S (2004) Two-photon polymerization and 3D lithographic Microfabrication, In: N. Fatkullin (ed.), NMR, 3D Analysis, Photopolymerization, Springer, pp 169–273Google Scholar
  8. 8.
    Ovsianikov A, Passinger S, Houbertz R, Chichkov BN (2006) Three-dimensional material processing with femtosecond lasers, In: Claude R. Phipps (ed.), Laser Ablation and its Applications, Springer Series in Optical Sciences, pp 129–167Google Scholar
  9. 9.
    Bertsch A, et al (2002) MRS Symp. Proc. 758Google Scholar
  10. 10.
    Maruo S, Nakamura O, Kawata S (1997) Opt. Lett. 22:132CrossRefGoogle Scholar
  11. 11.
    Sun HB et al. (2000), Opt Lett 25:1110CrossRefGoogle Scholar
  12. 12.
    Maruo et al. (2003) MRS Symp. Proc. 739Google Scholar
  13. 13.
    Gu M et al. (2006) Optics Express 14(2):810CrossRefGoogle Scholar
  14. 14.
    Reinhardt C et al. (2006) Optics Lett. 31:1307CrossRefGoogle Scholar
  15. 15.
    Doraiswamy et al. (2006) Acta Biomaterialia 2:267–275Google Scholar
  16. 16.
    Schlie S et al. (2007) Three-dimensional cell growth on structures fabricated from ORMOCER® by two-photon polymerization technique, J Biomater Appl 22: 275–287Google Scholar
  17. 17.
    Basu et al. (2004) Biomacromolecules 5(6)Google Scholar
  18. 18.
    Yokoyama et al. (2003) Appl. Phys. Lett. 82(19)Google Scholar
  19. 19.
    Yablonovitch E (1987) Phys. Rev. Lett. 58:2059CrossRefGoogle Scholar
  20. 20.
    John S (1987) Phys. Rev. Lett. 58:2486CrossRefGoogle Scholar
  21. 21.
    Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143–149.CrossRefGoogle Scholar
  22. 22.
    Noda S et al. (2000) Science 289:604CrossRefGoogle Scholar
  23. 23.
    Chutinan A, John S, Toader O (2003) Phys. Rev. Lett. 90:123901CrossRefGoogle Scholar
  24. 24.
    Markowicz P et al. (2002) Opt. Lett. 27: 5, 351CrossRefGoogle Scholar
  25. 25.
    Netti MC et al. (2001) Phys. Rev. Lett. 86:1526CrossRefGoogle Scholar
  26. 26.
    Kosaka et al. (1999) Appl. Phys. Lett. 74:1212Google Scholar
  27. 27.
    Joannopoulos J (1995) Photonic crystals: molding the flow of light. Princeton University PressGoogle Scholar
  28. 28.
    Johnson S, Joannopoulos J (2005) Photonic crystals: the road from theory to practice. Springer, New YorkGoogle Scholar
  29. 29.
    Busch K (2004) Photonic crystals: advances in design, fabrication, and characterization, Wiley-VCHGoogle Scholar
  30. 30.
    Noda S (2003) Roadmap on photonic crystals, Kluwer Academic PublishersGoogle Scholar
  31. 31.
    Kaneko et al. (2003) Appl. Phys. Lett. 83(11)Google Scholar
  32. 32.
    Deubel et al. (2004) Appl. Phys. Lett. 85(11)Google Scholar
  33. 33.
    Serbin J et al. (2004) Optics Express 12(21):5221CrossRefGoogle Scholar
  34. 34.
    Seet et al. (2006) Appl. Phys. A. 82:683Google Scholar
  35. 35.
    Sun H-B et al. (2004) Appl. Phys. Lett. 85:17, 3709CrossRefGoogle Scholar
  36. 36.
    Deubel M et al. (2004) Nat. Mater. 3:444CrossRefGoogle Scholar
  37. 37.
    King JS et al. (2005) Appl. Surface Sci. 244:511–516CrossRefGoogle Scholar
  38. 38.
    Emelchenko et al. (2005) J. Opt. A: Pure Appl. Opt. 7:213Google Scholar
  39. 39.
    Tetreault et al. (2006) Adv. Mater. 18:457–460Google Scholar
  40. 40.
    Sachlos E, Czernuszka JT (2003) Eur. Cells and Mater. 5:29Google Scholar
  41. 41.
    Prendergast PJ, McHugh PE (2004) Topics in bio-mechanical engineering, pp 147–166. Trinity Centre for Bioengineering & National Centre for Biomedical Engineering ScienceGoogle Scholar
  42. 42.
    Tsang VL, Bhatia SN (2006) “Fabrication of Three-Dimensional Tissues, Adv. Biochem. Engin./Biotechnol. 103:189CrossRefGoogle Scholar
  43. 43.
    Vozzi G, Ahluwalia A (2007) J. Mater. Chem. 17:1248CrossRefGoogle Scholar
  44. 44.
    Hull C (1990) Method for production of three-dimensional objects by stereolithography, US Patent 4929402Google Scholar
  45. 45.
    Hutmacher et al. (2004) Trends in Biotechnol. 22(7)Google Scholar
  46. 46.
    Ovsianikov et al. (2007) Proceedings of 5th International Conference on Photo-Excited Processes and Applications, to be published in “Applied Surface Science”Google Scholar
  47. 47.
    Chong S, Fung HL (1989) Transdermal drug delivery systems: pharmacokinetics, clinical efficacy, and tolerance development. In: J Hadgraft, RH Guy (eds.), Transdermal Drug Delivery: Developmental Issues and Research Initiatives. Marcel Dekker, New York, p 135Google Scholar
  48. 48.
    Flynn GL (1996) Cutaneous and transdermal delivery: Processes and systems of delivery. In: GS Banker, CT Rhodes (eds.), Modern Pharmaceutics. Marcel Dekker, New York, pp 239–299Google Scholar
  49. 49.
    Sivamani RK et al. (2005) Skin Res. Technol. 11(2):152–156CrossRefGoogle Scholar
  50. 50.
    Mitragotri S (2001) J. Controlled Rel. 71:23–29CrossRefGoogle Scholar
  51. 51.
    Guy RH (1998) J. Pharm. Pharmacol. 50(4):371–374Google Scholar
  52. 52.
    Barry BW (2001) Eur. J. Pharm. Sci. 14:101–114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Aleksandr Ovsianikov
  • Boris N. Chichkov
    • 1
  1. 1.Nanotechnology DepartmentLaser Zentrum Hannover e.V.Germany

Personalised recommendations