Skip to main content

Photonic Crystals: Physics, Fabrication, and Devices

  • Chapter
Nanoelectronics and Photonics

Part of the book series: Nanostructure Science and Technology ((NST))

  • 3063 Accesses

Abstract

We review basic physics of photonic crystals, discuss the relevant fabrication techniques, and summarize important device development in the past two decades. First, photonic band structures of photonic crystals and the origin of the photonic band gap are analyzed. Fundamental photonic crystal structures, such as surfaces, slabs, and engineered defects that include cavities and waveguides, are examined. Applications at visible and infrared wavelengths require photonic crystals to have submicron features, sometimes with precision down to the nanoscale. Common fabrication methods that have helped make such exquisite structures will be reviewed. Lastly, we give a concise account of key advances in photonic crystal-based lasers, light-emitting devices, modulators, optical filters, superprism-based demultiplexers and sensors, and negative index materials. Electron-beam nanolithography has enabled major research progress on photonic crystal devices in the last decade, leading to significant reduction of size and/or power dissipation in devices such as lasers and modulators. With deep ultraviolet (DUV) lithography, these devices may one day be manufactured with the prevalent CMOS technology at affordable cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987).

    CAS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2489 (1987).

    CAS  Google Scholar 

  3. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe and J. D. Joannopoulos, Measurement of photonic band-structure in a 2-dimensional periodic dielectric array, Phys. Rev. Lett. 68, 2023–2026 (1992).

    CAS  Google Scholar 

  4. D. F. Sievenpiper, M. E. Sickmiller and E. Yablonovitch, 3D wire mesh photonic crystals, Phys. Rev. Lett. 76, 2480–2483 (1996).

    CAS  Google Scholar 

  5. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

    Google Scholar 

  6. S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Opt. Express 8, 173–190 (2001).

    CAS  Google Scholar 

  7. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas and M. Sigalas, Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures, Solid State Commun. 89, 413–416 (1994).

    CAS  Google Scholar 

  8. S. G. Johnson and J. D. Joannopoulos, Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap, Appl. Phys. Lett. 77, 3490–3492 (2000).

    CAS  Google Scholar 

  9. M. L. Povinelli, S. G. Johnson, S. H. Fan and J. D. Joannopoulos, Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap, Phys. Rev. B 64, 075313 (2001).

    Google Scholar 

  10. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos and L. A. Kolodziejski, Guided modes in photonic crystal slabs, Phys. Rev. B 60, 5751–5758 (1999).

    CAS  Google Scholar 

  11. S. G. Johnson, P. R. Villeneuve, S. H. Fan and J. D. Joannopoulos, Linear waveguides in photonic-crystal slabs, Phys. Rev. B 62, 8212–8222 (2000).

    CAS  Google Scholar 

  12. W. T. Lau and S. H. Fan, Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs, Appl. Phys. Lett. 81, 3915–3917 (2002).

    CAS  Google Scholar 

  13. M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos and M. Soljacic, Effect of a photonic band gap on scattering from waveguide disorder, Appl. Phys. Lett. 84, 3639–3641 (2004).

    CAS  Google Scholar 

  14. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs and J. D. Joannopoulos, Roughness losses and volume-current methods in photonic-crystal waveguides, Appl. Phys. B-Lasers Opt. 81, 283–293 (2005).

    CAS  Google Scholar 

  15. N. Stefanou and A. Modinos, Impurity bands in photonic insulators, Phys. Rev. B 57, 12127–12133 (1998).

    CAS  Google Scholar 

  16. A. Yariv, Y. Xu, R. K. Lee and A. Scherer, Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24, 711–713 (1999).

    CAS  Google Scholar 

  17. T. Baba, N. Fukaya and A. Motegi, Clear correspondence between theoretical and experimental light propagation characteristics in photonic crystal waveguides, Electron. Lett. 37, 761–762 (2001).

    CAS  Google Scholar 

  18. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi and H. Y. Ryu, Waveguides, resonators and their coupled elements in photonic crystal slabs, Opt. Express 12, 1551–1561 (2004).

    CAS  Google Scholar 

  19. K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993).

    Google Scholar 

  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005).

    Google Scholar 

  21. S. Y. Shi, C. H. Chen and D. W. Prather, Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs, Appl. Phys. Lett. 86, 043104 (2005).

    Google Scholar 

  22. M. Qiu, Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals, Appl. Phys. Lett. 81, 1163–1165 (2002).

    CAS  Google Scholar 

  23. P. R. Villeneuve, S. Fan, S. G. Johnson and J. D. Joannopoulos, Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity, IEE Proceedings–Optoelectronics 145, 384–390 (1998).

    CAS  Google Scholar 

  24. S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap, Appl. Phys. Lett. 78, 3388–3390 (2001).

    CAS  Google Scholar 

  25. J. Vuckovic, M. Loncar, H. Mabuchi and A. Scherer, Optimization of the Q factor in photonic crystal microcavities, IEEE J. Quantum Electron. 38, 850–856 (2002).

    CAS  Google Scholar 

  26. K. Srinivasan and O. Painter, Momentum space design of high-Q photonic crystal optical cavities, Opt. Express 10, 670–684 (2002).

    Google Scholar 

  27. H. Y. Ryu, M. Notomi and Y. H. Lee, High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities, Appl. Phys. Lett. 83, 4294–4296 (2003).

    CAS  Google Scholar 

  28. B. S. Song, S. Noda, T. Asano and Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Mater. 4, 207–210 (2005).

    CAS  Google Scholar 

  29. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe and T. Watanabe, Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect, Appl. Phys. Lett. 88, 041112 (2006).

    Google Scholar 

  30. T. Asano, B. S. Song, Y. Akahane and S. Noda, Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs, IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).

    CAS  Google Scholar 

  31. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya and H. Taniyama, Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity, Nat. Photonics 1, 49–52 (2007).

    CAS  Google Scholar 

  32. W. Jiang, R. T. Chen and X. J. Lu, Theory of light refraction at the surface of a photonic crystal, Phys. Rev. B 71, 245115 (2005).

    Google Scholar 

  33. R. D. Meade, K. D. Brommer, A. M. Rappe and J. D. Joannopoulos, Electromagnetic bloch waves at the surface of a photonic crystal, Phys. Rev. B 44, 10961–10964 (1991).7

    Google Scholar 

  34. Z. Y. Li and K. M. Ho, Light propagation in semi-infinite photonic crystals and related waveguide structures, Phys. Rev. B 68, 155101 (2003).

    Google Scholar 

  35. T. Ochiai and J. Sanchez-Dehesa, Superprism effect in opal-based photonic crystals, Phys. Rev. B 64, 245113 (2001).

    Google Scholar 

  36. X. N. Chen, W. Jiang, J. Q. Chen and R. T. Chen, Theoretical study of light refraction in three -dimensional photonic crystals, J. Lightwave Technol. 25, 2469–2474 (2007).

    Google Scholar 

  37. J. B. Pendry and A. Mackinnon, Calculation of photon dispersion-relations, Phys. Rev. Lett. 69, 2772–2775 (1992).

    CAS  Google Scholar 

  38. K. Ohtaka, T. Ueta and K. Amemiya, Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods, Phys. Rev. B 57, 2550–2568 (1998).

    CAS  Google Scholar 

  39. N. Stefanou, V. Karathanos and A. Modinos, Scattering of electromagnetic-waves by periodic structures, J. Phys.-Condes. Matter 4, 7389–7400 (1992).

    Google Scholar 

  40. J. Bravo-Abad, T. Ochiai and J. Sanchez-Dehesa, Anomalous refractive properties of a two-dimensional photonic band-gap prism, Phys. Rev. B 67, 115116 (2003).

    Google Scholar 

  41. K. Sakoda, Symmetry, degeneracy, and uncoupled modes in 2-dimensional photonic lattices, Phys. Rev. B 52, 7982–7986 (1995).

    CAS  Google Scholar 

  42. K. Sakoda, Transmittance and bragg reflectivity of 2-dimensional photonic lattices, Phys. Rev. B 52, 8992–9002 (1995).

    CAS  Google Scholar 

  43. P. Bienstman and R. Baets, Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers, Opt. Quantum Electron. 33, 327–341 (2001).

    CAS  Google Scholar 

  44. W. Jiang and R. T. Chen, Rigorous analysis of diffraction gratings of arbitrary profiles using virtual photonic crystals, J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 23, 2192–2197 (2006).

    Google Scholar 

  45. M. G. Moharam and T. K. Gaylord, Diffraction analysis of dielectric surface-relief gratings, J. Opt. Soc. Am. 72, 1385–1392 (1982).

    Google Scholar 

  46. T. Baba and M. Nakamura, Photonic crystal light deflection devices using the superprism effect, IEEE J. Quantum Electron. 38, 909–914 (2002).

    CAS  Google Scholar 

  47. E. Yablonovitch, T. J. Gmitter and K. M. Leung, Photonic band-structure - the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67, 2295–2298 (1991).

    CAS  Google Scholar 

  48. T. F. Krauss, R. M. Delarue and S. Brand, Two-dimensional photonic-bandgap structures operating at near infrared wavelengths, Nature 383, 699–702 (1996).

    CAS  Google Scholar 

  49. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. Delarue, V. Bardinal, R. Houdre, U. Oesterle, D. Cassagne and C. Jouanin, Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths, Phys. Rev. Lett. 79, 4147–4150 (1997).

    CAS  Google Scholar 

  50. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251–253 (1998).

    CAS  Google Scholar 

  51. M. J. Escuti and G. P. Crawford, Holographic photonic crystals, Opt. Eng. 43, 1973–1987 (2004).

    CAS  Google Scholar 

  52. L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong and G. P. Wang, Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography, Appl. Phys. Lett. 86, 241102 (2005).

    Google Scholar 

  53. J. Q. Chen, W. Jiang, X. N. Chen, L. Wang, S. S. Zhang and R. T. Chen, Holographic three-dimensional polymeric photonic crystals operating in the 1550 nm window, Appl. Phys. Lett. 90, 93102 (2007).

    Google Scholar 

  54. J. Koch, F. Korte, C. Fallnich, A. Ostendorf and B. N. Chichkov, Direct-write subwavelength structuring with femtosecond laser pulses, Opt. Eng. 44, 051103-5 (2005).

    Google Scholar 

  55. J. Serbin and M. Gu, Experimental evidence for superprism effects in three-dimensional polymer photonic crystals, Adv. Mater. 18, 221–224 (2006).

    CAS  Google Scholar 

  56. J. Serbin and M. Gu, Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization, Opt. Express 14, 3563–3568 (2006).

    Google Scholar 

  57. A. Imhof and D. J. Pine, Ordered macroporous materials by emulsion templating, Nature 389, 948–951 (1997).

    CAS  Google Scholar 

  58. O. D. Velev, P. M. Tessier, A. M. Lenhoff and E. W. Kaler, Materials – A class of porous metallic nanostructures, Nature 401, 548–548 (1999).

    CAS  Google Scholar 

  59. A. Imhof, W. L. Vos, R. Sprik and A. Lagendijk, Large dispersive effects near the band edges of photonic crystals, Phys. Rev. Lett. 83, 2942–2945 (1999).

    CAS  Google Scholar 

  60. Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, On-chip natural assembly of silicon photonic bandgap crystals, Nature 414, 289–293 (2001).

    CAS  Google Scholar 

  61. Z. L. Wang, C. T. Chan, W. Y. Zhang, N. B. Ming and P. Sheng, Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency, Phys. Rev. B 64, 113108 (2001).

    Google Scholar 

  62. O. D. Velev and E. W. Kaler, Structured porous materials via colloidal crystal templating: From inorganic oxides to metals, Adv. Mater. 12, 531–534 (2000).

    CAS  Google Scholar 

  63. M. Diop and R. A. Lessard, Fabrication techniques of high quality photonic crystals, Optical Interconnects and VLSI Photonics, 2004 Digest of the LEOS Summer Topical Meetings, pp. 79–80 (2004).

    Google Scholar 

  64. J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman and V. L. Colvin, Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals, Phys. Rev. Lett. 83, 300–303 (1999).

    CAS  Google Scholar 

  65. L. Wang, W. Jiang, X. Chen, L. Gu, J. Chen and R. T. Chen, Fabrication of polymer photonic crystal superprism structures using polydimethylsiloxane soft molds, J. Appl. Phys. 101, 114316-6 (2007).

    Google Scholar 

  66. M. H. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen and H. I. Smith, A three-dimensional optical photonic crystal with designed point defects, Nature 429, 538–542 (2004).

    CAS  Google Scholar 

  67. F. Garcia-Santamaria, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun and J. A. Lewis, A germanium inverse woodpile structure with a large photonic band gap, Adv. Mater. 19, 1567–1570 (2007).

    CAS  Google Scholar 

  68. S. Kawakami, Fabrication of submicrometre 3D periodic structures composed of Si/Si Osub 2., Electron. Lett. 33, 1260–1261 (1997).

    CAS  Google Scholar 

  69. S. Noda, K. Tomoda, N. Yamamoto and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science 289, 604–606 (2000).

    CAS  Google Scholar 

  70. M. Settle, M. Salib, A. Michaeli and T. F. Krauss, Low loss silicon on insulator photonic crystal waveguides made by 193 nm optical lithography, Opt. Express 14, 2440–2445 (2006).

    Google Scholar 

  71. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O'brien, P. D. Dapkus and W. K. Marshall, Two-dimensional photonic crystal Mach–Zehnder interferometers, Appl. Phys. Lett. 84, 460–462 (2004).

    CAS  Google Scholar 

  72. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, Electrically driven single-cell photonic crystal laser, Science 305, 1444–1447 (2004).

    CAS  Google Scholar 

  73. E. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).

    Google Scholar 

  74. J. M. Gerard and B. Gayral, Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, J. Lightwave Technol. 17, 2089–2095 (1999).

    CAS  Google Scholar 

  75. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim, Two-dimensional photonic band-gap defect mode laser, Science 284, 1819–1821 (1999).

    CAS  Google Scholar 

  76. H. Altug, D. Englund and J. Vuckovic, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2, 484–488 (2006).

    CAS  Google Scholar 

  77. S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano and S. Noda, Control of light emission by 3D photonic crystals, Science 305, 227–229 (2004).

    CAS  Google Scholar 

  78. W. D. Zhou, J. Sabarinathan, B. Kochman, E. Berg, O. Qasaimeh, S. Pang and P. Bhattacharya, Electrically injected single-defect photon bandgap surface-emitting laser at room temperature, Electron. Lett. 36, 1541–1542 (2000).

    CAS  Google Scholar 

  79. W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. W. Berg, P. C. Yu and S. W. Pang, Characteristics of a photonic bandgap single defect microcavity electroluminescent device, IEEE J. Quantum Electron. 37, 1153–1160 (2001).

    CAS  Google Scholar 

  80. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee and J. S. Kim, Nondegenerate monopole-mode two-dimensional photonic band gap laser, Appl. Phys. Lett. 79, 3032–3034 (2001).

    CAS  Google Scholar 

  81. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

    Google Scholar 

  82. A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher and J. D. Joannopoulos, Lasing mechanism in two-dimensional photonic crystal lasers, Appl. Phys. A 69, 111–114 (1999).

    CAS  Google Scholar 

  83. J. P. Dowling, M. Scalora, M. J. Bloemer and C. M. Bowden, The Photonic band-edge laser – a new approach to gain enhancement, J. Appl. Phys. 75, 1896–1899 (1994).

    CAS  Google Scholar 

  84. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat and E. Yablonovitch, Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals, Appl. Phys. Lett. 75, 1036–1038 (1999).

    CAS  Google Scholar 

  85. S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos and E. F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett. 78, 3294–3297 (1997).

    Google Scholar 

  86. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich and L. A. Kolodziejski, Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode, Appl. Phys. Lett. 78, 563–565 (2001).

    CAS  Google Scholar 

  87. H. Ichikawa and T. Baba, Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal, Appl. Phys. Lett. 84, 457–459 (2004).

    CAS  Google Scholar 

  88. A. J. Danner, J. J. Raftery, P. O. Leisher and K. D. Choquette, Single mode photonic crystal vertical cavity lasers, Appl. Phys. Lett. 88, 091114 (2006).

    Google Scholar 

  89. S. H. Fan, P. R. Villeneuve and J. D. Joannopoulos, Channel drop tunneling through localized states, Phys. Rev. Lett. 80, 960–963 (1998).

    CAS  Google Scholar 

  90. A. Sharkawy, S. Y. Shi and D. W. Prather, Multichannel wavelength division multiplexing with photonic crystals, Appl. Optics 40, 2247–2252 (2001).

    CAS  Google Scholar 

  91. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, 1984).

    Google Scholar 

  92. Y. Akahane, T. Asano, B. S. Song and S. Noda, Fine-tuned high-Q photonic-crystal nanocavity, Opt. Express 13, 1202–1214 (2005).

    Google Scholar 

  93. S. Noda, A. Chutinan and M. Imada, Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407, 608–610 (2000).

    CAS  Google Scholar 

  94. A. Chutinan, M. Mochizuki, M. Imada and S. Noda, Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs, Appl. Phys. Lett. 79, 2690–2692 (2001).

    CAS  Google Scholar 

  95. Y. Akahane, T. Asano, B. S. Song and S. Noda, Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs, Appl. Phys. Lett. 83, 1512–1514 (2003).

    CAS  Google Scholar 

  96. B. S. Song, S. Noda and T. Asano, Photonic devices based on in-plane hetero photonic crystals, Science 300, 1537–1537 (2003).

    CAS  Google Scholar 

  97. T. Asano, W. Kunishi, M. Nakamura, B. S. Song and S. Noda, Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab, Electron. Lett. 41, 37–38 (2005).

    Google Scholar 

  98. C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters, IEEE J. Quantum Electron. 35, 1322–1331 (1999).

    CAS  Google Scholar 

  99. K. H. Hwang and G. H. Song, Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure, Opt. Express 13, 1948–1957 (2005).

    Google Scholar 

  100. Z. Zhang and M. Qiu, Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs, Opt. Express 13, 2596–2604 (2005).

    Google Scholar 

  101. H. Takano, B. S. Song, T. Asano and S. Noda, Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal, Appl. Phys. Lett. 86, 241101 (2005).

    Google Scholar 

  102. Z. Y. Zhang and M. Qiu, Coupled-mode analysis of a resonant channel drop filter using waveguides with mirror boundaries, J. Opt. Soc. Am. B-Opt. Phys. 23, 104–113 (2006).

    Google Scholar 

  103. H. Takano, B. S. Song, T. Asano and S. Noda, Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal, Opt. Express 14, 3491–3496 (2006).

    Google Scholar 

  104. A. Shinya, S. Mitsugi, E. Kuramochi and M. Notomi, Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide, Opt. Express 13, 4202–4209 (2005).

    Google Scholar 

  105. W. Jiang and R. T. Chen, Multichannel optical add-drop processes in symmetrical waveguide-resonator systems, Phys. Rev. Lett. 91, 213901 (2003).

    Google Scholar 

  106. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs, Phys. Rev. Lett. 87, 253902 (2001).

    CAS  Google Scholar 

  107. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss and L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides, Phys. Rev. Lett. 94, 073903 (2005).

    CAS  Google Scholar 

  108. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos, Photonic-crystal slow-light enhancement of nonlinear phase sensitivity, J. Opt. Soc. Am. B 19, 2052–2059 (2002).

    CAS  Google Scholar 

  109. Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. Mcnab, Active control of slow light on a chip with photonic crystal waveguides, Nature 438, 65–69 (2005).

    CAS  Google Scholar 

  110. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen and R. T. Chen, 80-micron interaction length silicon photonic crystal waveguide modulator, Appl. Phys. Lett. 87, 221105 (2005).

    Google Scholar 

  111. L. L. Gu, W. Jiang, X. N. Chen, L. Wang and R. T. Chen, High speed silicon photonic crystal waveguide modulator for low voltage operation, Appl. Phys. Lett. 90, 071105 (2007).

    Google Scholar 

  112. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor, Nature 427, 615–618 (2004).

    CAS  Google Scholar 

  113. T. Chu, H. Yamada, S. Ishida and Y. Arakawa, Thermooptic switch based on photonic-crystal line-defect waveguides, IEEE Photonics Technol. Lett. 17, 2083–2085 (2005).

    CAS  Google Scholar 

  114. C. A. Barrios, V. R. Almeida, R. Panepucci and M. Lipson, Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices, J. Lightwave Technol. 21, 2332–2339 (2003).

    CAS  Google Scholar 

  115. C. A. Barrios, V. R. De Almeida and M. Lipson, Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator, J. Lightwave Technol. 21, 1089–1098 (2003).

    CAS  Google Scholar 

  116. Q. F. Xu, B. Schmidt, S. Pradhan and M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature 435, 325–327 (2005).

    CAS  Google Scholar 

  117. R. A. Soref and B. R. Bennett, Electrooptical effects in silicon, IEEE J. Quantum Electron. 23, 123–129 (1987).

    Google Scholar 

  118. G. V. Treyz, P. G. May and J. M. Halbout, Silicon Mach–Zehnder wave-guide interferometers based on the plasma dispersion effect, Appl. Phys. Lett. 59, 771–773 (1991).

    Google Scholar 

  119. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao and X. D. Liu, Silicon-on-insulator Mach–Zehnder wave-guide interferometers operating at 1.3 Mu-M, Appl. Phys. Lett. 67, 2448–2449 (1995).

    CAS  Google Scholar 

  120. R. C. Alferness, Waveguide electrooptic modulators, IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).

    Google Scholar 

  121. D. A. B. Miller, Rationale and challenges for optical interconnects to electrical chips, Proc. IEEE 88, 728–749 (2000).

    Google Scholar 

  122. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow and Y. S. Liu, Fully embedded board-level guided-wave optoelectronic interconnects, Proc. IEEE 88, 780–793 (2000).

    Google Scholar 

  123. E. A. Camargo, H. M. H. Chong and R. M. De La Rue, 2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure, Opt. Express 12, 588–592 (2004).

    Google Scholar 

  124. L. L. Gu, W. Jiang, X. N. Chen and R. T. Chen, Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach–Zehnder interferometers, IEEE Photonics Technol. Lett. 19, 342–344 (2007).

    CAS  Google Scholar 

  125. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, Superprism phenomena in photonic crystals, Phys. Rev. B 58, 10096–10099 (1998).

    Google Scholar 

  126. S. Y. Lin, V. M. Hietala, L. Wang and E. D. Jones, Highly dispersive photonic band-gap prism, Opt. Lett. 21, 1771–1773 (1996).

    CAS  Google Scholar 

  127. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, Superprism phenomena in photonic crystals: Toward microscale lightwave circuits, J. Lightwave Technol. 17, 2032–2038 (1999).

    Google Scholar 

  128. W. Jiang, C. Tian, Y. Jiang, Y. Chen, X. Lu and R. T. Chen, Superprism effect and light refraction and propagation in photonic crystals, Proc. SPIE, 5733, 50–57 (2005).

    Google Scholar 

  129. W. Jiang, unpublished (2004).

    Google Scholar 

  130. T. Baba and T. Matsumoto, Resolution of photonic crystal superprism, Appl. Phys. Lett. 81, 2325–2327 (2002).

    CAS  Google Scholar 

  131. B. Momeni and A. Adibi, Systematic design of superprism-based photonic crystal demultiplexers, IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005).

    Google Scholar 

  132. L. J. Wu, M. Mazilu, T. Karle and T. F. Krauss, Superprism phenomena in planar photonic crystals, IEEE J. Quantum Electron. 38, 915–918 (2002).

    CAS  Google Scholar 

  133. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob and G. J. Parker, Visible-wavelength super-refraction in photonic crystal superprisms, Appl. Phys. Lett. 85, 354–356 (2004).

    CAS  Google Scholar 

  134. A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan and J. M. Fedeli, Experimental evidence for superprism phenomena in SOI photonic crystals, Opt. Express 12, 5690–5696 (2004).

    CAS  Google Scholar 

  135. B. Momeni, J. D. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo and A. Adibi, Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms, Opt. Express 14, 2413–2422 (2006).

    Google Scholar 

  136. D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan, Electro-optic control of the superprism effect in photonic crystals, Appl. Phys. Lett. 82, 3176–3178 (2003).

    CAS  Google Scholar 

  137. N. C. Panoiu, M. Bahl and R. M. Osgood, Optically tunable superprism effect in nonlinear photonic crystals, Opt. Lett. 28, 2503–2505 (2003).

    Google Scholar 

  138. T. Prasad, V. Colvin and D. Mittleman, Superprism phenomenon in three-dimensional macroporous polymer photonic crystals, Phys. Rev. B 67, 165103 (2003).

    Google Scholar 

  139. C. Y. Luo, M. Soljacic and J. D. Joannopoulos, Superprism effect based on phase velocities, Opt. Lett. 29, 745–747 (2004).

    Google Scholar 

  140. T. Baba, T. Matsumoto and M. Echizen, Finite difference time domain study of high efficiency photonic crystal superprisms, Opt. Express 12, 4608–4613 (2004).

    Google Scholar 

  141. V. G. Veselago, The Electrodynamics of substances with simultaneously negative values of ɛ and μ, Sov. Phys. Usp. 10, 509–514 (1968).

    Google Scholar 

  142. J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Google Scholar 

  143. R. A. Shelby, D. R. Smith and S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77–79 (2001).

    CAS  Google Scholar 

  144. N. Fang, H. Lee, C. Sun and X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308, 534–537 (2005).

    CAS  Google Scholar 

  145. M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62, 10696–10705 (2000).

    CAS  Google Scholar 

  146. C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B 65, 201104 (2002).

    Google Scholar 

  147. S. Foteinopoulou, E. N. Economou and C. M. Soukoulis, Refraction in media with a negative refractive index, Phys. Rev. Lett. 90, 107402 (2003).

    CAS  Google Scholar 

  148. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, Subwavelength imaging in photonic crystals, Phys. Rev. B 68, 045115 (2003).

    Google Scholar 

  149. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis, Negative refraction by photonic crystals, Nature 423, 604–605 (2003).

    CAS  Google Scholar 

  150. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau and S. Anand, Negative refraction at infrared wavelengths in a two-dimensional photonic crystal, Phys. Rev. Lett. 93, 073902 (2004).

    CAS  Google Scholar 

  151. D. W. Prather, S. Y. Shi, D. M. Pustai, C. H. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider and J. Murakowski, Dispersion-based optical routing in photonic crystals, Opt. Lett. 29, 50–52 (2004).

    CAS  Google Scholar 

  152. E. Istrate and E. H. Sargent, Photonic crystal heterostructures and interfaces, Rev. Mod. Phys. 78, 455 (2006).

    CAS  Google Scholar 

  153. W. Jiang, L. Gu, X. Chen, R. T. Chen, Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress, Solid State Electronics, 51, 1278 (2007).

    CAS  Google Scholar 

Download references

Acknowledgment

W. Jiang thanks the Air Force Office of Scientific Research (Dr. Gernot Pomrenke), Air Force Research Laboratory (Dr. Robert L. Nelson), and NASA for support during the period of writing.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiang, W., Povinelli, M.L. (2008). Photonic Crystals: Physics, Fabrication, and Devices. In: Korkin, A., Rosei, F. (eds) Nanoelectronics and Photonics. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76499-3_11

Download citation

Publish with us

Policies and ethics