Photonic Crystals: Physics, Fabrication, and Devices

  • Wei Jiang
  • Michelle L. Povinelli
Part of the Nanostructure Science and Technology book series (NST)


We review basic physics of photonic crystals, discuss the relevant fabrication techniques, and summarize important device development in the past two decades. First, photonic band structures of photonic crystals and the origin of the photonic band gap are analyzed. Fundamental photonic crystal structures, such as surfaces, slabs, and engineered defects that include cavities and waveguides, are examined. Applications at visible and infrared wavelengths require photonic crystals to have submicron features, sometimes with precision down to the nanoscale. Common fabrication methods that have helped make such exquisite structures will be reviewed. Lastly, we give a concise account of key advances in photonic crystal-based lasers, light-emitting devices, modulators, optical filters, superprism-based demultiplexers and sensors, and negative index materials. Electron-beam nanolithography has enabled major research progress on photonic crystal devices in the last decade, leading to significant reduction of size and/or power dissipation in devices such as lasers and modulators. With deep ultraviolet (DUV) lithography, these devices may one day be manufactured with the prevalent CMOS technology at affordable cost.


Photonic Crystal Transverse Electric Photonic Crystal Structure Dispersion Surface Photonic Crystal Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



W. Jiang thanks the Air Force Office of Scientific Research (Dr. Gernot Pomrenke), Air Force Research Laboratory (Dr. Robert L. Nelson), and NASA for support during the period of writing.


  1. 1.
    E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987).Google Scholar
  2. 2.
    S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2489 (1987).Google Scholar
  3. 3.
    W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe and J. D. Joannopoulos, Measurement of photonic band-structure in a 2-dimensional periodic dielectric array, Phys. Rev. Lett. 68, 2023–2026 (1992).Google Scholar
  4. 4.
    D. F. Sievenpiper, M. E. Sickmiller and E. Yablonovitch, 3D wire mesh photonic crystals, Phys. Rev. Lett. 76, 2480–2483 (1996).Google Scholar
  5. 5.
    J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).Google Scholar
  6. 6.
    S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Opt. Express 8, 173–190 (2001).Google Scholar
  7. 7.
    K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas and M. Sigalas, Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures, Solid State Commun. 89, 413–416 (1994).Google Scholar
  8. 8.
    S. G. Johnson and J. D. Joannopoulos, Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap, Appl. Phys. Lett. 77, 3490–3492 (2000).Google Scholar
  9. 9.
    M. L. Povinelli, S. G. Johnson, S. H. Fan and J. D. Joannopoulos, Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap, Phys. Rev. B 64, 075313 (2001).Google Scholar
  10. 10.
    S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos and L. A. Kolodziejski, Guided modes in photonic crystal slabs, Phys. Rev. B 60, 5751–5758 (1999).Google Scholar
  11. 11.
    S. G. Johnson, P. R. Villeneuve, S. H. Fan and J. D. Joannopoulos, Linear waveguides in photonic-crystal slabs, Phys. Rev. B 62, 8212–8222 (2000).Google Scholar
  12. 12.
    W. T. Lau and S. H. Fan, Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs, Appl. Phys. Lett. 81, 3915–3917 (2002).Google Scholar
  13. 13.
    M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos and M. Soljacic, Effect of a photonic band gap on scattering from waveguide disorder, Appl. Phys. Lett. 84, 3639–3641 (2004).Google Scholar
  14. 14.
    S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs and J. D. Joannopoulos, Roughness losses and volume-current methods in photonic-crystal waveguides, Appl. Phys. B-Lasers Opt. 81, 283–293 (2005).Google Scholar
  15. 15.
    N. Stefanou and A. Modinos, Impurity bands in photonic insulators, Phys. Rev. B 57, 12127–12133 (1998).Google Scholar
  16. 16.
    A. Yariv, Y. Xu, R. K. Lee and A. Scherer, Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24, 711–713 (1999).Google Scholar
  17. 17.
    T. Baba, N. Fukaya and A. Motegi, Clear correspondence between theoretical and experimental light propagation characteristics in photonic crystal waveguides, Electron. Lett. 37, 761–762 (2001).Google Scholar
  18. 18.
    M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi and H. Y. Ryu, Waveguides, resonators and their coupled elements in photonic crystal slabs, Opt. Express 12, 1551–1561 (2004).Google Scholar
  19. 19.
    K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993).Google Scholar
  20. 20.
    A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005).Google Scholar
  21. 21.
    S. Y. Shi, C. H. Chen and D. W. Prather, Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs, Appl. Phys. Lett. 86, 043104 (2005).Google Scholar
  22. 22.
    M. Qiu, Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals, Appl. Phys. Lett. 81, 1163–1165 (2002).Google Scholar
  23. 23.
    P. R. Villeneuve, S. Fan, S. G. Johnson and J. D. Joannopoulos, Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity, IEE Proceedings–Optoelectronics 145, 384–390 (1998).Google Scholar
  24. 24.
    S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap, Appl. Phys. Lett. 78, 3388–3390 (2001).Google Scholar
  25. 25.
    J. Vuckovic, M. Loncar, H. Mabuchi and A. Scherer, Optimization of the Q factor in photonic crystal microcavities, IEEE J. Quantum Electron. 38, 850–856 (2002).Google Scholar
  26. 26.
    K. Srinivasan and O. Painter, Momentum space design of high-Q photonic crystal optical cavities, Opt. Express 10, 670–684 (2002).Google Scholar
  27. 27.
    H. Y. Ryu, M. Notomi and Y. H. Lee, High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities, Appl. Phys. Lett. 83, 4294–4296 (2003).Google Scholar
  28. 28.
    B. S. Song, S. Noda, T. Asano and Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Mater. 4, 207–210 (2005).Google Scholar
  29. 29.
    E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe and T. Watanabe, Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect, Appl. Phys. Lett. 88, 041112 (2006).Google Scholar
  30. 30.
    T. Asano, B. S. Song, Y. Akahane and S. Noda, Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs, IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).Google Scholar
  31. 31.
    T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya and H. Taniyama, Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity, Nat. Photonics 1, 49–52 (2007).Google Scholar
  32. 32.
    W. Jiang, R. T. Chen and X. J. Lu, Theory of light refraction at the surface of a photonic crystal, Phys. Rev. B 71, 245115 (2005).Google Scholar
  33. 33.
    R. D. Meade, K. D. Brommer, A. M. Rappe and J. D. Joannopoulos, Electromagnetic bloch waves at the surface of a photonic crystal, Phys. Rev. B 44, 10961–10964 (1991).7Google Scholar
  34. 34.
    Z. Y. Li and K. M. Ho, Light propagation in semi-infinite photonic crystals and related waveguide structures, Phys. Rev. B 68, 155101 (2003).Google Scholar
  35. 35.
    T. Ochiai and J. Sanchez-Dehesa, Superprism effect in opal-based photonic crystals, Phys. Rev. B 64, 245113 (2001).Google Scholar
  36. 36.
    X. N. Chen, W. Jiang, J. Q. Chen and R. T. Chen, Theoretical study of light refraction in three -dimensional photonic crystals, J. Lightwave Technol. 25, 2469–2474 (2007).Google Scholar
  37. 37.
    J. B. Pendry and A. Mackinnon, Calculation of photon dispersion-relations, Phys. Rev. Lett. 69, 2772–2775 (1992).Google Scholar
  38. 38.
    K. Ohtaka, T. Ueta and K. Amemiya, Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods, Phys. Rev. B 57, 2550–2568 (1998).Google Scholar
  39. 39.
    N. Stefanou, V. Karathanos and A. Modinos, Scattering of electromagnetic-waves by periodic structures, J. Phys.-Condes. Matter 4, 7389–7400 (1992).Google Scholar
  40. 40.
    J. Bravo-Abad, T. Ochiai and J. Sanchez-Dehesa, Anomalous refractive properties of a two-dimensional photonic band-gap prism, Phys. Rev. B 67, 115116 (2003).Google Scholar
  41. 41.
    K. Sakoda, Symmetry, degeneracy, and uncoupled modes in 2-dimensional photonic lattices, Phys. Rev. B 52, 7982–7986 (1995).Google Scholar
  42. 42.
    K. Sakoda, Transmittance and bragg reflectivity of 2-dimensional photonic lattices, Phys. Rev. B 52, 8992–9002 (1995).Google Scholar
  43. 43.
    P. Bienstman and R. Baets, Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers, Opt. Quantum Electron. 33, 327–341 (2001).Google Scholar
  44. 44.
    W. Jiang and R. T. Chen, Rigorous analysis of diffraction gratings of arbitrary profiles using virtual photonic crystals, J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 23, 2192–2197 (2006).Google Scholar
  45. 45.
    M. G. Moharam and T. K. Gaylord, Diffraction analysis of dielectric surface-relief gratings, J. Opt. Soc. Am. 72, 1385–1392 (1982).Google Scholar
  46. 46.
    T. Baba and M. Nakamura, Photonic crystal light deflection devices using the superprism effect, IEEE J. Quantum Electron. 38, 909–914 (2002).Google Scholar
  47. 47.
    E. Yablonovitch, T. J. Gmitter and K. M. Leung, Photonic band-structure - the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67, 2295–2298 (1991).Google Scholar
  48. 48.
    T. F. Krauss, R. M. Delarue and S. Brand, Two-dimensional photonic-bandgap structures operating at near infrared wavelengths, Nature 383, 699–702 (1996).Google Scholar
  49. 49.
    D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. Delarue, V. Bardinal, R. Houdre, U. Oesterle, D. Cassagne and C. Jouanin, Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths, Phys. Rev. Lett. 79, 4147–4150 (1997).Google Scholar
  50. 50.
    S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251–253 (1998).Google Scholar
  51. 51.
    M. J. Escuti and G. P. Crawford, Holographic photonic crystals, Opt. Eng. 43, 1973–1987 (2004).Google Scholar
  52. 52.
    L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong and G. P. Wang, Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography, Appl. Phys. Lett. 86, 241102 (2005).Google Scholar
  53. 53.
    J. Q. Chen, W. Jiang, X. N. Chen, L. Wang, S. S. Zhang and R. T. Chen, Holographic three-dimensional polymeric photonic crystals operating in the 1550 nm window, Appl. Phys. Lett. 90, 93102 (2007).Google Scholar
  54. 54.
    J. Koch, F. Korte, C. Fallnich, A. Ostendorf and B. N. Chichkov, Direct-write subwavelength structuring with femtosecond laser pulses, Opt. Eng. 44, 051103-5 (2005).Google Scholar
  55. 55.
    J. Serbin and M. Gu, Experimental evidence for superprism effects in three-dimensional polymer photonic crystals, Adv. Mater. 18, 221–224 (2006).Google Scholar
  56. 56.
    J. Serbin and M. Gu, Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization, Opt. Express 14, 3563–3568 (2006).Google Scholar
  57. 57.
    A. Imhof and D. J. Pine, Ordered macroporous materials by emulsion templating, Nature 389, 948–951 (1997).Google Scholar
  58. 58.
    O. D. Velev, P. M. Tessier, A. M. Lenhoff and E. W. Kaler, Materials – A class of porous metallic nanostructures, Nature 401, 548–548 (1999).Google Scholar
  59. 59.
    A. Imhof, W. L. Vos, R. Sprik and A. Lagendijk, Large dispersive effects near the band edges of photonic crystals, Phys. Rev. Lett. 83, 2942–2945 (1999).Google Scholar
  60. 60.
    Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, On-chip natural assembly of silicon photonic bandgap crystals, Nature 414, 289–293 (2001).Google Scholar
  61. 61.
    Z. L. Wang, C. T. Chan, W. Y. Zhang, N. B. Ming and P. Sheng, Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency, Phys. Rev. B 64, 113108 (2001).Google Scholar
  62. 62.
    O. D. Velev and E. W. Kaler, Structured porous materials via colloidal crystal templating: From inorganic oxides to metals, Adv. Mater. 12, 531–534 (2000).Google Scholar
  63. 63.
    M. Diop and R. A. Lessard, Fabrication techniques of high quality photonic crystals, Optical Interconnects and VLSI Photonics, 2004 Digest of the LEOS Summer Topical Meetings, pp. 79–80 (2004).Google Scholar
  64. 64.
    J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman and V. L. Colvin, Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals, Phys. Rev. Lett. 83, 300–303 (1999).Google Scholar
  65. 65.
    L. Wang, W. Jiang, X. Chen, L. Gu, J. Chen and R. T. Chen, Fabrication of polymer photonic crystal superprism structures using polydimethylsiloxane soft molds, J. Appl. Phys. 101, 114316-6 (2007).Google Scholar
  66. 66.
    M. H. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen and H. I. Smith, A three-dimensional optical photonic crystal with designed point defects, Nature 429, 538–542 (2004).Google Scholar
  67. 67.
    F. Garcia-Santamaria, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun and J. A. Lewis, A germanium inverse woodpile structure with a large photonic band gap, Adv. Mater. 19, 1567–1570 (2007).Google Scholar
  68. 68.
    S. Kawakami, Fabrication of submicrometre 3D periodic structures composed of Si/Si Osub 2., Electron. Lett. 33, 1260–1261 (1997).Google Scholar
  69. 69.
    S. Noda, K. Tomoda, N. Yamamoto and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science 289, 604–606 (2000).Google Scholar
  70. 70.
    M. Settle, M. Salib, A. Michaeli and T. F. Krauss, Low loss silicon on insulator photonic crystal waveguides made by 193 nm optical lithography, Opt. Express 14, 2440–2445 (2006).Google Scholar
  71. 71.
    M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O'brien, P. D. Dapkus and W. K. Marshall, Two-dimensional photonic crystal Mach–Zehnder interferometers, Appl. Phys. Lett. 84, 460–462 (2004).Google Scholar
  72. 72.
    H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, Electrically driven single-cell photonic crystal laser, Science 305, 1444–1447 (2004).Google Scholar
  73. 73.
    E. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).Google Scholar
  74. 74.
    J. M. Gerard and B. Gayral, Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, J. Lightwave Technol. 17, 2089–2095 (1999).Google Scholar
  75. 75.
    O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim, Two-dimensional photonic band-gap defect mode laser, Science 284, 1819–1821 (1999).Google Scholar
  76. 76.
    H. Altug, D. Englund and J. Vuckovic, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2, 484–488 (2006).Google Scholar
  77. 77.
    S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano and S. Noda, Control of light emission by 3D photonic crystals, Science 305, 227–229 (2004).Google Scholar
  78. 78.
    W. D. Zhou, J. Sabarinathan, B. Kochman, E. Berg, O. Qasaimeh, S. Pang and P. Bhattacharya, Electrically injected single-defect photon bandgap surface-emitting laser at room temperature, Electron. Lett. 36, 1541–1542 (2000).Google Scholar
  79. 79.
    W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. W. Berg, P. C. Yu and S. W. Pang, Characteristics of a photonic bandgap single defect microcavity electroluminescent device, IEEE J. Quantum Electron. 37, 1153–1160 (2001).Google Scholar
  80. 80.
    H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee and J. S. Kim, Nondegenerate monopole-mode two-dimensional photonic band gap laser, Appl. Phys. Lett. 79, 3032–3034 (2001).Google Scholar
  81. 81.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).Google Scholar
  82. 82.
    A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher and J. D. Joannopoulos, Lasing mechanism in two-dimensional photonic crystal lasers, Appl. Phys. A 69, 111–114 (1999).Google Scholar
  83. 83.
    J. P. Dowling, M. Scalora, M. J. Bloemer and C. M. Bowden, The Photonic band-edge laser – a new approach to gain enhancement, J. Appl. Phys. 75, 1896–1899 (1994).Google Scholar
  84. 84.
    M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat and E. Yablonovitch, Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals, Appl. Phys. Lett. 75, 1036–1038 (1999).Google Scholar
  85. 85.
    S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos and E. F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett. 78, 3294–3297 (1997).Google Scholar
  86. 86.
    A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich and L. A. Kolodziejski, Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode, Appl. Phys. Lett. 78, 563–565 (2001).Google Scholar
  87. 87.
    H. Ichikawa and T. Baba, Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal, Appl. Phys. Lett. 84, 457–459 (2004).Google Scholar
  88. 88.
    A. J. Danner, J. J. Raftery, P. O. Leisher and K. D. Choquette, Single mode photonic crystal vertical cavity lasers, Appl. Phys. Lett. 88, 091114 (2006).Google Scholar
  89. 89.
    S. H. Fan, P. R. Villeneuve and J. D. Joannopoulos, Channel drop tunneling through localized states, Phys. Rev. Lett. 80, 960–963 (1998).Google Scholar
  90. 90.
    A. Sharkawy, S. Y. Shi and D. W. Prather, Multichannel wavelength division multiplexing with photonic crystals, Appl. Optics 40, 2247–2252 (2001).Google Scholar
  91. 91.
    H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, 1984).Google Scholar
  92. 92.
    Y. Akahane, T. Asano, B. S. Song and S. Noda, Fine-tuned high-Q photonic-crystal nanocavity, Opt. Express 13, 1202–1214 (2005).Google Scholar
  93. 93.
    S. Noda, A. Chutinan and M. Imada, Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407, 608–610 (2000).Google Scholar
  94. 94.
    A. Chutinan, M. Mochizuki, M. Imada and S. Noda, Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs, Appl. Phys. Lett. 79, 2690–2692 (2001).Google Scholar
  95. 95.
    Y. Akahane, T. Asano, B. S. Song and S. Noda, Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs, Appl. Phys. Lett. 83, 1512–1514 (2003).Google Scholar
  96. 96.
    B. S. Song, S. Noda and T. Asano, Photonic devices based on in-plane hetero photonic crystals, Science 300, 1537–1537 (2003).Google Scholar
  97. 97.
    T. Asano, W. Kunishi, M. Nakamura, B. S. Song and S. Noda, Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab, Electron. Lett. 41, 37–38 (2005).Google Scholar
  98. 98.
    C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters, IEEE J. Quantum Electron. 35, 1322–1331 (1999).Google Scholar
  99.  99.
    K. H. Hwang and G. H. Song, Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure, Opt. Express 13, 1948–1957 (2005).Google Scholar
  100. 100.
    Z. Zhang and M. Qiu, Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs, Opt. Express 13, 2596–2604 (2005).Google Scholar
  101. 101.
    H. Takano, B. S. Song, T. Asano and S. Noda, Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal, Appl. Phys. Lett. 86, 241101 (2005).Google Scholar
  102. 102.
    Z. Y. Zhang and M. Qiu, Coupled-mode analysis of a resonant channel drop filter using waveguides with mirror boundaries, J. Opt. Soc. Am. B-Opt. Phys. 23, 104–113 (2006).Google Scholar
  103. 103.
    H. Takano, B. S. Song, T. Asano and S. Noda, Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal, Opt. Express 14, 3491–3496 (2006).Google Scholar
  104. 104.
    A. Shinya, S. Mitsugi, E. Kuramochi and M. Notomi, Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide, Opt. Express 13, 4202–4209 (2005).Google Scholar
  105. 105.
    W. Jiang and R. T. Chen, Multichannel optical add-drop processes in symmetrical waveguide-resonator systems, Phys. Rev. Lett. 91, 213901 (2003).Google Scholar
  106. 106.
    M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs, Phys. Rev. Lett. 87, 253902 (2001).Google Scholar
  107. 107.
    H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss and L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides, Phys. Rev. Lett. 94, 073903 (2005).Google Scholar
  108. 108.
    M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos, Photonic-crystal slow-light enhancement of nonlinear phase sensitivity, J. Opt. Soc. Am. B 19, 2052–2059 (2002).Google Scholar
  109. 109.
    Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. Mcnab, Active control of slow light on a chip with photonic crystal waveguides, Nature 438, 65–69 (2005).Google Scholar
  110. 110.
    Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen and R. T. Chen, 80-micron interaction length silicon photonic crystal waveguide modulator, Appl. Phys. Lett. 87, 221105 (2005).Google Scholar
  111. 111.
    L. L. Gu, W. Jiang, X. N. Chen, L. Wang and R. T. Chen, High speed silicon photonic crystal waveguide modulator for low voltage operation, Appl. Phys. Lett. 90, 071105 (2007).Google Scholar
  112. 112.
    A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor, Nature 427, 615–618 (2004).Google Scholar
  113. 113.
    T. Chu, H. Yamada, S. Ishida and Y. Arakawa, Thermooptic switch based on photonic-crystal line-defect waveguides, IEEE Photonics Technol. Lett. 17, 2083–2085 (2005).Google Scholar
  114. 114.
    C. A. Barrios, V. R. Almeida, R. Panepucci and M. Lipson, Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices, J. Lightwave Technol. 21, 2332–2339 (2003).Google Scholar
  115. 115.
    C. A. Barrios, V. R. De Almeida and M. Lipson, Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator, J. Lightwave Technol. 21, 1089–1098 (2003).Google Scholar
  116. 116.
    Q. F. Xu, B. Schmidt, S. Pradhan and M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature 435, 325–327 (2005).Google Scholar
  117. 117.
    R. A. Soref and B. R. Bennett, Electrooptical effects in silicon, IEEE J. Quantum Electron. 23, 123–129 (1987).Google Scholar
  118. 118.
    G. V. Treyz, P. G. May and J. M. Halbout, Silicon Mach–Zehnder wave-guide interferometers based on the plasma dispersion effect, Appl. Phys. Lett. 59, 771–773 (1991).Google Scholar
  119. 119.
    C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao and X. D. Liu, Silicon-on-insulator Mach–Zehnder wave-guide interferometers operating at 1.3 Mu-M, Appl. Phys. Lett. 67, 2448–2449 (1995).Google Scholar
  120. 120.
    R. C. Alferness, Waveguide electrooptic modulators, IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).Google Scholar
  121. 121.
    D. A. B. Miller, Rationale and challenges for optical interconnects to electrical chips, Proc. IEEE 88, 728–749 (2000).Google Scholar
  122. 122.
    R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow and Y. S. Liu, Fully embedded board-level guided-wave optoelectronic interconnects, Proc. IEEE 88, 780–793 (2000).Google Scholar
  123. 123.
    E. A. Camargo, H. M. H. Chong and R. M. De La Rue, 2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure, Opt. Express 12, 588–592 (2004).Google Scholar
  124. 124.
    L. L. Gu, W. Jiang, X. N. Chen and R. T. Chen, Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach–Zehnder interferometers, IEEE Photonics Technol. Lett. 19, 342–344 (2007).Google Scholar
  125. 125.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, Superprism phenomena in photonic crystals, Phys. Rev. B 58, 10096–10099 (1998).Google Scholar
  126. 126.
    S. Y. Lin, V. M. Hietala, L. Wang and E. D. Jones, Highly dispersive photonic band-gap prism, Opt. Lett. 21, 1771–1773 (1996).Google Scholar
  127. 127.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, Superprism phenomena in photonic crystals: Toward microscale lightwave circuits, J. Lightwave Technol. 17, 2032–2038 (1999).Google Scholar
  128. 128.
    W. Jiang, C. Tian, Y. Jiang, Y. Chen, X. Lu and R. T. Chen, Superprism effect and light refraction and propagation in photonic crystals, Proc. SPIE, 5733, 50–57 (2005).Google Scholar
  129. 129.
    W. Jiang, unpublished (2004).Google Scholar
  130. 130.
    T. Baba and T. Matsumoto, Resolution of photonic crystal superprism, Appl. Phys. Lett. 81, 2325–2327 (2002).Google Scholar
  131. 131.
    B. Momeni and A. Adibi, Systematic design of superprism-based photonic crystal demultiplexers, IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005).Google Scholar
  132. 132.
    L. J. Wu, M. Mazilu, T. Karle and T. F. Krauss, Superprism phenomena in planar photonic crystals, IEEE J. Quantum Electron. 38, 915–918 (2002).Google Scholar
  133. 133.
    J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob and G. J. Parker, Visible-wavelength super-refraction in photonic crystal superprisms, Appl. Phys. Lett. 85, 354–356 (2004).Google Scholar
  134. 134.
    A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan and J. M. Fedeli, Experimental evidence for superprism phenomena in SOI photonic crystals, Opt. Express 12, 5690–5696 (2004).Google Scholar
  135. 135.
    B. Momeni, J. D. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo and A. Adibi, Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms, Opt. Express 14, 2413–2422 (2006).Google Scholar
  136. 136.
    D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan, Electro-optic control of the superprism effect in photonic crystals, Appl. Phys. Lett. 82, 3176–3178 (2003).Google Scholar
  137. 137.
    N. C. Panoiu, M. Bahl and R. M. Osgood, Optically tunable superprism effect in nonlinear photonic crystals, Opt. Lett. 28, 2503–2505 (2003).Google Scholar
  138. 138.
    T. Prasad, V. Colvin and D. Mittleman, Superprism phenomenon in three-dimensional macroporous polymer photonic crystals, Phys. Rev. B 67, 165103 (2003).Google Scholar
  139. 139.
    C. Y. Luo, M. Soljacic and J. D. Joannopoulos, Superprism effect based on phase velocities, Opt. Lett. 29, 745–747 (2004).Google Scholar
  140. 140.
    T. Baba, T. Matsumoto and M. Echizen, Finite difference time domain study of high efficiency photonic crystal superprisms, Opt. Express 12, 4608–4613 (2004).Google Scholar
  141. 141.
    V. G. Veselago, The Electrodynamics of substances with simultaneously negative values of ɛ and μ, Sov. Phys. Usp. 10, 509–514 (1968).Google Scholar
  142. 142.
    J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966–3969 (2000).Google Scholar
  143. 143.
    R. A. Shelby, D. R. Smith and S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77–79 (2001).Google Scholar
  144. 144.
    N. Fang, H. Lee, C. Sun and X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308, 534–537 (2005).Google Scholar
  145. 145.
    M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62, 10696–10705 (2000).Google Scholar
  146. 146.
    C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B 65, 201104 (2002).Google Scholar
  147. 147.
    S. Foteinopoulou, E. N. Economou and C. M. Soukoulis, Refraction in media with a negative refractive index, Phys. Rev. Lett. 90, 107402 (2003).Google Scholar
  148. 148.
    C. Y. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, Subwavelength imaging in photonic crystals, Phys. Rev. B 68, 045115 (2003).Google Scholar
  149. 149.
    E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis, Negative refraction by photonic crystals, Nature 423, 604–605 (2003).Google Scholar
  150. 150.
    A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau and S. Anand, Negative refraction at infrared wavelengths in a two-dimensional photonic crystal, Phys. Rev. Lett. 93, 073902 (2004).Google Scholar
  151. 151.
    D. W. Prather, S. Y. Shi, D. M. Pustai, C. H. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider and J. Murakowski, Dispersion-based optical routing in photonic crystals, Opt. Lett. 29, 50–52 (2004).Google Scholar
  152. 152.
    E. Istrate and E. H. Sargent, Photonic crystal heterostructures and interfaces, Rev. Mod. Phys. 78, 455 (2006).Google Scholar
  153. 153.
    W. Jiang, L. Gu, X. Chen, R. T. Chen, Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress, Solid State Electronics, 51, 1278 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wei Jiang
    • 1
    • 2
  • Michelle L. Povinelli
    • 3
  1. 1.Department of Electrical and Computer EngineeringRutgers UniversityPiscataway
  2. 2.Omega Optics, IncUSA
  3. 3.Ming Hsieh Department of Electrical Engineering

Personalised recommendations