Advertisement

Classical and Quantum Optics of Semiconductor Nanostructures

  • Walter Hoyer
  • Mackillo Kira
  • Stephan W. Koch
Part of the Nanostructure Science and Technology book series (NST)

Introduction

Optical properties of semiconductor nanostructures are widely studied both experimentally and theoretically. They are interesting from an application point of view while they also provide an ideal playground to study Coulomb effects, light–matter interaction, and so forth. For the theoretical modeling, the strongly interacting charge carriers inside a semiconductor present a considerable challenge. This is intensified if also the electromagnetic radiation and potentially also the lattice vibrations have to be treated quantum mechanically. Direct solutions of, e.g., the Schrödinger equation are completely out of question, and a successful theoretical approach has to find consistent methods of truncating the infinite hierarchy problem caused by the interaction. In particular, Coulomb correlations have to be dealt with on the same footing as phonon or photon correlations.

Our theoretical approach is based on the Heisenberg equation of motion where the precise density matrix...

Keywords

Light Field Bloch Function Bloch Electron Phonon Operator Coherent Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Kira and S. W. Koch. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30:155–296, 2006.Google Scholar
  2. 2.
    M. Born and R. Oppenheimer. Qantum theory of molecules. Ann. Phys., 84:457–484, 1927.CrossRefGoogle Scholar
  3. 3.
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms. Wiley, New York, 3. edition, 1989.Google Scholar
  4. 4.
    H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publ., Singapore, 4. edition, 2004.Google Scholar
  5. 5.
    E. Merzbacher. Quantum Mechanics. Wiley, New York, 1. edition, 1961.Google Scholar
  6. 6.
    L. I. Schiff. Quantum Mechanics. MacGraw-Hill, New York, 3. edition, 1968.Google Scholar
  7. 7.
    M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quantum Electron., 23:189–279, 1999.CrossRefGoogle Scholar
  8. 8.
    M. Goeppert Mayer. Elementary processes with two-quantum transitions. Ann. d. Physik, 9:273, 1931.Google Scholar
  9. 9.
    J. Cízek. On correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys., 45:4256, 1966.CrossRefGoogle Scholar
  10. 10.
    J. Fricke. Transport equations including many-particle correlations for an arbitrary quantum system: A general formalism. Ann. Phys., 252(2):479–498, 1996.CrossRefGoogle Scholar
  11. 11.
    F. E. Harris, H. J. Monkhorst, and D. L. Freeman. Algebraic and Diagrammatic Methods in Many-Fermion Theory. Oxford Press, New York, 1. edition, 1992.Google Scholar
  12. 12.
    W. Hoyer, M. Kira, and S. W. Koch. Cluster expansion in semiconductor quantum optics. In K. Morawetz, editor, Nonequilibrium Physics at Short Time Scales, pages 309–335. Springer Verlag, Berlin, 2004.Google Scholar
  13. 13.
    M. Kira and S. W. Koch. Microscopic theory of optical excitations, photoluminescence, and terahertz response in semiconductors. Eur. J. Phys. D, 36:143–157, 2005.CrossRefGoogle Scholar
  14. 14.
    M. Kira, W. Hoyer, and S. W. Koch. Excitons and luminescence in semiconductor heterostructures. Nonlinear Opt., 29:481–489, 2002.CrossRefGoogle Scholar
  15. 15.
    G. D. Purvis and R. J. Bartlett. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys., 76:1910–1918, 1982.CrossRefGoogle Scholar
  16. 16.
    H. W. Wyld and B. D. Fried. Quantum mechanical kinetic equations. Ann. phys., 23:374–389,1963.Google Scholar
  17. 17.
    M. Kira, W. Hoyer, T. Stroucken, and S. W. Koch. Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett., 87:176401, 2001.CrossRefGoogle Scholar
  18. 18.
    M. Kira, W. Hoyer, S. W. Koch, P. Brick, C. Ell, M. Hübner, G. Khitrova, and H. M. Gibbs. Quantum correlations in semiconductor microcavities. Semicond. Sci. Technol., 18:S405–S410, 2003.CrossRefGoogle Scholar
  19. 19.
    S. W. Koch and M. Kira. Excitons in semiconductors. In H. Kalt and M. Hetterich, editors, Optics of Semiconductors and Their Nanostructures – Springer Series in Solid-State Sciences Vol. 146, pages 1–18. Springer Verlag, Berlin, 2004.Google Scholar
  20. 20.
    S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs. Excitons in new light. Nat. Mater., 5:523–531, 2006.CrossRefGoogle Scholar
  21. 21.
    W. Hoyer, M. Kira, and S. W. Koch. Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures. Phys. Rev. B, 67:155113, 2003.CrossRefGoogle Scholar
  22. 22.
    S. Siggelkow, W. Hoyer, M. Kira, and S. W. Koch. Exciton formation and stability in semiconductor heterostructures. Phys. Rev. B, 69:073104, 2004.CrossRefGoogle Scholar
  23. 23.
    V. S. Filinov, W. Hoyer, M. Bonitz, M. Kira, V. E. Fortov, and S. W. Koch. Spontaneous emission of semiconductors in the Wigner approach. J. Opt. B, 5:S299–S305, 2003.Google Scholar
  24. 24.
    S. W. Koch, M. Kira, W. Hoyer, and V. S. Filinov. Exciton ionization in semiconductors. Phys. Stat. Sol. B, 238:404–410, 2003.CrossRefGoogle Scholar
  25. 25.
    M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz. Attosecond metrology. Nature, 414:509–513, 2001.CrossRefGoogle Scholar
  26. 26.
    D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288:635–639,2000.CrossRefGoogle Scholar
  27. 27.
    J. Shah. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures – Springer Series in Solid State Sciences, Vol. 115. Springer Verlag, New York, 2. edition, 1999.Google Scholar
  28. 28.
    T. Udem, R. Holzwarth, and T. W. Hänsch. Optical frequency metrology. Nature, 416:233–237, 2002.CrossRefGoogle Scholar
  29. 29.
    G. W. Fehrenbach, W. Schäfer, J. Treusch, and R. G. Ulbrich. Transient optical spectra of a dense exciton gas in a direct-gap semiconductor. Phys. Rev. Lett., 57:1281–1284, 1982.CrossRefGoogle Scholar
  30. 30.
    H. M. Gibbs, A. C. Gossard, S. L. McCall, A Passner, W. Wiegmann, and T. N. C. Venkatesan. Saturation of the free exciton resonance in GaAs. Solid State Commun., 30:271–275, 1979.Google Scholar
  31. 31.
    Y. H. Lee, A. Chavezpirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann. Room-temperature optical nonlinearities in GaAs. Phys. Rev. Lett., 57:2446–2449, 1986.CrossRefGoogle Scholar
  32. 32.
    V. G. Lysenko and V. I. Revenko. Exciton spectrum in case of high-density non-equilibrium carriers in CdS crystals. Fizika Tverdogo Tela, 20:2144–2147, 1978.Google Scholar
  33. 33.
    T. B. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch. Time-resolved vacuum rabi oscillations in a semicondcutor quantum microcavity. Phys. Rev. B, 50:14663–14666, 1994.CrossRefGoogle Scholar
  34. 34.
    S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys., 38:89–188, 1989.CrossRefGoogle Scholar
  35. 35.
    C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69:3314–3317, 1992.CrossRefGoogle Scholar
  36. 36.
    D. S. Chemla and J. Shah. Many-body and correlation effects in semiconductors. Nature, 411:549–557, 2001.CrossRefGoogle Scholar
  37. 37.
    S. T. Cundiff, M. Koch, W. H. Knox, J. Shah, and W. Stolz. Optical coherence in semiconductors: Strong emission mediated by nondegenerate interactions. Phys. Rev. Lett., 77:1107–1110, 1996.CrossRefGoogle Scholar
  38. 38.
    P. Kner, W. Schäfer, R. Lövenich, and D. S. Chemla. Coherence of four-particle correlations in semiconductors. Phys. Rev. Lett., 81:5386–5389, 1998.CrossRefGoogle Scholar
  39. 39.
    J. Kuhl. Optical dephasing of excitons in iii–v semiconductors. In R. T. Phillips, editor, Coherent Optical Interactions in Semiconductors, pages 1–31. Plenum Press, New York, 1994.Google Scholar
  40. 40.
    T. Rappen, G. Mohs, and M. Wegener. Polariton dynamics in quantum wells studied by femtosecond four-wave mixing. Phys. Rev. B, 47:9658–9662, 1993.CrossRefGoogle Scholar
  41. 41.
    W. Schäfer, D. S. Kim, J. Shah, T. C. Damen, J. E. Cunningham, L. N. Pfeiffer, K. W. Goossen, and K. Köhler. Femtosecond coherent fields induced by many-particle correlations in transient four-wave-mixing. Phys. Rev. B, 53:16429–16443, 1996.CrossRefGoogle Scholar
  42. 42.
    W. Schäfer, R. Lövenich, N. A. Fromer, and D. S. Chemla. From coherently excited highly correlated states to incoherent relaxation processes in semiconductors. Phys. Rev. Lett., 86:344–347, 2001.CrossRefGoogle Scholar
  43. 43.
    L. Schultheis, M. D. Sturge, and J. Hegarty. Photon-echoes from two-dimensional excitons in GaAs–AlGaAs quantum wells. Appl. Phys. Lett., 47:995–997, 1985.CrossRefGoogle Scholar
  44. 44.
    L. Schultheis, J. Kuhl, A. Honold, and C. W. Tu. Ultrafast phase relaxation of excitons via exciton–exciton and exciton–electron collisions. Phys. Rev. Lett., 57:1635–1638, 1986.CrossRefGoogle Scholar
  45. 45.
    A. L. Smirl. The vectorial dynamics of coherent emission from excitons. In K.-T. Tsen, editor, Ultrafast Phenomena in Semiconductors, pages 443–507. Springer Verlag, New York, 2001.Google Scholar
  46. 46.
    H. Stolz. Time Resolved Light Scattering from Excitons. Springer Verlag, Berlin, 1994.CrossRefGoogle Scholar
  47. 47.
    M. Lindberg and S. W. Koch. Effective Bloch equations for semiconductors. Phys. Rev. B, 38:3342–3350, 1988.CrossRefGoogle Scholar
  48. 48.
    H. Haug and S. Schmitt-Rink. Electron theory of the optical properties of laser excited semiconductors. Prog. Quantum Electron., 9:3–100, 1984.CrossRefGoogle Scholar
  49. 49.
    L. V. Keldysh and Y. V. Kopaev. Possible instability of the semimetal state toward coulomb interaction. Sov. Phys. Solid State, 6:2219–2224, 1965.Google Scholar
  50. 50.
    C. Klingshirn and H. Haug. Optical properties of highly excited direct gap semiconductors. Phys. Rep., 70:315–410, 1981.CrossRefGoogle Scholar
  51. 51.
    R. J. Elliott. Theory of excitons. In C. G. Kuper and G. D. Whitefield, editors, Polarons and Excitons, pages 269–293. Oliver and Boyd, Edinburgh, 1963.Google Scholar
  52. 52.
    F. Jahnke, M. Kira, and S. W. Koch. Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities. Z. Physik B, 104:559–572, 1997.CrossRefGoogle Scholar
  53. 53.
    S. W. Koch, N. Peyghambarian, and M. Lindberg. Transient and steady-state optical nonlinearities in semiconductors. J. Phys. C: Solid State Phys., 21:5229–5249, 1988.CrossRefGoogle Scholar
  54. 54.
    B. Mieck, H. Haug, W. A. Hügel, M. F. Heinrich, and M. Wegener. Quantum-kinetic dephasing in resonantly excited semiconductor quantum wells. Phys. Rev. B, 62:2686–2695, 2000.CrossRefGoogle Scholar
  55. 55.
    T. Rappen, U. G. Peter, M. Wegener, and W. Schäfer. Polarization dependence of dephasing processes – A probe for many-body effects. Phys. Rev. B, 49:10774–10777, 1994.CrossRefGoogle Scholar
  56. 56.
    S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. P. Prineas, and H. Stolz. Excitonic photoluminescence in semiconductor quantum wells: Plasma versus excitons. Phys. Rev. Lett., 92:067402, 2004.CrossRefGoogle Scholar
  57. 57.
    W. W. Chow and S. W. Koch. Semiconductor Laser Fundamentals. Springer Verlag, New York, 1. edition, 1999.Google Scholar
  58. 58.
    F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai. Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime. Phys. Rev. Lett., 77:5257–5260, 1996.CrossRefGoogle Scholar
  59. 59.
    W. Hoyer, M. Kira, and S. W. Koch. Influence of bound and unbound electron–hole-pair populations and interaction effects on the excitonic luminescence in semiconductor quantum wells. Cond-Mat, 0604349, 2006.Google Scholar
  60. 60.
    N. F. Mott. The transition to the metallic state. Philos. Mag., 6:287–309, 1961.CrossRefGoogle Scholar
  61. 61.
    W. W. Chow, S. W. Koch, and M. Sargent III. Semiconductor-Laser Physics. Springer Verlag, Berlin, corrected second printing 1997 edition, 1994.Google Scholar
  62. 62.
    W. W. Chow, A. F. Wright, A. Girndt, F. Jahnke, and S. W. Koch. Microscopic theory of gain in an inhomogeneously broadened ingan/algan quantum-well laser. Appl. Phys. Lett., 71:2608–2610, 1997.CrossRefGoogle Scholar
  63. 63.
    J. Hader, S. W. Koch, and J. V. Moloney. Microscopic theory of gain and spontaneous emission in GaInNAs laser material. Solid State Electron., 47:513–521, 2003.CrossRefGoogle Scholar
  64. 64.
    J. Hader, J. V. Moloney, S. W. Koch, and W. W. Chow. Microscopic modelling of gain and luminescence in semiconductors. J. Sel. Top. Quant. Electron., 9:688–697, 2003.CrossRefGoogle Scholar
  65. 65.
    C. Ell, P. Brick, M. Hübner, E. S. Lee, O. Lyngnes, J. P. Prineas, G. Khitrova, H. M. Gibbs, M. Kira, F. Jahnke, S. W. Koch, D. G. Deppe, and D. L. Huffaker. Quantum correlations in the nonperturbative regime of semiconductor microcavities. Phys. Rev. Lett., 85:5392–5395,2000.CrossRefGoogle Scholar
  66. 66.
    W. Hoyer, M. Kira, S. W. Koch, H. Stolz, S. Mosor, J. Sweet, C. Ell, G. Khitrova, and H. M. Gibbs. Entanglement between a photon and a quantum well. Phys. Rev. Lett., 93:067401, 2004.CrossRefGoogle Scholar
  67. 67.
    M. Kira, F. Jahnke, and S. W. Koch. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys. Rev. Lett., 81:3263–3266, 1998.CrossRefGoogle Scholar
  68. 68.
    M. Kira, F. Jahnke, and S. W. Koch. Quantum theory of secondary emission in optically excited semiconductor quantum wells. Phys. Rev. Lett., 82:3544–3547, 1999.CrossRefGoogle Scholar
  69. 69.
    Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, and H. M. Gibbs. Quantum correlations and intraband coherences in semiconductor cavity QED. Phys. Rev. Lett., 83:5338–5341, 1999.CrossRefGoogle Scholar
  70. 70.
    S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai. Four-wave mixing and direct terahertz emission with two-color semiconductor lasers. Appl. Phys. Lett., 84:3585–3587, 2004.CrossRefGoogle Scholar
  71. 71.
    S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch. Two-colour diode lasers for generation of THz radiation. Semicond. Sci. Technol., 20:205–210, 2005.CrossRefGoogle Scholar
  72. 72.
    W. Hoyer, A. Knorr, J. V. Moloney, E. M. Wright, M. Kira, and S. W. Koch. Photoluminescence and terahertz emission from femtosecond laser-induced plasma channels. Phys. Rev. Lett., 94:115004, 2005.CrossRefGoogle Scholar
  73. 73.
    M. Richter, M. Schaarschmidt, A. Knorr, W. Hoyer, J. V. Moloney, E. M. Wright, M. Kira, and S. W. Koch. Quantum theory of incoherent THz-emission of an interacting electron–ion plasma. Phys. Rev. A, 71:053819, 2005.CrossRefGoogle Scholar
  74. 74.
    W. Hoyer, C. Ell, M. Kira, S. W. Koch, S. Chatterjee, S. Mosor, G. Khitrova, H. M. Gibbs, and H. Stolz. Many-body dynamics and exciton formation studied by time-resolved photoluminescence. Phys. Rev. B, 72:075324, 2005.CrossRefGoogle Scholar
  75. 75.
    I. Galbraith, R. Chari, S. Pellegrini, P. J. Phillips, C. J. Dent, A. F. G. van der Meer, D. G. Clarke, A. K. Kar, G. S. Buller, C. R. Pidgeon, B. N. Murdin, J. Allam, and G. Strasser. Excitonic signatures in the photoluminescence and terahertz absorption of a GaAs/Al\(_x\)Ga\(_{1-x}\)As multiple quantum well. Phys. Rev. B, 71:073302, 2005.CrossRefGoogle Scholar
  76. 76.
    M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson Jr., G. Khitrova, and H. M. Gibbs. Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments. Phys. Rev. Lett., 79:5170–5173, 1997.CrossRefGoogle Scholar
  77. 77.
    G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys., 71:1591–1639, 1999.CrossRefGoogle Scholar
  78. 78.
    W. Chow, M. Kira, and S. W. Koch. Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group iii nitride quantum wells. Phys. Rev. B, 60:1947–1952, 1999.CrossRefGoogle Scholar
  79. 79.
    K. Hantke, J. D. Heber, C. Schlichenmaier, A. Thränhardt, T. Meier, B. Kunert, K. Volz, W. Stolz, S. W. Koch, and W. W. Rühle. Time-resolved photoluminescence of type-i and type-ii (GaIn)As/Ga(NAs) heterostructures. Phys. Rev. B, 71:165320, 2005.CrossRefGoogle Scholar
  80. 80.
    R. F. Schnabel, R. Zimmermann, D. Bimberg, H. Nickel, R. Lösch, and W. Schlapp. Influence of exciton localization on recombination line shapes: In\(_{x}\)Ga\(_{1-x}\)As/GaAs quantum wells as a model. Phys. Rev. B, 46:9873–9876, 1992.CrossRefGoogle Scholar
  81. 81.
    J. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud. Determination of the exciton formation in quantum wells from time-resolved interband luminescence. Phys. Rev. Lett., 93:137401, 2004.CrossRefGoogle Scholar
  82. 82.
    J. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud. Origin of excitonic luminescence in quantum wells: Direct comparison of the exciton population and coulomb correlated plasma models. Phys. Rev. B, 71:195313, 2005.CrossRefGoogle Scholar
  83. 83.
    G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham. Optically induced entanglement of excitons in a single quantum dot. Science, 289:1906–1909,2000.CrossRefGoogle Scholar
  84. 84.
    X. Q. Li, Y. W. Wu, D. G. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham. An all-optical quantum gate in a semiconductor quantum dot. Science, 301:809–811, 2003.CrossRefGoogle Scholar
  85. 85.
    P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu. A quantum dot single-photon turnstile device. Science, 290:2282–2285,2000.CrossRefGoogle Scholar
  86. 86.
    W. Hoyer, M. Kira, and S. W. Koch. Quantum-optical effects in semiconductors. Festkörperprobleme (Adv. Solid State Phys.), 42:55, 2002.Google Scholar
  87. 87.
    V. M. Agranovich and O. A. Dubowskii. Effect of retarded interaction of exciton spectrum in 1-dimensional and 2-dimenstional crystals. JETP Lett., 3:223, 1966.Google Scholar
  88. 88.
    F. Tassone, F. Bassani, and L. C. Andreani. Quantum-well reflectivity and exciton–polariton dispersion. Phys. Rev. B, 45:6023–6030, 1992.CrossRefGoogle Scholar
  89. 89.
    B. G. Englert, M. O. Scully, and H. Walther. Complementarity and uncertainty. Nature, 375:367–368, 1995.CrossRefGoogle Scholar
  90. 90.
    M. O. Scully, B. G. Englert, and H. Walther. Quantum optical tests of complementarity. Nature, 351:111–116, 1991.CrossRefGoogle Scholar
  91. 91.
    E. P. Storey, S. M. Tan, M. J. Collett, and D. F. Walls. Path detection and the uncertainty principle. Nature, 367:626–628, 1994.CrossRefGoogle Scholar
  92. 92.
    P. Bozsoki, P. Thomas, M. Kira, W. Hoyer, T. Meier, S.W. Koch, K. Maschke, I. Varga, and H. Stolz. Characterization of disorder in semiconductors via single–photon interferometry. Phys. Rev. Lett., accepted, 2006.Google Scholar
  93. 93.
    J. Cerne, J. Kono, M. S. Sherwin, M. Sundaram, A. C. Gossard, and G. E. W. Bauer. Terahertz dynamics of excitons in GaAs/AlGaAs quantum wells. Phys. Rev. Lett., 77:1131–1134, 1996.CrossRefGoogle Scholar
  94. 94.
    E. M. Gershenzon, G. N. Goltsman, and M. G. Ptitsina. Investigation of free excitons in Ge and their condensation at submillimeter waves. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 70:224–234, 1976.Google Scholar
  95. 95.
    R. M. Groeneveld and D. Grischkowsky. Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs–AlGaAs multiple-quantum wells. J. Opt. Soc. Am. B, 11:2502–2507, 1994.CrossRefGoogle Scholar
  96. 96.
    T. Timusk, R. Navarro, N. O. Lipari, and M. Altarelli. Far-infrared absorption by excitons in silicon. Solid State Commun., 25:217–219, 1978.CrossRefGoogle Scholar
  97. 97.
    M. Kira and S. W. Koch. Exciton-population inversion and terahertz gain in resonantly excited semiconductors. Phys. Rev. Lett., 93:076402, 2004.CrossRefGoogle Scholar
  98. 98.
    M. Kira, W. Hoyer, and S. W. Koch. Microscopic theory of the semiconductor terahertz response. Phys. Stat. Sol. B, 238:443–450, 2003.CrossRefGoogle Scholar
  99.  99.
    M. Kira, W. Hoyer, and S. W. Koch. Terahertz signatures of the exciton formation dynamics in non-resonantly excited semiconductors. Solid State Commun., 129:733–736, 2004.CrossRefGoogle Scholar
  100. 100.
    M. Kira, W. Hoyer, S.W. Koch, Y.-S. Lee, T. B. Norris, G. Khitrova, and H. M. Gibbs. Incoherent pulse generation in semiconductor microcavities. Phys. Stat. Sol. C, 0:1397–1400, 2003.CrossRefGoogle Scholar
  101. 101.
    R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature, 423:734–738, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Walter Hoyer
  • Mackillo Kira
  • Stephan W. Koch
    • 1
  1. 1.Department of Physics and Material Sciences CenterPhilipps-University MarburgGermany

Personalised recommendations