Skip to main content

Classical and Quantum Optics of Semiconductor Nanostructures

  • Chapter
Nanoelectronics and Photonics

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2903 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kira and S. W. Koch. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30:155–296, 2006.

    Google Scholar 

  2. M. Born and R. Oppenheimer. Qantum theory of molecules. Ann. Phys., 84:457–484, 1927.

    Article  CAS  Google Scholar 

  3. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms. Wiley, New York, 3. edition, 1989.

    Google Scholar 

  4. H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publ., Singapore, 4. edition, 2004.

    Google Scholar 

  5. E. Merzbacher. Quantum Mechanics. Wiley, New York, 1. edition, 1961.

    Google Scholar 

  6. L. I. Schiff. Quantum Mechanics. MacGraw-Hill, New York, 3. edition, 1968.

    Google Scholar 

  7. M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quantum Electron., 23:189–279, 1999.

    Article  CAS  Google Scholar 

  8. M. Goeppert Mayer. Elementary processes with two-quantum transitions. Ann. d. Physik, 9:273, 1931.

    Google Scholar 

  9. J. Cízek. On correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys., 45:4256, 1966.

    Article  Google Scholar 

  10. J. Fricke. Transport equations including many-particle correlations for an arbitrary quantum system: A general formalism. Ann. Phys., 252(2):479–498, 1996.

    Article  CAS  Google Scholar 

  11. F. E. Harris, H. J. Monkhorst, and D. L. Freeman. Algebraic and Diagrammatic Methods in Many-Fermion Theory. Oxford Press, New York, 1. edition, 1992.

    Google Scholar 

  12. W. Hoyer, M. Kira, and S. W. Koch. Cluster expansion in semiconductor quantum optics. In K. Morawetz, editor, Nonequilibrium Physics at Short Time Scales, pages 309–335. Springer Verlag, Berlin, 2004.

    Google Scholar 

  13. M. Kira and S. W. Koch. Microscopic theory of optical excitations, photoluminescence, and terahertz response in semiconductors. Eur. J. Phys. D, 36:143–157, 2005.

    Article  CAS  Google Scholar 

  14. M. Kira, W. Hoyer, and S. W. Koch. Excitons and luminescence in semiconductor heterostructures. Nonlinear Opt., 29:481–489, 2002.

    Article  CAS  Google Scholar 

  15. G. D. Purvis and R. J. Bartlett. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys., 76:1910–1918, 1982.

    Article  CAS  Google Scholar 

  16. H. W. Wyld and B. D. Fried. Quantum mechanical kinetic equations. Ann. phys., 23:374–389,1963.

    Google Scholar 

  17. M. Kira, W. Hoyer, T. Stroucken, and S. W. Koch. Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett., 87:176401, 2001.

    Article  CAS  Google Scholar 

  18. M. Kira, W. Hoyer, S. W. Koch, P. Brick, C. Ell, M. Hübner, G. Khitrova, and H. M. Gibbs. Quantum correlations in semiconductor microcavities. Semicond. Sci. Technol., 18:S405–S410, 2003.

    Article  CAS  Google Scholar 

  19. S. W. Koch and M. Kira. Excitons in semiconductors. In H. Kalt and M. Hetterich, editors, Optics of Semiconductors and Their Nanostructures – Springer Series in Solid-State Sciences Vol. 146, pages 1–18. Springer Verlag, Berlin, 2004.

    Google Scholar 

  20. S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs. Excitons in new light. Nat. Mater., 5:523–531, 2006.

    Article  CAS  Google Scholar 

  21. W. Hoyer, M. Kira, and S. W. Koch. Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures. Phys. Rev. B, 67:155113, 2003.

    Article  Google Scholar 

  22. S. Siggelkow, W. Hoyer, M. Kira, and S. W. Koch. Exciton formation and stability in semiconductor heterostructures. Phys. Rev. B, 69:073104, 2004.

    Article  Google Scholar 

  23. V. S. Filinov, W. Hoyer, M. Bonitz, M. Kira, V. E. Fortov, and S. W. Koch. Spontaneous emission of semiconductors in the Wigner approach. J. Opt. B, 5:S299–S305, 2003.

    CAS  Google Scholar 

  24. S. W. Koch, M. Kira, W. Hoyer, and V. S. Filinov. Exciton ionization in semiconductors. Phys. Stat. Sol. B, 238:404–410, 2003.

    Article  CAS  Google Scholar 

  25. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz. Attosecond metrology. Nature, 414:509–513, 2001.

    Article  CAS  Google Scholar 

  26. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288:635–639,2000.

    Article  CAS  Google Scholar 

  27. J. Shah. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures – Springer Series in Solid State Sciences, Vol. 115. Springer Verlag, New York, 2. edition, 1999.

    Google Scholar 

  28. T. Udem, R. Holzwarth, and T. W. Hänsch. Optical frequency metrology. Nature, 416:233–237, 2002.

    Article  CAS  Google Scholar 

  29. G. W. Fehrenbach, W. Schäfer, J. Treusch, and R. G. Ulbrich. Transient optical spectra of a dense exciton gas in a direct-gap semiconductor. Phys. Rev. Lett., 57:1281–1284, 1982.

    Article  Google Scholar 

  30. H. M. Gibbs, A. C. Gossard, S. L. McCall, A Passner, W. Wiegmann, and T. N. C. Venkatesan. Saturation of the free exciton resonance in GaAs. Solid State Commun., 30:271–275, 1979.

    Google Scholar 

  31. Y. H. Lee, A. Chavezpirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann. Room-temperature optical nonlinearities in GaAs. Phys. Rev. Lett., 57:2446–2449, 1986.

    Article  CAS  Google Scholar 

  32. V. G. Lysenko and V. I. Revenko. Exciton spectrum in case of high-density non-equilibrium carriers in CdS crystals. Fizika Tverdogo Tela, 20:2144–2147, 1978.

    CAS  Google Scholar 

  33. T. B. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch. Time-resolved vacuum rabi oscillations in a semicondcutor quantum microcavity. Phys. Rev. B, 50:14663–14666, 1994.

    Article  CAS  Google Scholar 

  34. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys., 38:89–188, 1989.

    Article  CAS  Google Scholar 

  35. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69:3314–3317, 1992.

    Article  CAS  Google Scholar 

  36. D. S. Chemla and J. Shah. Many-body and correlation effects in semiconductors. Nature, 411:549–557, 2001.

    Article  CAS  Google Scholar 

  37. S. T. Cundiff, M. Koch, W. H. Knox, J. Shah, and W. Stolz. Optical coherence in semiconductors: Strong emission mediated by nondegenerate interactions. Phys. Rev. Lett., 77:1107–1110, 1996.

    Article  CAS  Google Scholar 

  38. P. Kner, W. Schäfer, R. Lövenich, and D. S. Chemla. Coherence of four-particle correlations in semiconductors. Phys. Rev. Lett., 81:5386–5389, 1998.

    Article  CAS  Google Scholar 

  39. J. Kuhl. Optical dephasing of excitons in iii–v semiconductors. In R. T. Phillips, editor, Coherent Optical Interactions in Semiconductors, pages 1–31. Plenum Press, New York, 1994.

    Google Scholar 

  40. T. Rappen, G. Mohs, and M. Wegener. Polariton dynamics in quantum wells studied by femtosecond four-wave mixing. Phys. Rev. B, 47:9658–9662, 1993.

    Article  Google Scholar 

  41. W. Schäfer, D. S. Kim, J. Shah, T. C. Damen, J. E. Cunningham, L. N. Pfeiffer, K. W. Goossen, and K. Köhler. Femtosecond coherent fields induced by many-particle correlations in transient four-wave-mixing. Phys. Rev. B, 53:16429–16443, 1996.

    Article  Google Scholar 

  42. W. Schäfer, R. Lövenich, N. A. Fromer, and D. S. Chemla. From coherently excited highly correlated states to incoherent relaxation processes in semiconductors. Phys. Rev. Lett., 86:344–347, 2001.

    Article  Google Scholar 

  43. L. Schultheis, M. D. Sturge, and J. Hegarty. Photon-echoes from two-dimensional excitons in GaAs–AlGaAs quantum wells. Appl. Phys. Lett., 47:995–997, 1985.

    Article  CAS  Google Scholar 

  44. L. Schultheis, J. Kuhl, A. Honold, and C. W. Tu. Ultrafast phase relaxation of excitons via exciton–exciton and exciton–electron collisions. Phys. Rev. Lett., 57:1635–1638, 1986.

    Article  CAS  Google Scholar 

  45. A. L. Smirl. The vectorial dynamics of coherent emission from excitons. In K.-T. Tsen, editor, Ultrafast Phenomena in Semiconductors, pages 443–507. Springer Verlag, New York, 2001.

    Google Scholar 

  46. H. Stolz. Time Resolved Light Scattering from Excitons. Springer Verlag, Berlin, 1994.

    Book  Google Scholar 

  47. M. Lindberg and S. W. Koch. Effective Bloch equations for semiconductors. Phys. Rev. B, 38:3342–3350, 1988.

    Article  Google Scholar 

  48. H. Haug and S. Schmitt-Rink. Electron theory of the optical properties of laser excited semiconductors. Prog. Quantum Electron., 9:3–100, 1984.

    Article  CAS  Google Scholar 

  49. L. V. Keldysh and Y. V. Kopaev. Possible instability of the semimetal state toward coulomb interaction. Sov. Phys. Solid State, 6:2219–2224, 1965.

    Google Scholar 

  50. C. Klingshirn and H. Haug. Optical properties of highly excited direct gap semiconductors. Phys. Rep., 70:315–410, 1981.

    Article  CAS  Google Scholar 

  51. R. J. Elliott. Theory of excitons. In C. G. Kuper and G. D. Whitefield, editors, Polarons and Excitons, pages 269–293. Oliver and Boyd, Edinburgh, 1963.

    Google Scholar 

  52. F. Jahnke, M. Kira, and S. W. Koch. Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities. Z. Physik B, 104:559–572, 1997.

    Article  CAS  Google Scholar 

  53. S. W. Koch, N. Peyghambarian, and M. Lindberg. Transient and steady-state optical nonlinearities in semiconductors. J. Phys. C: Solid State Phys., 21:5229–5249, 1988.

    Article  CAS  Google Scholar 

  54. B. Mieck, H. Haug, W. A. Hügel, M. F. Heinrich, and M. Wegener. Quantum-kinetic dephasing in resonantly excited semiconductor quantum wells. Phys. Rev. B, 62:2686–2695, 2000.

    Article  CAS  Google Scholar 

  55. T. Rappen, U. G. Peter, M. Wegener, and W. Schäfer. Polarization dependence of dephasing processes – A probe for many-body effects. Phys. Rev. B, 49:10774–10777, 1994.

    Article  CAS  Google Scholar 

  56. S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. P. Prineas, and H. Stolz. Excitonic photoluminescence in semiconductor quantum wells: Plasma versus excitons. Phys. Rev. Lett., 92:067402, 2004.

    Article  CAS  Google Scholar 

  57. W. W. Chow and S. W. Koch. Semiconductor Laser Fundamentals. Springer Verlag, New York, 1. edition, 1999.

    Google Scholar 

  58. F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai. Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime. Phys. Rev. Lett., 77:5257–5260, 1996.

    Article  CAS  Google Scholar 

  59. W. Hoyer, M. Kira, and S. W. Koch. Influence of bound and unbound electron–hole-pair populations and interaction effects on the excitonic luminescence in semiconductor quantum wells. Cond-Mat, 0604349, 2006.

    Google Scholar 

  60. N. F. Mott. The transition to the metallic state. Philos. Mag., 6:287–309, 1961.

    Article  CAS  Google Scholar 

  61. W. W. Chow, S. W. Koch, and M. Sargent III. Semiconductor-Laser Physics. Springer Verlag, Berlin, corrected second printing 1997 edition, 1994.

    Google Scholar 

  62. W. W. Chow, A. F. Wright, A. Girndt, F. Jahnke, and S. W. Koch. Microscopic theory of gain in an inhomogeneously broadened ingan/algan quantum-well laser. Appl. Phys. Lett., 71:2608–2610, 1997.

    Article  CAS  Google Scholar 

  63. J. Hader, S. W. Koch, and J. V. Moloney. Microscopic theory of gain and spontaneous emission in GaInNAs laser material. Solid State Electron., 47:513–521, 2003.

    Article  CAS  Google Scholar 

  64. J. Hader, J. V. Moloney, S. W. Koch, and W. W. Chow. Microscopic modelling of gain and luminescence in semiconductors. J. Sel. Top. Quant. Electron., 9:688–697, 2003.

    Article  CAS  Google Scholar 

  65. C. Ell, P. Brick, M. Hübner, E. S. Lee, O. Lyngnes, J. P. Prineas, G. Khitrova, H. M. Gibbs, M. Kira, F. Jahnke, S. W. Koch, D. G. Deppe, and D. L. Huffaker. Quantum correlations in the nonperturbative regime of semiconductor microcavities. Phys. Rev. Lett., 85:5392–5395,2000.

    Article  CAS  Google Scholar 

  66. W. Hoyer, M. Kira, S. W. Koch, H. Stolz, S. Mosor, J. Sweet, C. Ell, G. Khitrova, and H. M. Gibbs. Entanglement between a photon and a quantum well. Phys. Rev. Lett., 93:067401, 2004.

    Article  CAS  Google Scholar 

  67. M. Kira, F. Jahnke, and S. W. Koch. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys. Rev. Lett., 81:3263–3266, 1998.

    Article  CAS  Google Scholar 

  68. M. Kira, F. Jahnke, and S. W. Koch. Quantum theory of secondary emission in optically excited semiconductor quantum wells. Phys. Rev. Lett., 82:3544–3547, 1999.

    Article  CAS  Google Scholar 

  69. Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, and H. M. Gibbs. Quantum correlations and intraband coherences in semiconductor cavity QED. Phys. Rev. Lett., 83:5338–5341, 1999.

    Article  CAS  Google Scholar 

  70. S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai. Four-wave mixing and direct terahertz emission with two-color semiconductor lasers. Appl. Phys. Lett., 84:3585–3587, 2004.

    Article  CAS  Google Scholar 

  71. S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch. Two-colour diode lasers for generation of THz radiation. Semicond. Sci. Technol., 20:205–210, 2005.

    Article  Google Scholar 

  72. W. Hoyer, A. Knorr, J. V. Moloney, E. M. Wright, M. Kira, and S. W. Koch. Photoluminescence and terahertz emission from femtosecond laser-induced plasma channels. Phys. Rev. Lett., 94:115004, 2005.

    Article  CAS  Google Scholar 

  73. M. Richter, M. Schaarschmidt, A. Knorr, W. Hoyer, J. V. Moloney, E. M. Wright, M. Kira, and S. W. Koch. Quantum theory of incoherent THz-emission of an interacting electron–ion plasma. Phys. Rev. A, 71:053819, 2005.

    Article  Google Scholar 

  74. W. Hoyer, C. Ell, M. Kira, S. W. Koch, S. Chatterjee, S. Mosor, G. Khitrova, H. M. Gibbs, and H. Stolz. Many-body dynamics and exciton formation studied by time-resolved photoluminescence. Phys. Rev. B, 72:075324, 2005.

    Article  Google Scholar 

  75. I. Galbraith, R. Chari, S. Pellegrini, P. J. Phillips, C. J. Dent, A. F. G. van der Meer, D. G. Clarke, A. K. Kar, G. S. Buller, C. R. Pidgeon, B. N. Murdin, J. Allam, and G. Strasser. Excitonic signatures in the photoluminescence and terahertz absorption of a GaAs/Al\(_x\)Ga\(_{1-x}\)As multiple quantum well. Phys. Rev. B, 71:073302, 2005.

    Article  Google Scholar 

  76. M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson Jr., G. Khitrova, and H. M. Gibbs. Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments. Phys. Rev. Lett., 79:5170–5173, 1997.

    Article  CAS  Google Scholar 

  77. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys., 71:1591–1639, 1999.

    Article  Google Scholar 

  78. W. Chow, M. Kira, and S. W. Koch. Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group iii nitride quantum wells. Phys. Rev. B, 60:1947–1952, 1999.

    Article  CAS  Google Scholar 

  79. K. Hantke, J. D. Heber, C. Schlichenmaier, A. Thränhardt, T. Meier, B. Kunert, K. Volz, W. Stolz, S. W. Koch, and W. W. Rühle. Time-resolved photoluminescence of type-i and type-ii (GaIn)As/Ga(NAs) heterostructures. Phys. Rev. B, 71:165320, 2005.

    Article  Google Scholar 

  80. R. F. Schnabel, R. Zimmermann, D. Bimberg, H. Nickel, R. Lösch, and W. Schlapp. Influence of exciton localization on recombination line shapes: In\(_{x}\)Ga\(_{1-x}\)As/GaAs quantum wells as a model. Phys. Rev. B, 46:9873–9876, 1992.

    Article  CAS  Google Scholar 

  81. J. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud. Determination of the exciton formation in quantum wells from time-resolved interband luminescence. Phys. Rev. Lett., 93:137401, 2004.

    Article  CAS  Google Scholar 

  82. J. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud. Origin of excitonic luminescence in quantum wells: Direct comparison of the exciton population and coulomb correlated plasma models. Phys. Rev. B, 71:195313, 2005.

    Article  Google Scholar 

  83. G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham. Optically induced entanglement of excitons in a single quantum dot. Science, 289:1906–1909,2000.

    Article  CAS  Google Scholar 

  84. X. Q. Li, Y. W. Wu, D. G. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham. An all-optical quantum gate in a semiconductor quantum dot. Science, 301:809–811, 2003.

    Article  CAS  Google Scholar 

  85. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu. A quantum dot single-photon turnstile device. Science, 290:2282–2285,2000.

    Article  CAS  Google Scholar 

  86. W. Hoyer, M. Kira, and S. W. Koch. Quantum-optical effects in semiconductors. Festkörperprobleme (Adv. Solid State Phys.), 42:55, 2002.

    CAS  Google Scholar 

  87. V. M. Agranovich and O. A. Dubowskii. Effect of retarded interaction of exciton spectrum in 1-dimensional and 2-dimenstional crystals. JETP Lett., 3:223, 1966.

    Google Scholar 

  88. F. Tassone, F. Bassani, and L. C. Andreani. Quantum-well reflectivity and exciton–polariton dispersion. Phys. Rev. B, 45:6023–6030, 1992.

    Article  Google Scholar 

  89. B. G. Englert, M. O. Scully, and H. Walther. Complementarity and uncertainty. Nature, 375:367–368, 1995.

    Article  CAS  Google Scholar 

  90. M. O. Scully, B. G. Englert, and H. Walther. Quantum optical tests of complementarity. Nature, 351:111–116, 1991.

    Article  Google Scholar 

  91. E. P. Storey, S. M. Tan, M. J. Collett, and D. F. Walls. Path detection and the uncertainty principle. Nature, 367:626–628, 1994.

    Article  Google Scholar 

  92. P. Bozsoki, P. Thomas, M. Kira, W. Hoyer, T. Meier, S.W. Koch, K. Maschke, I. Varga, and H. Stolz. Characterization of disorder in semiconductors via single–photon interferometry. Phys. Rev. Lett., accepted, 2006.

    Google Scholar 

  93. J. Cerne, J. Kono, M. S. Sherwin, M. Sundaram, A. C. Gossard, and G. E. W. Bauer. Terahertz dynamics of excitons in GaAs/AlGaAs quantum wells. Phys. Rev. Lett., 77:1131–1134, 1996.

    Article  CAS  Google Scholar 

  94. E. M. Gershenzon, G. N. Goltsman, and M. G. Ptitsina. Investigation of free excitons in Ge and their condensation at submillimeter waves. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 70:224–234, 1976.

    CAS  Google Scholar 

  95. R. M. Groeneveld and D. Grischkowsky. Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs–AlGaAs multiple-quantum wells. J. Opt. Soc. Am. B, 11:2502–2507, 1994.

    Article  CAS  Google Scholar 

  96. T. Timusk, R. Navarro, N. O. Lipari, and M. Altarelli. Far-infrared absorption by excitons in silicon. Solid State Commun., 25:217–219, 1978.

    Article  CAS  Google Scholar 

  97. M. Kira and S. W. Koch. Exciton-population inversion and terahertz gain in resonantly excited semiconductors. Phys. Rev. Lett., 93:076402, 2004.

    Article  CAS  Google Scholar 

  98. M. Kira, W. Hoyer, and S. W. Koch. Microscopic theory of the semiconductor terahertz response. Phys. Stat. Sol. B, 238:443–450, 2003.

    Article  CAS  Google Scholar 

  99. M. Kira, W. Hoyer, and S. W. Koch. Terahertz signatures of the exciton formation dynamics in non-resonantly excited semiconductors. Solid State Commun., 129:733–736, 2004.

    Article  CAS  Google Scholar 

  100. M. Kira, W. Hoyer, S.W. Koch, Y.-S. Lee, T. B. Norris, G. Khitrova, and H. M. Gibbs. Incoherent pulse generation in semiconductor microcavities. Phys. Stat. Sol. C, 0:1397–1400, 2003.

    Article  CAS  Google Scholar 

  101. R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature, 423:734–738, 2003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hoyer, W., Kira, M., Koch, S.W. (2008). Classical and Quantum Optics of Semiconductor Nanostructures. In: Korkin, A., Rosei, F. (eds) Nanoelectronics and Photonics. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76499-3_10

Download citation

Publish with us

Policies and ethics