Fluorescence Correlation Spectroscopy in Living Cells

  • Thomas Weidemann
  • Petra Schwille


In fluorescence correlation spectroscopy (FCS), information about molecular dynamics is extracted by recording the fluctuating signal of a pico- to micromolar concentration of fluorescent molecules in solution. As primary parameters, FCS provides time constants of the fluorescence emission, as well as numbers and dwell times of the observed particles diffusing through the open volume. A biochemical reaction or macromolecular rearrangement causing changes in these parameters, when linked to fluorescence readout, can be quantified by FCS. Since the measurements are now routinely performed in a laser-illuminated confocal spot, making measurements in living cells is straightforward. Different cellular compartments, such as the nucleus, the cytoplasm, or the plasma membrane, can be easily distinguished and addressed. In addition to biochemical reactions, the local environment of macromolecules, for example, ion concentrations, pH, or viscosity, can be probed. Thus, FCS is a versatile and attractive technique for researchers striving for a quantitative understanding of interactions and dynamics of biological and in particular cellular systems.


Diffusion Time Fluorescence Recovery After Photobleaching Fluorescence Correlation Spectroscopy Detection Volume Fluorescent Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



TW is indebted to Konstantin Klenin and Malte Wachsmuth for their contributions in deriving FCS theory. TW and PS thank Eugene Petrov for helpful discussions.


  1. 1.
    Bacia, K., Kim, S. A., & Schwille, P. (2006). Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3, 83–9.CrossRefGoogle Scholar
  2. 2.
    Kim, S. A., Heinze, K. G., & Schwille, P. (2007). Fluorescence correlation spectroscopy in living cells. Nat Methods 4, 963–73.CrossRefGoogle Scholar
  3. 3.
    Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. 3rd ed. New York: Springer.CrossRefGoogle Scholar
  4. 4.
    Bacia, K., & Schwille, P. (2007). Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2, 2842–56.CrossRefGoogle Scholar
  5. 5.
    Haustein, E., & Schwille, P. (2003). Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29, 153–66.CrossRefGoogle Scholar
  6. 6.
    Hess, S. T., Huang, S., Heikal, A. A., & Webb, W. W. (2002). Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41, 697–705.CrossRefGoogle Scholar
  7. 7.
    Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K., & Langowski, J. (2002). Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Mol 3, 49–61.ADSCrossRefGoogle Scholar
  8. 8.
    Widengren, J., & Rigler, R. (1998). Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell Mol Biol (Noisy-le-grand) 44, 857–79.Google Scholar
  9. 9.
    Enderlein, J., Gregor, I., Patra, D., Dertinger, T., & Kaupp, U. B. (2005). Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6, 2324–36.CrossRefGoogle Scholar
  10. 10.
    Hess, S. T., & Webb, W. W. (2002). Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83, 2300–17.Google Scholar
  11. 11.
    Dertinger, T., Pacheco, V., von der Hocht, I., Hartmann, R., Gregor, I., & Enderlein, J. (2007). Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8, 433–43.CrossRefGoogle Scholar
  12. 12.
    Magde, D., Elson, E. L., & Webb, W. W. (1972). Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlations spectroscopy. Phys Rev Let 29, 705–708.ADSCrossRefGoogle Scholar
  13. 13.
    Magde, D., Elson, E. L., & Webb, W. W. (1974). Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61.CrossRefGoogle Scholar
  14. 14.
    Magde, D., Webb, W. W., & Elson, E. L. (1978). Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17, 361–76.CrossRefGoogle Scholar
  15. 15.
    Meseth, U., Wohland, T., Rigler, R., & Vogel, H. (1999). Resolution of fluorescence correlation measurements. Biophys J 76, 1619–31.CrossRefGoogle Scholar
  16. 16.
    Widengren, J., Mets, Ü., & Rigler, R. (1995). Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99, 13368–79.CrossRefGoogle Scholar
  17. 17.
    Bosisio, C., Quercioli, V., Collini, M., D’Alfonso, L., Baldini, G., Bettati, S., Campanini, B., Raboni, S., & Chirico, G. (2008). Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy. J Phys Chem B 112, 8806–14.CrossRefGoogle Scholar
  18. 18.
    Haupts, U., Maiti, S., Schwille, P., & Webb, W. W. (1998). Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95, 13573–8.ADSCrossRefGoogle Scholar
  19. 19.
    Heikal, A. A., Hess, S. T., Baird, G. S., Tsien, R. Y., & Webb, W. W. (2000). Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci USA 97, 11996–2001.ADSCrossRefGoogle Scholar
  20. 20.
    Hendrix, J., Flors, C., Dedecker, P., Hofkens, J., & Engelborghs, Y. (2008). Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94, 4103–13.CrossRefGoogle Scholar
  21. 21.
    Malvezzi-Campeggi, F., Jahnz, M., Heinze, K. G., Dittrich, P., & Schwille, P. (2001). Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81, 1776–85.CrossRefGoogle Scholar
  22. 22.
    Schenk, A., Ivanchenko, S., Rocker, C., Wiedenmann, J., & Nienhaus, G. U. (2004). Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys J 86, 384–94.CrossRefGoogle Scholar
  23. 23.
    Schwille, P., Kummer, S., Heikal, A. A., Moerner, W. E., & Webb, W. W. (2000). Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97, 151–6.ADSCrossRefGoogle Scholar
  24. 24.
    Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–5.ADSCrossRefGoogle Scholar
  25. 25.
    Heim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91, 12501–4.ADSCrossRefGoogle Scholar
  26. 26.
    Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–8.CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Kim, H. R., & Heikal, A. A. (2006). Structural basis of fluorescence fluctuation dynamics of green fluorescent proteins in acidic environments. J Phys Chem B 110, 24138–46.CrossRefGoogle Scholar
  28. 28.
    Wong, F. H., Banks, D. S., Abu-Arish, A., & Fradin, C. (2007). A molecular thermometer based on fluorescent protein blinking. J Am Chem Soc 129, 10302–3.CrossRefGoogle Scholar
  29. 29.
    Thompson, N. L. (1991). Fluorescence correlation spectroscopy. In Topics in Fluorescence Spectroscopy. Vol. 1: Techniques (Lankowicz, J. R., ed.), pp. 337–378. New York: Plenum Press.Google Scholar
  30. 30.
    Koppel, D. (1974). Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10, 1938–45.ADSCrossRefGoogle Scholar
  31. 31.
    Eigen, M., & Rigler, R. (1994). Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91, 5740–7.ADSCrossRefGoogle Scholar
  32. 32.
    Schwille, P., Meyer-Almes, F. J., & Rigler, R. (1997). Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72, 1878–86.CrossRefGoogle Scholar
  33. 33.
    Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N., & Schwille, P. (2005). Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys J 88, 4319–36.CrossRefGoogle Scholar
  34. 34.
    Stoevesandt, O., & Brock, R. (2006). One-step analysis of protein complexes in microliters of cell lysate using indirect immunolabeling & fluorescence cross-correlation spectroscopy. Nat Protoc 1, 223–9.CrossRefGoogle Scholar
  35. 35.
    Berland, K. M., So, P. T., & Gratton, E. (1995). Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68, 694–701.CrossRefGoogle Scholar
  36. 36.
    Brock, R., Hink, M. A., & Jovin, T. M. (1998). Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J 75, 2547–57.CrossRefGoogle Scholar
  37. 37.
    Gennerich, A., & Schild, D. (2000). Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J 79, 3294–306.CrossRefGoogle Scholar
  38. 38.
    Wachsmuth, M., Weidemann, T., Muller, G., Hoffmann-Rohrer, U. W., Knoch, T. A., Waldeck, W., & Langowski, J. (2003). Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84, 3353–63.CrossRefGoogle Scholar
  39. 39.
    Wachsmuth, M., Waldeck, W., & Langowski, J. (2000). Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298, 677–89.CrossRefGoogle Scholar
  40. 40.
    Weidemann, T., Wachsmuth, M., Knoch, T. A., Muller, G., Waldeck, W., & Langowski, J. (2003). Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol 334, 229–40.CrossRefGoogle Scholar
  41. 41.
    Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., & Webb, W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16, 1055–69.CrossRefGoogle Scholar
  42. 42.
    Sprague, B. L., & McNally, J. G. (2005). FRAP analysis of binding: proper and fitting. Trends Cell Biol 15, 84–91.CrossRefGoogle Scholar
  43. 43.
    Chen, Y., Lagerholm, B. C., Yang, B., & Jacobson, K. (2006). Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39, 147–53.CrossRefGoogle Scholar
  44. 44.
    Guo, L., Har, J. Y., Sankaran, J., Hong, Y., Kannan, B., & Wohland, T. (2008). Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. Chemphyschem 9, 721–8.CrossRefGoogle Scholar
  45. 45.
    Kolin, D. L., & Wiseman, P. W. (2007). Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49, 141–64.CrossRefGoogle Scholar
  46. 46.
    Petersen, N. O., Hoddelius, P. L., Wiseman, P. W., Seger, O., & Magnusson, K. E. (1993). Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65, 1135–46.CrossRefGoogle Scholar
  47. 47.
    Weissman, M., Schindler, H., & Feher, G. (1976). Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci USA 73, 2776–80.ADSCrossRefGoogle Scholar
  48. 48.
    Petersen, N. O. (1986). Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J 49, 809–15.CrossRefGoogle Scholar
  49. 49.
    Petersen, N. O., Johnson, D. C., & Schlesinger, M. J. (1986). Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J 49, 817–20.CrossRefGoogle Scholar
  50. 50.
    Digman, M. A., Brown, C. M., Sengupta, P., Wiseman, P. W., Horwitz, A. R., & Gratton, E. (2005). Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89, 1317–27.CrossRefGoogle Scholar
  51. 51.
    Digman, M. A., Sengupta, P., Wiseman, P. W., Brown, C. M., Horwitz, A. R., & Gratton, E. (2005). Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88, L33–6.CrossRefGoogle Scholar
  52. 52.
    Koppel, D. E., Morgan, F., Cowan, A. E., & Carson, J. H. (1994). Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys J 66, 502–7.CrossRefGoogle Scholar
  53. 53.
    Xiao, Y., Buschmann, V., & Weston, K. D. (2005). Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species. Anal Chem 77, 36–46.CrossRefGoogle Scholar
  54. 54.
    Berland, K. M., So, P. T., Chen, Y., Mantulin, W. W., & Gratton, E. (1996). Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71, 410–20.CrossRefGoogle Scholar
  55. 55.
    Meyer, T., & Schindler, H. (1988). Particle counting by fluorescence correlation spectroscopy. Simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes. Biophys J 54, 983–93.CrossRefGoogle Scholar
  56. 56.
    Petrasek, Z., & Schwille, P. (2008). Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94, 1437–48.CrossRefGoogle Scholar
  57. 57.
    Ruan, Q., Cheng, M. A., Levi, M., Gratton, E., & Mantulin, W. W. (2004). Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87, 1260–7.CrossRefGoogle Scholar
  58. 58.
    Skinner, J. P., Chen, Y., & Muller, J. D. (2005). Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89, 1288–301.CrossRefGoogle Scholar
  59. 59.
    Amediek, A., Haustein, E., Scherfeld, D., & Schwille, P. (2002). Scanning dual-color cross-correlation analysis for dynamic co-localization studies of immobile molecules. Single Mol 3, 201–210.ADSCrossRefGoogle Scholar
  60. 60.
    Ries, J., & Schwille, P. (2008). New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10, 3487–97.CrossRefGoogle Scholar
  61. 61.
    Ries, J., & Schwille, P. (2006). Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91, 1915–24.CrossRefGoogle Scholar
  62. 62.
    Denk, W., Strickler, J. H., & Webb, W. W. (1990). 2-photon laser scanning fluorescence microscopy. Science 248, 73–76.ADSCrossRefGoogle Scholar
  63. 63.
    Xu, C., Zipfel, W., Shear, J. B., Williams, R. M., & Webb, W. W. (1996). Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93, 10763–68.ADSCrossRefGoogle Scholar
  64. 64.
    Heinze, K. G., Koltermann, A., & Schwille, P. (2000). Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proc Natl Acad Sci USA 97, 10377–82.ADSCrossRefGoogle Scholar
  65. 65.
    Thompson, N. L., & Axelrod, D. (1983). Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J 43, 103–14.CrossRefGoogle Scholar
  66. 66.
    Thompson, N. L., & Steele, B. L. (2007). Total internal reflection with fluorescence correlation spectroscopy. Nat Protoc 2, 878–90.CrossRefGoogle Scholar
  67. 67.
    Lieto, A. M., & Thompson, N. L. (2004). Total internal reflection with fluorescence correlation spectroscopy: nonfluorescent competitors. Biophys J 87, 1268–78.CrossRefGoogle Scholar
  68. 68.
    Starr, T. E., & Thompson, N. L. (2001). Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. Biophys J 80, 1575–84.CrossRefGoogle Scholar
  69. 69.
    Pero, J. K., Haas, E. M., & Thompson, N. L. (2006). Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy. J Phys Chem B 110, 10910–18.CrossRefGoogle Scholar
  70. 70.
    Starr, T. E., & Thompson, N. L. (2002). Local diffusion and concentration of IgG near planar membranes: measurement by total internal reflection with fluorescence correlation spectroscopy. J Phys Chem B 106, 2365–71.CrossRefGoogle Scholar
  71. 71.
    Lieto, A. M., Cush, R. C., & Thompson, N. L. (2003). Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys J 85, 3294–302.CrossRefGoogle Scholar
  72. 72.
    Kastrup, L., Blom, H., Eggeling, C., & Hell, S. W. (2005). Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94(17): 178104.Google Scholar
  73. 73.
    Briddon, S. J., Middleton, R. J., Yates, A. S., George, M. W., Kellam, B., & Hill, S. J. (2004). Application of fluorescence correlation spectroscopy to the measurement of agonist binding to a G-protein coupled receptor at the single cell level. Faraday Discuss 126, 197–207; discussion 245–54.ADSCrossRefGoogle Scholar
  74. 74.
    Schwartz, J. W., Novarino, G., Piston, D. W., & DeFelice, L. J. (2005). Substrate binding stoichiometry and kinetics of the norepinephrine transporter. J Biol Chem 280, 19177–84.CrossRefGoogle Scholar
  75. 75.
    Abouzied, M. M., El-Tahir, H. M., Prenner, L., Haberlein, H., Gieselmann, V., & Franken, S. (2005). Hepatoma-derived growth factor. Significance of amino acid residues 81–100 in cell surface interaction and proliferative activity. J Biol Chem 280, 10945–54.CrossRefGoogle Scholar
  76. 76.
    Larson, D. R., Gosse, J. A., Holowka, D. A., Baird, B. A., & Webb, W. W. (2005). Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J Cell Biol 171, 527–36.CrossRefGoogle Scholar
  77. 77.
    Pyenta, P. S., Schwille, P., Webb, W. W., Holowka, D., & Baird, B. (2003). Lateral diffusion of membrane lipid-anchored probes before and after aggregation of cell surface IgE-receptors. J Phys Chem A 107, 8310–18.CrossRefGoogle Scholar
  78. 78.
    Vamosi, G., Bodnar, A., Vereb, G., Jenei, A., Goldman, C. K., Langowski, J., Toth, K., Matyus, L., Szollosi, J., Waldmann, T. A., & Damjanovich, S. (2004). IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc Natl Acad Sci USA 101, 11082–87.ADSCrossRefGoogle Scholar
  79. 79.
    Kretzschmar, A. K., Dinger, M. C., Henze, C., Brocke-Heidrich, K., & Horn, F. (2004). Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells. Biochem J 377, 289–97.CrossRefGoogle Scholar
  80. 80.
    Watanabe, K., Saito, K., Kinjo, M., Matsuda, T., Tamura, M., Kon, S., Miyazaki, T., & Uede, T. (2004). Molecular dynamics of STAT3 on IL-6 signaling pathway in living cells. Biochem Biophys Res Commun 324, 1264–73.CrossRefGoogle Scholar
  81. 81.
    Schwille, P., Haupts, U., Maiti, S., & Webb, W. W. (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77, 2251–65.CrossRefGoogle Scholar
  82. 82.
    Weiss, M., Elsner, M., Kartberg, F., & Nilsson, T. (2004). Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87, 3518–24.CrossRefGoogle Scholar
  83. 83.
    Weiss, M., Hashimoto, H., & Nilsson, T. (2003). Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84, 4043–52.CrossRefGoogle Scholar
  84. 84.
    Wawrezinieck, L., Rigneault, H., Marguet, D., & Lenne, P. F. (2005). Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89, 4029–42.CrossRefGoogle Scholar
  85. 85.
    Chakrabandhu, K., Herincs, Z., Huault, S., Dost, B., Peng, L., Conchonaud, F., Marguet, D., He, H. T., & Hueber, A. O. (2007). Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26, 209–20.CrossRefGoogle Scholar
  86. 86.
    Cahuzac, N., Baum, W., Kirkin, V., Conchonaud, F., Wawrezinieck, L., Marguet, D., Janssen, O., Zornig, M., & Hueber, A. O. (2006). Fas ligand is localized to membrane rafts, where it displays increased cell death-inducing activity. Blood 107, 2384–91.CrossRefGoogle Scholar
  87. 87.
    Nagata, S. (1997). Apoptosis by death factor. Cell 88, 355–65.CrossRefGoogle Scholar
  88. 88.
    Krammer, P. H., Arnold, R., & Lavrik, I. N. (2007). Life and death in peripheral T cells. Nat Rev Immunol 7, 532–42.CrossRefGoogle Scholar
  89. 89.
    Kohl, T., Haustein, E., & Schwille, P. (2005). Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89, 2770–82.CrossRefGoogle Scholar
  90. 90.
    Keese, M., Offterdinger, M., Tischer, C., Girod, A., Lommerse, P. H., Yagublu, V., Magdeburg, R., & Bastiaens, P. I. (2007). Quantitative imaging of apoptosis commitment in colorectal tumor cells. Differentiation 75, 809–18.CrossRefGoogle Scholar
  91. 91.
    Kim, S. A., Heinze, K. G., Waxham, M. N., & Schwille, P. (2004). Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci USA 101, 105–10.ADSCrossRefGoogle Scholar
  92. 92.
    Philip, F., Sengupta, P., & Scarlata, S. (2007). Signaling through a G Protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J Biol Chem 282, 19203–16.CrossRefGoogle Scholar
  93. 93.
    Sengupta, P., Philip, F., & Scarlata, S. (2008). Caveolin-1 alters Ca(2+) signal duration through specific interaction with the G alpha q family of G proteins. J Cell Sci 121, 1363–72.CrossRefGoogle Scholar
  94. 94.
    Knol, J. C., Engel, R., Blaauw, M., Visser, A. J., & van Haastert, P. J. (2005). The phosducin-like protein PhLP1 is essential for G{beta}{gamma} dimer formation in Dictyostelium discoideum. Mol Cell Biol 25, 8393–400.CrossRefGoogle Scholar
  95. 95.
    Simons, K., & Vaz, W. L. (2004). Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33, 269–95.CrossRefGoogle Scholar
  96. 96.
    Maeder, C. I., Hink, M. A., Kinkhabwala, A., Mayr, R., Bastiaens, P. I., & Knop, M. (2007). Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9, 1319–26.CrossRefGoogle Scholar
  97. 97.
    Slaughter, B. D., Schwartz, J. W., & Li, R. (2007). Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci USA 104, 20320–5.ADSCrossRefGoogle Scholar
  98. 98.
    Wang, Z., Shah, J. V., Berns, M. W., & Cleveland, D. W. (2006). In vivo quantitative studies of dynamic intracellular processes using fluorescence correlation spectroscopy. Biophys J 91, 343–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas Weidemann
    • 1
  • Petra Schwille
    • 1
  1. 1.BIOTEC, Biophysics, Technische Universität Dresden, Tatzberg 47-5101307 DresdenGermany

Personalised recommendations