Single-Molecule Studies of Rotary Molecular Motors

  • Teuta Pilizota
  • Yoshiyuki Sowa
  • Richard M. Berry


Rotary molecular motors are protein complexes that transform chemical or electrochemical energy into mechanical work. There are five known rotary molecular motors in nature; the bacterial flagellar motor, and two motors in each of ATP-synthase and V-ATPase. Rotation of the flagellar motor drives a helical propeller that powers bacterial swimming. The function of the other rotary motors is to couple electrochemical ion gradients to synthesis or hydrolysis of ATP, and rotation is a detail of the coupling mechanism rather than the ultimate purpose of the motors. Much has been learned about the mechanism of the F1 part of ATP-synthase and the flagellar motor by measuring the rotation of single motors with a variety of techniques under a wide range of conditions. This chapter will review the structures of ATP-synthase and the flagellar motor, and what has been learned about their mechanisms using single molecule techniques.


Actin Filament Fluorescence Resonance Energy Transfer Optical Tweezer Polystyrene Bead Total Internal Reflection Fluorescence Microscope 


  1. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–628.ADSCrossRefGoogle Scholar
  2. Adachi K, Yasuda R, Noji H, Itoh H, Harada Y, Yoshida M, Kinosita K (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci USA 97: 7243–7247.ADSCrossRefGoogle Scholar
  3. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K (2007) Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. Cell 130: 309–321.CrossRefGoogle Scholar
  4. Aizawa SI (1996) Flagellar assembly in Salmonella typhimurium. Mol Microbiol 19: 1–5.MathSciNetCrossRefGoogle Scholar
  5. Althoff G, Lill H, Junge W (1989) Proton channel of the chloroplast ATP synthase, CF0: its time-averaged single-channel conductance as function of pH, temperature, isotopic and ionic medium composition. J Membr Biol 108: 263–271.CrossRefGoogle Scholar
  6. Arai H, Terres G, Pink S, Forgac M (1988) Topography and subunit stoichiometry of the coated vesicle proton pump. J Biol Chem 263: 8796–8802.Google Scholar
  7. Ariga T, Masaike T, Noji H, Yoshida M (2002) Stepping rotation of F(1)-ATPase with one, two, or three altered catalytic sites that bind ATP only slowly. J Biol Chem 277: 24870–24874.CrossRefGoogle Scholar
  8. Ariga T, Muneyuki E, Yoshida M (2007) F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat Struct Mol Biol 14: 841–846.CrossRefGoogle Scholar
  9. Armstrong JB, Adler J (1969) Complementation of nonchemotactic mutants of Escherichia coli. Genetics 61: 61–66.Google Scholar
  10. Asai Y, Yakushi T, Kawagishi I, Homma M (2003) Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327: 453–463.CrossRefGoogle Scholar
  11. Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28: 9–22.CrossRefGoogle Scholar
  12. Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245: 380–382.ADSCrossRefGoogle Scholar
  13. Berg HC, Turner L (1993) Torque generated by the flagellar motor of Escherichia coli. Biophys J 65: 2201–2216.CrossRefGoogle Scholar
  14. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72: 19–54.CrossRefGoogle Scholar
  15. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. WH Freeman, New York.Google Scholar
  16. Berry RM, Berg HC (1996) Torque generated by the bacterial flagellar motor close to stall. Biophys J 71: 3501–3510.CrossRefGoogle Scholar
  17. Berry RM, Berg HC (1997) Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc Natl Acad Sci USA 94: 14433–14437.ADSCrossRefGoogle Scholar
  18. Berry RM, Berg HC (1999) Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys J 76: 580–587.CrossRefGoogle Scholar
  19. Berry RM, Turner L, Berg HC (1995) Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys J 69: 280–286.CrossRefGoogle Scholar
  20. Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209: 577–589.CrossRefGoogle Scholar
  21. Blair DF, Berg HC (1988) Restoration of torque in defective flagellar motors. Science 242: 1678–1681.ADSCrossRefGoogle Scholar
  22. Blair DF (1995) How bacteria sense and swim. Annu Rev Microbiol 49: 489–522.CrossRefGoogle Scholar
  23. Blair DF, Berg HC (1991) Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction. J Mol Biol 173: 4049–4055.Google Scholar
  24. Block SM, Berg HC (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309: 470–472.ADSCrossRefGoogle Scholar
  25. Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338: 514–518.ADSCrossRefGoogle Scholar
  26. Block SM, Fahrner KA, Berg HC (1991) Visualization of bacterial flagella by video-enhanced light microscopy. J Bacteriol 173: 933–936.Google Scholar
  27. Borsch M, Diez M, Zimmermann B, Reutera R, Graber P (2002) Stepwise rotation of the γ-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett 527: 147–152.CrossRefGoogle Scholar
  28. Bowler MW, Montgomery MG, Leslie AG, Walker JE (2007) Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 A resolution. J Biol Chem 282: 14238–14242.CrossRefGoogle Scholar
  29. Boyer PD (1993) The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim Biophys Acta 1140: 215–250.ADSCrossRefGoogle Scholar
  30. Braun TF, Poulson S, Gully JB, Empey JC, Van Way S, Putnam A, Blair DF (1999) Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J Bacteriol 181: 3542–3551.Google Scholar
  31. Brown PN, Hill CP, Blair DF (2002) Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J 21: 3225–3234.CrossRefGoogle Scholar
  32. Brown PN, Mathews MA, Joss LA, Hill CP, Blair DF (2005) Crystal structure of the flagellar rotor protein FliN from Thermotoga maritime. J Bacteriol 187: 2890–2902.CrossRefGoogle Scholar
  33. Brown PN, Terrazas M, Paul K, Blair DF (2007) Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. J Bacteriol 189: 305–312.CrossRefGoogle Scholar
  34. Chen X, Berg HC (2000a) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78: 1036–1041.CrossRefGoogle Scholar
  35. Chen X, Berg HC (2000b). Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. Biophys J 78: 2280–2284.CrossRefGoogle Scholar
  36. Cherepanov DA, Junge W (2001) Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque. Biophys J 81: 1234–1244.CrossRefGoogle Scholar
  37. Chernyak BV, Glagolev AN, Sherman MY, Skulachev VP (1983) A novel type of energetics in a marine alkali-tolerant bacterium. DmNa-driven motility and sodium cycle. FEBS Lett 164: 38–42.CrossRefGoogle Scholar
  38. Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239: 276–278.ADSCrossRefGoogle Scholar
  39. Darnton NC, Berg HC (2007) Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J 92(6): 2230–2236.Google Scholar
  40. Darnton NC, Turner L, Rojevsky S, Berg HC (2007) On torque and tumbling in swimming Escherichia coli. J Bacteriol 189: 1756–1764.CrossRefGoogle Scholar
  41. Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, Gräber P (2004) Proton powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11: 135–141.CrossRefGoogle Scholar
  42. Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL (1995) Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci USA 92: 10964–10968.ADSCrossRefGoogle Scholar
  43. Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13: 457–512.CrossRefGoogle Scholar
  44. Felle H, Porter JS, Slayman CL, Kaback HR (1980) Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19: 3585–3590.CrossRefGoogle Scholar
  45. Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY (2001) Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores. Biochim Biophys Acta 1506: 189–203.CrossRefGoogle Scholar
  46. Feniouk BA, Cherepanov DA, Voskoboynikova NE, Mulkidjanian AY, Junge W (2002) Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(0)F(1)-ATP synthase each. Biophys J 82: 1115–1122.CrossRefGoogle Scholar
  47. Feniouk BA, Kozlova MA, Knorre DA, Cherepanov DA, Mulkidjanian AY, Junge W (2004) The proton driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. Biophys J 86: 4094–4109.CrossRefGoogle Scholar
  48. Friedl P, Schairer HU (1981) The isolated F0 of Escherichia coli ATP-synthase is reconstitutively active in H+-conduction and ATP-dependent energy-transduction. FEBS Lett 128: 261–264.CrossRefGoogle Scholar
  49. Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Muller DJ, Meier T, Müller V (2008) An intermediate step in the evolution of ATPases—a hybrid Fo–Vo rotor in a bacterial Na+ F1F0 ATP synthase. FEBS J 275: 1999–2007.CrossRefGoogle Scholar
  50. Fung DC, Berg HC (1995) Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375: 809–812.ADSCrossRefGoogle Scholar
  51. Furuike S, Hossain MD, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K (2008) Axle-less F1-ATPase rotates in the correct direction. Science 319: 955–958.ADSCrossRefGoogle Scholar
  52. Gabel CV, Berg HC (2003) The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc Natl Acad Sci USA 100: 8748–8751.ADSCrossRefGoogle Scholar
  53. Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) The structure of the central stalk in bovine F1-ATPase at 2.4 A resolution. Nat Struct Biol 7: 1055–1061.CrossRefGoogle Scholar
  54. Hara KY, Noji H, Bald D, Yasuda R, Kinosita K, Yoshida M (2000) The role of the DELSEED motif of the beta subunit in rotation of F1-ATPase. J Biol Chem 275: 14260–14263.CrossRefGoogle Scholar
  55. Hirono-Hara Y, Noji H, Nishiura M, Muneyuki E, Hara KY, Yasuda R, Kinosita K, Yoshida M (2001) Pause and rotation of F(1)-ATPase during catalysis. Proc Natl Acad Sci USA 98: 13649–13654.ADSCrossRefGoogle Scholar
  56. Hirono-Hara Y, Ishizuka K, Kinosita K, Yoshida M, Noji H (2005) Activation of pausing F1 motor by external force. Proc Natl Acad Sci USA 102: 4288–4293.ADSCrossRefGoogle Scholar
  57. Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132: 278–280.CrossRefGoogle Scholar
  58. Hirota N, Imae Y (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258: 10577–10581.Google Scholar
  59. Holzenburg A, Jones PC, Franklin T, Pali T, Heimburg T, Marsh D, Findlay JB, Finbow ME (1993) Evidence for a common structure for a class of membrane channels. Eur J Biochem 213: 21–30.CrossRefGoogle Scholar
  60. Hossain MD, Furuike S, Maki Y, Adachi K, Ali MY, Huq M, Itoh H, Yoshida M, Kinosita K (2006) The rotor tip inside a bearing of a thermophilic F1-ATPase is dispensable for torque generation. Biophys J 90: 4195–4203.CrossRefGoogle Scholar
  61. Hotani H (1976) Light microscope study of mixed helices in reconstituted Salmonella flagella. J Mol Biol 106: 151–166.CrossRefGoogle Scholar
  62. Hudson GS, Mason JG, Holton TA, Koller B, Cox GB, Whitfeld PR, Bottomley W (1987) A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol 196: 283–298.CrossRefGoogle Scholar
  63. Iko Y, Sambongi Y, Tanabe M, Iwamoto-Kihara A, Saito K, Ueda I, Wada Y, Futai M (2001) ATP synthase F1 sector rotation. Defective torque generation in the beta subunit Ser-174 to Phe mutant and its suppression by second mutations. J Biol Chem 276: 47508–47511.CrossRefGoogle Scholar
  64. Inoue Y, Lo CJ, Fukuoka H, Takahashi H, Sowa Y, Pilizota T, Wadhams GH, Homma M, Berry RM, Ishijima A (2008) Torque–speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J Mol Biol 376: 1251–1259.CrossRefGoogle Scholar
  65. Irikura VM, Kihara M, Yamaguchi S, Sockett H, Macnab RM (1993) Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. J Bacteriol 175: 802–810.Google Scholar
  66. Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427: 465–468.ADSCrossRefGoogle Scholar
  67. Iwamoto A, Miki J, Maeda M, Futai M (1990) H(+)-ATPase gamma subunit of Escherichia coli. Role of the conserved carboxyl-terminal region. J Biol Chem 265: 5043–5048.Google Scholar
  68. Jagendorf AT, Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177.ADSCrossRefGoogle Scholar
  69. Junge W, Pänke O, Cherepanov DA, Gumbiowski K, Müller M, Engelbrecht S (2001) Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett 504: 152–160.CrossRefGoogle Scholar
  70. Kaim G, Prummer M, Sick B, Zumofen G, Renn A, Wild UP, Dimroth P (2002) Coupled rotation within single F0F1 enzyme complexes during ATP synthesis or hydrolysis. FEBS Lett 525: 156–163.CrossRefGoogle Scholar
  71. Kanazawa H, Mabuchi K, Kayano T, Noumi T, Sekiya T, Futai M (1981) Nucleotide sequence of the genes for F0 components of the proton-translocating ATPase from Escherichia coli: prediction of the primary structure of F0 subunits. Biochem Biophys Res Commun 103: 604–612.CrossRefGoogle Scholar
  72. Kashket ER, Blanchard AG, Metzger WC (1980) Proton motive force during growth of Streptococcus lactis cells. J Bacteriol 143: 128–134.Google Scholar
  73. Kato-Yamada Y, Noji H, Yasuda R, Kinosita K, Yoshida M (1998) Direct observation of the rotation of epsilon subunit in F1-ATPase. J Biol Chem 273: 19375–19377.CrossRefGoogle Scholar
  74. Khan S, Meister M, Berg HC (1985) Constraints on flagellar rotation. J Mol Biol 184: 645–656.CrossRefGoogle Scholar
  75. Kihara M, Miller GU, Macnab RM (2000) Deletion analysis of the flagellar switch protein FliG of Salmonella. J Bacteriol 182: 3022–3028.CrossRefGoogle Scholar
  76. Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40: 13041–13050.CrossRefGoogle Scholar
  77. Kudo S, Magariyama Y, Aizawa S (1990) Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346: 677–680.ADSCrossRefGoogle Scholar
  78. Larsen SH, Adler J, Gargus JJ, Hogg RW (1974) Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci USA 71: 1239–1243.ADSCrossRefGoogle Scholar
  79. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443: 355–358.ADSCrossRefGoogle Scholar
  80. Lill H, Engelbrecht S, Schönknecht G, Junge W (1986) The proton channel, CF0, in thylakoid membranes. Only a low proportion of CF1-lacking CF0 is active with a high unit conductance (169 fS). Eur J Biochem 160: 627–634.CrossRefGoogle Scholar
  81. Lloyd SA, Tang H, Wang X, Billings S, Blair DF (1996) Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol 178: 223–231.Google Scholar
  82. Lloyd SA, Blair DF (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 266: 733–744.CrossRefGoogle Scholar
  83. Lloyd SA, Whitbey FG, Blair DF, Hill CP (1999) Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400: 472–475.ADSCrossRefGoogle Scholar
  84. Lo CJ, Leake MC, Berry RM (2006) Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J 90: 357–365.CrossRefGoogle Scholar
  85. Lo CJ, Leake MC, Pilizota T, Berry RM (2007) Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys J 93: 294–302.CrossRefGoogle Scholar
  86. Lowe G, Meister M, Berg HC (1987) Rapid rotation of flagellar bundles in swimming bacteria. Nature 325: 637–640.ADSCrossRefGoogle Scholar
  87. Macnab RM (1976) Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol 4: 258–265.Google Scholar
  88. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Biochem 57: 77–100.Google Scholar
  89. Magariyama Y, Susgiyama S, Muramoto K, Maekawa Y, Kawagishi I, Imae Y, Kudo S (1994) Very fast flagellar rotation. Nature 371: 752.ADSCrossRefGoogle Scholar
  90. Manson MD, Tedesco P, Berg HC, Harold FM, Van Der Drift C (1977) A protonmotive force drives bacterial flagella. Proc Natl Acad Sci USA 74: 3060–3064.ADSCrossRefGoogle Scholar
  91. Manson MD, Tedesco PM, Berg HC (1980) Energetics of flagellar rotation in bacteria. J Mol Biol 138: 541–561.CrossRefGoogle Scholar
  92. Matsuura S, Shioi J, Imae Y (1977) Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Lett 82: 187–190.CrossRefGoogle Scholar
  93. Meier T, Matthey U, von Ballmoos C, Vonck J, Krug von Nidda T, Kühlbrandt W, Dimroth P (2003) Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. J Mol Biol 325: 389–397.CrossRefGoogle Scholar
  94. Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308: 659–662.ADSCrossRefGoogle Scholar
  95. Meister M, Berg HC (1987) The stall torque of the bacterial flagellar motor. Biophys J 52: 413–419.CrossRefGoogle Scholar
  96. Menz RI, Walker JE, Leslie AG (2001) Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106: 331–341.CrossRefGoogle Scholar
  97. Meyer Zu Tittingdorf JM, Rexroth S, Schäfer E, Schlichting R, Giersch C, Dencher NA, Seelert H (2004) The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state. Biochim Biophys Acta 1659:92–99.CrossRefGoogle Scholar
  98. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148.ADSCrossRefGoogle Scholar
  99. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 1966 41: 445–502.CrossRefGoogle Scholar
  100. Mitome N, Ono S, Suzuki T, Shimabukuro K, Muneyuki E, Yoshida M (2002) The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F1-ATPase. Eur J Biochem 269: 53–60.CrossRefGoogle Scholar
  101. de Mot R, Vanderleyden J (1994) A conserved surface-exposed domain in major outer membrane proteins of pathogenic Pseudomonas and Branhamella species shares sequence homology with the calcium-binding repeats of the eukaryotic extracellular matrix protein thrombospondin. Mol Microbiol 13: 379–380.CrossRefGoogle Scholar
  102. Müller M, Pänke O, Junge W, Engelbrecht S (2002) F1-ATPase, the C-terminal end of subunit gamma is not required for ATP hydrolysis-driven rotation. J Biol Chem 277: 23308–23313.CrossRefGoogle Scholar
  103. Muramoto K, Sugiyama S, Cragoe EJ, Imae Y (1994) Successive inactivation of the force-generating units of sodium-driven bacterial flagellar motors by a photoreactive amiloride analog. J Biol Chem 269: 3374–3380.Google Scholar
  104. Muramoto K, Kawagishi I, Kudo S, Magariyama Y, Imae Y, Homma M (1995) High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. J Mol Biol 251: 50–58.CrossRefGoogle Scholar
  105. Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE (2005) Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 308: 654–659.ADSCrossRefGoogle Scholar
  106. Murphy GE, Leadbetter JR, Jensen GJ (2006) In situ structure of the complete Treponema primitia flagellar motor. Nature 442: 1062–1064.ADSCrossRefGoogle Scholar
  107. Nakanishi-Matsui M, Kashiwagi S, Hosokawa H, Cipriano DJ, Dunn SD, Wada Y, Futai M (2006) Stochastic high-speed rotation of Escherichia coli ATP synthase F1 sector: the epsilon subunit-sensitive rotation. J Biol Chem 281: 4126–4131.CrossRefGoogle Scholar
  108. Nakanishi-Matsui M, Kashiwagi S, Ubukata T, Iwamoto-Kihara A, Wada Y, Futai M (2007) Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the beta subunit. J Biol Chem 282: 20698–20704.CrossRefGoogle Scholar
  109. Negrin RS, Foster DL, Fillingame RH (1980) Energy-transducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector. J Biol Chem 255: 5643–5648.Google Scholar
  110. Nicholls DG, Ferguson SJ (2002) Bioenergetics. Academic Press, San Diego, CA.Google Scholar
  111. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3: 94–103.CrossRefGoogle Scholar
  112. Nishio K, Iwamoto-Kihara A, Yamamoto A, Wada Y, Futai M (2002) Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring. Proc Natl Acad Sci USA 99: 13448–13452.ADSCrossRefGoogle Scholar
  113. Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M, Kinosita K (2004) Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat Struct Mol Biol 11: 142–148.CrossRefGoogle Scholar
  114. Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386: 299–302.ADSCrossRefGoogle Scholar
  115. Noji H, Bald D, Yasuda R, Itoh H, Yoshida M, Kinosita K (2001) Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J Biol Chem 276: 25480–25486.CrossRefGoogle Scholar
  116. Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M (1999) The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc Natl Acad Sci USA 96: 7780–7784.ADSCrossRefGoogle Scholar
  117. O’Neill J, Roujeinikova A (2008) Cloning, purification and crystallization of MotB, a stator component of the proton-driven bacterial flagellar motor. Acta Cryst F64: 561–563.CrossRefGoogle Scholar
  118. Oster G, Wang H (2000) Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochim Biophys Acta 1458: 482–510.CrossRefGoogle Scholar
  119. Pänke O, Cherepanov DA, Gumbiowski K, Engelbrecht S, Junge W (2001) Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys J 81:1220–1233.CrossRefGoogle Scholar
  120. Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR (2006) Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci USA 103: 11886–11891.ADSCrossRefGoogle Scholar
  121. Paster E, Ryu WS (2008) The thermal impulse response of Escherichia coli. PNAS 105: 5373–5377.ADSCrossRefGoogle Scholar
  122. Pilizota T, Bilyard T, Bai F, Futai M, Hosokawa H, Berry RM (2007) A programmable optical angle clamp for rotary molecular motors. Biophys J 93: 264–275.CrossRefGoogle Scholar
  123. Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ (2005) The C15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6: 1040–1044.CrossRefGoogle Scholar
  124. Pogoryelov D, Reichen C, Klyszejko AL, Brunisholz R, Muller DJ, Dimroth P, Meier T (2007) The oligomeric state of C rings from cyanobacterial f-ATP synthases varies from 13 to 15. J Bacteriol 189: 5895–5902.CrossRefGoogle Scholar
  125. Powell B, Graham LA, Stevens TH (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J Biol Chem 275: 23654–23660.CrossRefGoogle Scholar
  126. Rao R, Senior AE (1987) The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs. J Biol Chem 262: 17450–17454.Google Scholar
  127. Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci USA 103: 8066–8071.ADSCrossRefGoogle Scholar
  128. Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433: 773–777.ADSCrossRefGoogle Scholar
  129. Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22: 6182–6192.CrossRefGoogle Scholar
  130. Ryu WS, Berry RM, Berg HC (2000) Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403: 444–447.ADSCrossRefGoogle Scholar
  131. Sabbert D, Engelbrecht S, Junge W (1996) Intersubunit rotation in active F-ATPase. Nature 381: 623–625.ADSCrossRefGoogle Scholar
  132. Sakaki N, Shimo-Kon R, Adachi K, Itoh H, Furuike S, Muneyuki E, Yoshida M, Kinosita K (2005) One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys J 88: 2047–2056.CrossRefGoogle Scholar
  133. Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286: 1722–1724.CrossRefGoogle Scholar
  134. Samuel AD, Berg HC (1995) Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc Natl Acad Sci USA 92: 3502–3506.ADSCrossRefGoogle Scholar
  135. Samuel AD, Berg HC (1996) Torque-generating units of the bacterial flagellar motor step independently. Biophys J 71: 918–923.CrossRefGoogle Scholar
  136. Sato K, Homma M (2000) Multimeric structure of PomA, a component of the Na+-driven polar flagellar motor of Vibrio alginolyticus. J Biol Chem 275: 20223–20228.CrossRefGoogle Scholar
  137. Schemidt RA, Qu J, Williams JR, Brusilow WS (1998) Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli. J Bacteriol 180: 3205–3208.Google Scholar
  138. Schneider E, Altendorf K (1982) ATP synthetase (F1F0) of Escherichia coli K-12. High-yield preparation of functional F0 by hydrophobic affinity chromatography. Eur J Biochem 126: 149–153.CrossRefGoogle Scholar
  139. Schwem BE, Fillingame RH (2006) Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four helix bundle. J Biol Chem 281: 37861–37867.CrossRefGoogle Scholar
  140. Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Structural biology: proton-powered turbine of a plant motor. Nature 405: 418–419.ADSCrossRefGoogle Scholar
  141. Sharp LL, Zhou J, Blair DF (1995a) Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. Proc Natl Acad Sci USA 92: 7946–7950.ADSCrossRefGoogle Scholar
  142. Sharp LL, Zhou J, Blair DF (1995b) Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry 34: 9166–9171.CrossRefGoogle Scholar
  143. Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K, Yoshida M (2003) Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc Natl Acad Sci USA 100: 14731–14736.ADSCrossRefGoogle Scholar
  144. Shioi JI, Matsuura S, Imae Y (1980) Quantitative measurements of proton motive force and motility in Bacillus subtilis. J Bacteriol 144: 891–897.Google Scholar
  145. Shirakihara Y, Leslie AG, Abrahams JP, Walker JE, Ueda T, Sekimoto Y, Kambara M, Saika K, Kagawa Y, Yoshida M (1997) The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5: 825–836.CrossRefGoogle Scholar
  146. Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249: 73–74.ADSCrossRefGoogle Scholar
  147. Silverman M, Matsumura P, Simon M (1976) The identification of the mot gene product with Escherichia coli–lambda hybrids. Proc Natl Acad Sci USA 73: 3126–3130.ADSCrossRefGoogle Scholar
  148. Sokolov M, Lu L, Tucker W, Gao F, Gegenheimer PA, Richter ML (1999) The 20 C-terminal amino acid residues of the chloroplast ATP synthase gamma subunit are not essential for activity. J Biol Chem 274: 13824–13829.CrossRefGoogle Scholar
  149. Sone N, Hamamoto T, Kagawa Y (1981) pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0xF1) and effects of tyrosyl residue modification. J Biol Chem 256: 2873–2877.Google Scholar
  150. Sowa Y, Hotta H, Homma M, Ishijima A (2003) Torque–speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol 327: 1043–1051.CrossRefGoogle Scholar
  151. Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437: 916–919.ADSCrossRefGoogle Scholar
  152. Sowa Y and Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys (In press).Google Scholar
  153. Spetzler D, York J, Daniel D, Fromme R, Lowry D, Frasch W (2006) Microsecond time scale rotation measurements of single F1-ATPase molecules. Biochemistry 45: 3117–3124.CrossRefGoogle Scholar
  154. Stahlberg H, Müller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P (2001) Bacterial Na(+)-ATP synthase has an undecameric rotor. EMBO Rep 2: 229–233.CrossRefGoogle Scholar
  155. Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286: 1700–1705.CrossRefGoogle Scholar
  156. Suzuki H, Yonekura K, Namba K (2004) Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J Mol Biol 337: 105–113.CrossRefGoogle Scholar
  157. Tanabe M, Nishio K, Iko Y, Sambongi Y, Iwamoto-Kihara A, Wada Y, Futai M (2001) Rotation of a complex of the gamma subunit and C ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable. Biol Chem 276: 15269–15274.CrossRefGoogle Scholar
  158. Thomas DR, Morgan DG, DeRosier DJ (1999) Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc Natl Acad Sci USA 96: 10134–10139.ADSCrossRefGoogle Scholar
  159. Thomas DR, Francis NR, Xu C, DeRosier DJ (2006) The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 188: 7039–7048.CrossRefGoogle Scholar
  160. Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182: 2793–2801.CrossRefGoogle Scholar
  161. Ueno T, Oosawa K, Aizawa S (1992) M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of single protein, FliF. J Mol Biol 227: 672–677.CrossRefGoogle Scholar
  162. Ueno T, Oosawa K, Aizawa S (1994) Domain structures of the MS ring component protein (FliF) of the flagellar basal body of Salmonella typhimurium. J Mol Biol 236: 546–555.CrossRefGoogle Scholar
  163. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5: 1024–1037.CrossRefGoogle Scholar
  164. Wagner R, Apley EC, Hanke W (1989) Single channel H+ currents through reconstituted chloroplast ATP synthase CF0-CF1. EMBO J 8: 2827–2834.Google Scholar
  165. Walker JE, Fearnley IM, Gay NJ, Gibson BW, Northrop FD, Powell SJ, Runswick MJ, Saraste M, Tybulewicz VL (1985) Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol 184: 677–701.CrossRefGoogle Scholar
  166. Washizu M, Kurahashi Y, Iochi H, Kurosawa O, Aizawa S, Kudo S, Magariyama Y, Hotani H (1993) Dielectrophoretic measurement of bacterial motor characteristics. IEEE Trans Ind Appl 29: 286–294.CrossRefGoogle Scholar
  167. Wilkens S, Zhou J, Nakayama R, Dunn SD, Capaldi RA (2000) Localization of the delta subunit in the Escherichia coli F1F0-ATPsynthase by immuno electron microscopy: the delta subunit binds on top of the F1. J Mol Biol 295: 387–391.CrossRefGoogle Scholar
  168. Yakushi T, Yang J, Fukuoka H, Homma M, Blair DF (2006) Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol 188: 1466–1472.CrossRefGoogle Scholar
  169. Yamaguchi S, Aizawa S, Kihara M, Isomura M, Jones CJ, Macnab RM (1986a) Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168: 1172–1179.Google Scholar
  170. Yamaguchi S, Fujita H, Ishihara A, Aizawa S, Macnab RM (1986b) Subdivision of flagellar genes of Salmonella typhimurium into regions for assembly, rotation and switching. J Bacteriol 166: 187–193.Google Scholar
  171. Yasuda R, Noji H, Kinosita K, Yoshida M (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93: 1117–1124.CrossRefGoogle Scholar
  172. Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410: 898–904.ADSCrossRefGoogle Scholar
  173. Yasuda R, Masaike T, Adachi K, Noji H, Itoh H, Kinosita K (2003) The ATP waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci USA 100: 9314–9318.ADSCrossRefGoogle Scholar
  174. Yorimitsu T, Sowa Y, Ishijima A, Yakushi T, Homma M (2002) The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. J Mol Biol 320: 403–413.CrossRefGoogle Scholar
  175. Yorimitsu T, Mimaki A, Yakushi T, Homma M (2003) The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. J Mol Biol 334: 567–583.CrossRefGoogle Scholar
  176. Yorimitsu T, Kojima M, Yakushi T, Homma M (2004) Multimeric structure of the PomA/PomB channel complex in the Na+-driven flagellar motor of Vibrio alginolyticus. J Biochem 135: 43–51.CrossRefGoogle Scholar
  177. York J, Spetzler D, Hornung T, Ishmukhametov R, Martin J, Frasch WD (2007) Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes. J Bioenerg Biomemb 39: 435–439.CrossRefGoogle Scholar
  178. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase–a marvellous rotary engine of the cell. Nat Mol Cell Biol 2:669–677.CrossRefGoogle Scholar
  179. Yuan J, Berg HC (2008) Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci USA 105: 1182–1185.ADSCrossRefGoogle Scholar
  180. Zhang Y, Wang J, Cui Y, Yue J, Fang X (2005) Rotary torque produced by proton motive force in F0F1 motor. Biochem Biophys Res Commun 331: 370–374.CrossRefGoogle Scholar
  181. Zhao R, Pathak N, Jaffe H, Reese TS, Khan S (1996) FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261: 195–208.CrossRefGoogle Scholar
  182. Zhou J, Fazzio RT, Blair DF (1995) Membrane topology of the MotA protein of Escherichia coli. J Mol Biol 251: 237–242.CrossRefGoogle Scholar
  183. Zhou J, Blair DF (1997) Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 273: 428–439.CrossRefGoogle Scholar
  184. Zhou J, Lloyd SA, Blair DF (1998a) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 95: 6436–6441.ADSCrossRefGoogle Scholar
  185. Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF (1998b) Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp32 of MotB. J Bacteriol 180: 2729–2735.Google Scholar
  186. Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M (2005) Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase. EMBO J 24: 2053–2063.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Teuta Pilizota
    • 1
  • Yoshiyuki Sowa
    • 1
  • Richard M. Berry
    • 1
  1. 1.Department of Physics, Clarendon LabUniversity of OxfordOxfordUK

Personalised recommendations