Single-Molecule Enzymology

  • Joseph J. Loparo
  • Antoine van Oijen


Understanding how enzymes function requires a thorough characterization of enzymatic dynamics. Traditional enzymatic assays average over an ensemble of molecules, making it difficult to detect reaction intermediates and conformational fluctuations of the enzyme. These problems can be overcome by observing enzymes functioning in real time on the single-molecule level. This chapter describes recent research efforts to measure single-molecule enzyme kinetics and observe the structural dynamics of enzymes and discusses new approaches to study multiprotein complexes on the single-molecule level.


Fluorescence Resonance Energy Transfer Fluorescence Lifetime Flavin Adenine Dinucleotide Catalytic Rate Total Internal Reflection Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alberts, B. M., J. Barry, P. Bedinger, T. Formosa, C. V. Jongeneel, and K. N. Kreuzer. 1983. Studies on DNA replication in the bacteriophage T4 in vitro system. Cold Spring Harb Symp Quant Biol 47 Pt 2:655–668.CrossRefGoogle Scholar
  2. Benitez, J. J., A. M. Keller, P. Ochieng, L. A. Yatsunyk, D. L. Huffman, A. C. Rosenzweig, and P. Chen. 2008. Probing transient copper chaperone-Wilson disease protein interactions at the single-molecule level with nanovesicle trapping. J Am Chem Soc 130(8):2446–2447.CrossRefGoogle Scholar
  3. Benkovic, S. J., and S. Hammes-Schiffer. 2003. A perspective on enzyme catalysis. Science 301:1196–1202.ADSCrossRefGoogle Scholar
  4. Benkovic, S. J., A. M. Valentine, and F. Salinas. 2001. Replisome-mediated DNA replication. Ann Rev Biochem 70:181–208.CrossRefGoogle Scholar
  5. Boukobza, E., A. Sonnenfeld, and G. Haran. 2001. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J Phys Chem B 105:12165–12170.CrossRefGoogle Scholar
  6. Cisse, I., B. Okumus, C. Joo, and T. Ha. 2007. Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci USA 104(31):12646–12650.ADSCrossRefGoogle Scholar
  7. Dill, K. A., S. B. Ozkan, M. S. Shell, and T. R. Weikl. 2008. The protein folding problem. Annu Rev Biophys 37: 289–316.ADSCrossRefGoogle Scholar
  8. Edman, L., Z. Foldes-Papp, S. Wennmalm, and R. Rigler. 1999. The fluctuating enzyme: a single molecule approach. Chem Phys 247:11–22.ADSCrossRefGoogle Scholar
  9. English, B. P., W. Min, A. M. van Oijen, K. T. Lee, G. Luo, H. Sun, B. J. Cherayil, S. C. Kou, and X. S. Xie. 2006. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat Chem Biol 2(2):87–94.CrossRefGoogle Scholar
  10. Fersht, A. 1999. Structure and Mechanism in Protein Science. San Francisco: W. H. Freeman.Google Scholar
  11. Flomenbom, O., K. Velonia, D. Loos, S. Masuo, M. Cotlet, Y. Engelborghs, J. Hofkens, A. E. Rowan, R. J. Nolte, M. Van der Auweraer, F. C. de Schryver, and J. Klafter. 2005. Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc Natl Acad Sci USA 102(7):2368–2372.ADSCrossRefGoogle Scholar
  12. Frauenfelder, H., S. G. Sligar, and P. G. Wolynes. 1991. The energy landscapes and motions of proteins. Science 254(5038):1598–1603.ADSCrossRefGoogle Scholar
  13. Garcia-Viloca, M., J. Gao, M. Karplus, and D. G. Truhlar. 2004. How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195.ADSCrossRefGoogle Scholar
  14. Gray, H. B., and J. R. Winkler. 1996. Electron transfer in proteins. Annu Rev Biochem 65:537–561.CrossRefGoogle Scholar
  15. Hamdan, S. M., D. E. Johnson, N. A. Tanner, J. B. Lee, U. Qimron, S. Tabor, A. M. van Oijen, and C. C. Richardson. 2007. Dynamic DNA helicase–DNA polymerase interactions assure processive replication fork movement. Mol Cell 27(4):539–549.CrossRefGoogle Scholar
  16. Hamdan, S. M, J. J. Loparo, M. Takahashi, C. C. Richardson, and A. M. van Oijen. 2009. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457:336--339.Google Scholar
  17. Hammes-Schiffer, S., and S. J. Benkovic. 2006. Relating protein motion to catalysis. Annu Rev Biochem 75: 519–541.CrossRefGoogle Scholar
  18. Joo, C., H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha. 2008. Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76.CrossRefGoogle Scholar
  19. Kubelka, J., J. Hofrichter, and W. A. Eaton. 2004. The protein folding ‘speed limit’. Curr Opin Struct Biol 14: 76–88.CrossRefGoogle Scholar
  20. Lackowicz, J.R. 1999. Principles of Fluorescence Spectroscopy. New York: Kluwer Academic/Plenum Press.Google Scholar
  21. Lee, J.-B., Hite, R. K, Hamdan, S. M, Xie, X. S., Richardson, C. C., and van Oijen, A. M. 2006. DNA primase acts as a molecular brake during DNA replication. Nature 439(7076):621–624.ADSCrossRefGoogle Scholar
  22. Levene, M. J., J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb. 2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686.ADSCrossRefGoogle Scholar
  23. Lu, H. P., and X. S. Xie. 1997. Single-molecule kinetics of interfacial electron transfer. J Phys Chem B 101(15): 2753–2757.CrossRefGoogle Scholar
  24. Lu, H. P., L. Xun, and X. S. Xie. 1998. Single-molecule enzymic dynamics. Science 282(5395):1877–1882.ADSCrossRefGoogle Scholar
  25. Michalet, X., S. Weiss, and M. Jager. 2006. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106:1785–1813.CrossRefGoogle Scholar
  26. Moran-Mirabel, J. M., and H. G. Craighead. 2008. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations. Methods 46(1):11–17.CrossRefGoogle Scholar
  27. Neuweiler, H., A. Schulz, M. Bohmer, J. Enderlein, and M. Sauer. 2003. Measurement of submicrosecond intramolecular contact formation in peptides at the single-molecule level. J Am Chem Soc 125:5324–5330.CrossRefGoogle Scholar
  28. Okumus, B., T. J. Wilson, D. M. J. Lilley, and T. Ha. 2004. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J 87:2798–2806.CrossRefGoogle Scholar
  29. Rhoades, E., E. Gussakovsky, and G. Haran. 2003. Watching proteins fold one molecule at a time. Proc Natl Acad Sci USA 100:3197–3202.ADSCrossRefGoogle Scholar
  30. Rissin, D. M., H. H. Gorris, and D. R. Walt. 2008. Distinct and long-lived activity states of single enzyme molecules. J Am Chem Soc 130(15):5349–5353.CrossRefGoogle Scholar
  31. Roy, R., S. Hohng, and T. Ha. 2008. A practical guide to single-molecule FRET. Nat Methods 6:507–516.CrossRefGoogle Scholar
  32. Schnitzer, M. J., and S. M. Block. 1995. Statistical kinetics of processive enzymes. Cold Spring Harb Symp Quant Biol 60:793–802.CrossRefGoogle Scholar
  33. Stark, P. R. H., A. E. Halleck, and D. N. Larson. 2007. Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures. Proc Natl Acad Sci USA 104:18902–18906.ADSCrossRefGoogle Scholar
  34. Stubbe, J., D. G. Nocera, C. S. Yee, and M. C. Y. Chang. 2003. Radical Initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 103:2167–2201.CrossRefGoogle Scholar
  35. Tang, J., A. M. Jofre, G. M. Lowman, R. B. Kishore, J. E. Reiner, K. Helmerson, L. S. Goldner, and M. E. Greene. 2008. Green fluorescent protein in inertially injected aqueous nanodroplets. Langmuir 24:4975–4978.CrossRefGoogle Scholar
  36. Tanner, N. A., S. M. Hamdan, S. Jergic, P. M. Schaeffer, N. E. Dixon, and A. M. van Oijen. 2008. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 15(2):170–176.CrossRefGoogle Scholar
  37. Toprak, E., and P. R. Selvin. 2007. New fluorescent tools for watching nanometer-scale conformational changes of single molecules. Annu Rev Biophys Biomol Struct 36:349–369.CrossRefGoogle Scholar
  38. van Oijen, A. M., P. C. Blainey, D. J. Crampton, C. C. Richardson, T. Ellenberger, and X. S. Xie. 2003. Single-molecule kinetics of lambda. Exonuclease reveal base dependence and dynamic disorder. Science 301(5637):1235–1239.ADSCrossRefGoogle Scholar
  39. Walter, N. G., J. M. Burke, and D. P. Millar. 1999. Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nat Struct Biol 6:544–549.CrossRefGoogle Scholar
  40. Walter, N. G., K. J. Hampel, K. M. Brown, and J. M. Burke. 1998. Tertiary structure formation in the hairpin ribozyme monitored by fluorescence energy transfer. EMBO J 17:2378–2391.CrossRefGoogle Scholar
  41. Xie, S. 2001. Single-molecule approach to enzymology. Single Molecules 2(4):229–236.ADSCrossRefGoogle Scholar
  42. Xie, X. S. 2002. Single-molecule approach to dispersed kinetics and dynamic disorder: probing conformational fluctuation and enzymatic dynamics. J Chem Phys 117(24):11024–11032.ADSCrossRefGoogle Scholar
  43. Yang, H., G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie. 2003. Protein conformational dynamics probed by single-molecule electron transfer. Science 302(5643):262–266.ADSCrossRefGoogle Scholar
  44. Yang, W., and S. M. Musser. 2006. Nuclear import time and transport efficiency depend on importin b concentration. J Cell Biol 174:951–961.CrossRefGoogle Scholar
  45. Zhuang, X., H. Kim, M. J. B. Pereira, H. P. Babcock, N. G. Walter, and S. Chu. 2002. Correlating structural dynamics and function in single ribozyme molecules. Science 296(5572):1473–1476.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joseph J. Loparo
    • 1
  • Antoine van Oijen
    • 1
  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations