Single-Molecule FRET: Methods and Biological Applications

  • Ling Chin Hwang
  • Johannes Hohlbein
  • Seamus J. Holden
  • Achillefs N. Kapanidis


Since the first single-molecule fluorescence resonance energy transfer (FRET) measurement in 1996, the technique has contributed substantially to our understanding of biological molecules and processes by probing the structure and dynamics of nucleic acids, protein molecules, and their complexes with other molecules. This review discusses basic concepts and current developments in single-molecule FRET methodology, as well as examples of applications to systems such as nucleic acid machines and molecular motors.


Fluorescence Resonance Energy Transfer Ensemble Method Total Internal Reflection Fluorescence Holliday Junction Rotational Freedom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SFJ, Zhuang XW. 2008. Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453(7192):184–9.ADSCrossRefGoogle Scholar
  2. Abrahams JP, Leslie AG, Lutter R, Walker JE. 1994. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491):621–8.ADSCrossRefGoogle Scholar
  3. Ambrose WP, Goodwin PM, Martin JC, Keller RA. 1994. Alterations of single-molecule fluorescence lifetimes in near-field optical microscopy. Science 265(5170):364–7.ADSCrossRefGoogle Scholar
  4. Andrecka J, Lewis R, Bruckner F, Lehmann E, Cramer P, Michaelis J. 2008. Single-molecule tracking of mRNA exiting from RNA polymerase II. Proc Natl Acad Sci USA 105(1):135–40.ADSCrossRefGoogle Scholar
  5. Axelrod D. 2001. Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11):764–74.CrossRefGoogle Scholar
  6. Bai L, Santangelo TJ, Wang MD. 2006. Single-molecule analysis of RNA polymerase transcription. Annu Rev Biophys Biomol Struct 35:343–60.CrossRefGoogle Scholar
  7. Bath J, Turberfield AJ. 2007. DNA nanomachines. Nat Nanotechnol 2(5):275–84.ADSCrossRefGoogle Scholar
  8. Betzig E, Chichester RJ. 1993. Single molecules observed by near-field scanning optical microscopy. Science 262(5138):1422–5.ADSCrossRefGoogle Scholar
  9. Betzig E, Trautman JK. 1992. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257(5067):189–95.ADSCrossRefGoogle Scholar
  10. Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD. 2004a. tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11(10):1008–14.CrossRefGoogle Scholar
  11. Blanchard SC, Kim HD, Gonzalez RL Jr, Puglisi JD, Chu S. 2004b. tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101(35):12893–8.ADSCrossRefGoogle Scholar
  12. Borisenko V, Lougheed T, Hesse J, Fureder-Kitzmuller E, Fertig N, Behrends JC, Woolley GA, Schutz GJ. 2003. Simultaneous optical and electrical recording of single gramicidin channels. Biophys J 84(1):612–22.CrossRefGoogle Scholar
  13. Borsch M, Diez M, Zimmermann B, Reuter R, Graber P. 2002. Stepwise rotation of the gamma-subunit of EF(0)F(1)-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett 527(1–3):147–52.CrossRefGoogle Scholar
  14. Boyer LA, Shao X, Ebright RH, Peterson CL. 2000. Roles of the histone H2A-H2B dimers and the (H3-H4)(2) tetramer in nucleosome remodeling by the SWI-SNF complex. J Biol Chem 275(16):11545–52.CrossRefGoogle Scholar
  15. Braslavsky I, Hebert B, Kartalov E, Quake SR. 2003. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci USA 100(7):3960–4.ADSCrossRefGoogle Scholar
  16. Bruchez M, Jr., Moronne M, Gin P, Weiss S, Alivisatos AP. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–6.ADSCrossRefGoogle Scholar
  17. Clamme JP, Deniz AA. 2005. Three-color single-molecule fluorescence resonance energy transfer. Chemphyschem 6(1):74–7.CrossRefGoogle Scholar
  18. Clegg RM. 1992. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–88.CrossRefGoogle Scholar
  19. Clegg RM. 1995. Fluorescence resonance energy transfer. Curr Opin Biotechnol 6(1):103–10.CrossRefGoogle Scholar
  20. Clegg RM, Murchie AI, Zechel A, Lilley DM. 1993. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 90(7):2994–8.ADSCrossRefGoogle Scholar
  21. Coban O, Lamb DC, Zaychikov E, Heumann H, Nienhaus GU. 2006. Conformational heterogeneity in RNA polymerase observed by single-pair FRET microscopy. Biophys J 90(12):4605–17.CrossRefGoogle Scholar
  22. Dale RE, Eisinger J, Blumberg WE. 1979. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26(2):161–93.CrossRefGoogle Scholar
  23. Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE, Chemla DS, Weiss S, Schultz PG. 1999. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. Proc Natl Acad Sci USA 96(7):3670–5.ADSCrossRefGoogle Scholar
  24. Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG, Weiss S. 2000. Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci USA 97(10):5179–84.ADSCrossRefGoogle Scholar
  25. Deniz AA, Mukhopadhyay S, Lemke EA. 2008. Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5(18):15–45.CrossRefGoogle Scholar
  26. Diez M, Zimmermann B, Borsch M, Konig M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, et al. 2004. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11(2):135–41.CrossRefGoogle Scholar
  27. Edel JB, Eid JS, Meller A. 2007. Accurate single molecule FRET efficiency determination for surface immobilized DNA using maximum likelihood calculated lifetimes. J Phys Chem B 111(11):2986–90.CrossRefGoogle Scholar
  28. Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG. 2004. Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76(6):1618–26.Google Scholar
  29. Förster T. 1948. Intramolecular energy migration and fluorescence. Ann Physik 2:55–75.MATHCrossRefGoogle Scholar
  30. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T. 1995. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522):555–9.ADSCrossRefGoogle Scholar
  31. Goodman RP, Berry RM, Turberfield AJ. 2004. The single-step synthesis of a DNA tetrahedron. Chem Commun (Cambridge) 12:1372–3.CrossRefGoogle Scholar
  32. Goodman RP, Heilemannt M, Dooset S, Erben CM, Kapanidis AN, Turberfield AJ. 2008. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3(2):93–96.ADSCrossRefGoogle Scholar
  33. Goodman RP, Schaap IA, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ. 2005. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754):1661–5.ADSCrossRefGoogle Scholar
  34. Greenleaf WJ, Woodside MT, Block SM. 2007. High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171–90.CrossRefGoogle Scholar
  35. Guo J, Xu N, Li Z, Zhang S, Wu J, Kim DH, Sano Marma M, Meng Q, Cao H, Li X, et al. 2008. Four-color DNA sequencing with 3’-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Nat Acad Sci USA 105(27):9145–50.ADSCrossRefGoogle Scholar
  36. Ha T. 2001. Single-molecule fluorescence resonance energy transfer. Methods 25:78–86.CrossRefGoogle Scholar
  37. Ha T. 2004. Structural dynamics and processing of nucleic acids revealed by single-molecule spectroscopy. Biochemistry 43(14):4055–63.CrossRefGoogle Scholar
  38. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93(13):6264–8.ADSCrossRefGoogle Scholar
  39. Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S. 2002. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419(6907):638–41.ADSCrossRefGoogle Scholar
  40. Ha T, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG, Weiss S. 1999a. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci USA 96(3):893–8.ADSCrossRefGoogle Scholar
  41. Ha T, Ting AY, Liang J, Deniz AA, Chemla DS, Schultz PG, Weiss S. 1999b. Temporal fluctuations of fluorescence resonance energy transfer between two dyes conjugated to a single protein. Chem Phys 247:107–118.ADSCrossRefGoogle Scholar
  42. Ha T, Zhuang X, Kim HD, Orr JW, Williamson JR, Chu S. 1999c. Ligand-induced conformational changes observed in single RNA molecules. Proc Natl Acad Sci USA 96(16):9077–82.ADSCrossRefGoogle Scholar
  43. Haas E, Katchalski-Katzir E, Steinberg IZ. 1978. Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry 17(23): 5064–70.CrossRefGoogle Scholar
  44. Haas E, Wilchek M, Katchalski-Katzir E, Steinberg IZ. 1975. Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. Proc Natl Acad Sci USA 72(5):1807–11.ADSCrossRefGoogle Scholar
  45. Harms GS, Orr G, Montal M, Thrall BD, Colson SD, Lu HP. 2003. Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 85(3):1826–38.CrossRefGoogle Scholar
  46. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, et al. 2008. Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–9.ADSCrossRefGoogle Scholar
  47. Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, Van Hulst NF, Sauer M. 2004. Multistep energy transfer in single molecular photonic wires. J Am Chem Soc 126(21):6514–5.CrossRefGoogle Scholar
  48. Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, et al. 2007. Intrinsic motions along an enzymatic reaction trajectory. Nature 450(7171):838–44.ADSCrossRefGoogle Scholar
  49. Herbert KM, Greenleaf WJ, Block SM. 2008. Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77:149–76.CrossRefGoogle Scholar
  50. Hohng S, Joo C, Ha T. 2004. Single-molecule three-color FRET. Biophys J 87(2):1328–37.CrossRefGoogle Scholar
  51. Hohng S, Zhou RB, Nahas MK, Yu J, Schulten K, Lilley DMJ, Ha TJ. 2007. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318(5848):279–83.ADSCrossRefGoogle Scholar
  52. Jares-Erijman EA, Jovin TM. 2003. FRET imaging. Nat Biotechnol 21(11):1387–95.CrossRefGoogle Scholar
  53. Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T. 2006. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126(3):515–27.CrossRefGoogle Scholar
  54. Kapanidis AN, Ebright YW, Ebright RH. 2001. Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic acid (n)-fluorochrome conjugates. J Am Chem Soc 123(48):12123–5.CrossRefGoogle Scholar
  55. Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S. 2004. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci USA 101(24):8936–41.ADSCrossRefGoogle Scholar
  56. Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH. 2006. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314(5802):1144–7.ADSCrossRefGoogle Scholar
  57. Kapanidis AN, Margeat E, Laurence TA, Doose S, Ho SO, Mukhopadhyay J, Kortkhonjia E, Mekler V, Ebright RH, Weiss S. 2005. Retention of transcription initiation factor sigma(70) in transcription elongation: single-molecule analysis. Mol Cell 20(3):347–56.CrossRefGoogle Scholar
  58. Kapanidis AN, Weiss S. 2002. Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117(24):10953–64.ADSCrossRefGoogle Scholar
  59. Karymov M, Chinnaraj M, Bogdanov A, Srinivasan AR, Zheng G, Olson WK, Lyubchenko Y. 2008a. Structure, dynamics, and branch migration of a DNA Holliday junction: a single-molecule fluorescence and modeling study. Biophys J. 95(9):4372–83Google Scholar
  60. Karymov M, Daniel D, Sankey OF, Lyubchenko YL. 2005. Holliday junction dynamics and branch migration: single-molecule analysis. Proc Natl Acad Sci USA 102(23):8186–91.ADSCrossRefGoogle Scholar
  61. Karymov MA, Bogdanov A, Lyubchenko YL. 2008b. Single molecule fluorescence analysis of branch migration of Holliday junctions: effect of DNA sequence. Biophys J 95(3):1239–47.CrossRefGoogle Scholar
  62. Koopmans WJ, Brehm A, Logie C, Schmidt T, van Noort J. 2007. Single-pair FRET microscopy reveals mononucleosome dynamics. J Fluoresc 17(6):785–95.CrossRefGoogle Scholar
  63. Kuzmenkina EV, Heyes CD, Nienhaus GU. 2005. Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions. Proc Natl Acad Sci USA 102(43):15471–6.ADSCrossRefGoogle Scholar
  64. Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy, 3rd ed. Springer, New York.Google Scholar
  65. Lang MJ, Fordyce PM, Block SM. 2003. Combined optical trapping and single-molecule fluorescence. J Biol 2(1):6.CrossRefGoogle Scholar
  66. Laurence TA, Kong XX, Jager M, Weiss S. 2005. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc Natl Acad Sci USA 102(48):17348–53.ADSCrossRefGoogle Scholar
  67. Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO, Kim Y, Gassman N, Kim SK, Weiss S. 2007. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys J 92(1):303–12.CrossRefGoogle Scholar
  68. Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S. 2005. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88(4):2939–53.CrossRefGoogle Scholar
  69. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. 2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–6.ADSCrossRefGoogle Scholar
  70. Lipman EA, Schuler B, Bakajin O, Eaton WA. 2003. Single-molecule measurement of protein folding kinetics. Science 301(5637):1233–5.ADSCrossRefGoogle Scholar
  71. Lippincott-Schwartz J, Snapp E, Kenworthy A. 2001. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6):444–56.CrossRefGoogle Scholar
  72. Margeat E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH, Weiss S. 2006. Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys J 90(4):1419–31.CrossRefGoogle Scholar
  73. Margittai M, Widengren J, Schweinberger E, Schroder GF, Felekyan S, Haustein E, Konig M, Fasshauer D, Grubmuller H, Jahn R, et al. 2003. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc Natl Acad Sci USA 100(26): 15516–21.ADSCrossRefGoogle Scholar
  74. McKinney SA, Declais AC, Lilley DM, Ha T. 2003. Structural dynamics of individual Holliday junctions. Nat Struct Biol 10(2):93–7.CrossRefGoogle Scholar
  75. McKinney SA, Freeman AD, Lilley DM, Ha T. 2005. Observing spontaneous branch migration of Holiday junctions one step at a time. Proc Natl Acad Sci USA. 102(16):5715–5720.Google Scholar
  76. McKinney SA, Joo C, Ha T. 2006. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91(5):1941–51.CrossRefGoogle Scholar
  77. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–44.ADSCrossRefGoogle Scholar
  78. Michalet X, Weiss S, Jager M. 2006. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106(5):1785–813.CrossRefGoogle Scholar
  79. Miyawaki A, Tsien RY. 2000. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Appl Chimeric Genes Hybrid Proteins B 327:472–500.Google Scholar
  80. Moerner WE, Fromm DP. 2003. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–619.ADSCrossRefGoogle Scholar
  81. Morgan MA, Okamoto K, Kahn JD, English DS. 2005. Single-molecule spectroscopic determination of lac repressor-DNA loop conformation. Biophys J 89(4):2588–96.CrossRefGoogle Scholar
  82. Mori T, Vale RD, Tomishige M. 2007. How kinesin waits between steps. Nature 450(7170):750–4.ADSCrossRefGoogle Scholar
  83. Muller BK, Reuter A, Simmel FC, Lamb DC. 2006. Single-pair FRET characterization of DNA tweezers. Nano Lett 6(12):2814–20.ADSCrossRefGoogle Scholar
  84. Muller BK, Zaychikov E, Brauchle C, Lamb DC. 2005. Pulsed interleaved excitation. Biophys J 89(5):3508–522.CrossRefGoogle Scholar
  85. Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A. 2004. Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101(19):7317–22.ADSCrossRefGoogle Scholar
  86. Myong S, Bruno MM, Pyle AM, Ha T. 2007. Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317(5837):513–6.ADSCrossRefGoogle Scholar
  87. Myong S, Rasnik I, Joo C, Lohman TM, Ha T. 2005. Repetitive shuttling of a motor protein on DNA. Nature 437(7063):1321–5.ADSCrossRefGoogle Scholar
  88. Nie S, Chiu DT, Zare RN. 1994. Probing individual molecules with confocal fluorescence microscopy. Science 266(5187):1018–21.ADSCrossRefGoogle Scholar
  89. Noji H, Yasuda R, Yoshida M, Kinosita K, Jr. 1997. Direct observation of the rotation of F1-ATPase. Nature 386(6622):299–302.ADSCrossRefGoogle Scholar
  90. Rasnik I, McKinney SA, Ha T. 2006. Nonblinking and longlasting single-molecule fluorescence imaging. Nat Methods 3(11):891–3.CrossRefGoogle Scholar
  91. Rasnik I, Myong S, Cheng W, Lohman TM, Ha T. 2004. DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J Mol Biol 336(2):395–408.CrossRefGoogle Scholar
  92. Rhoades E, Gussakovsky E, Haran G. 2003. Watching proteins fold one molecule at a time. Proc Nat Acad Sci USA 100(6):3197–202.ADSCrossRefGoogle Scholar
  93. Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, et al. 1999. A structural change in the kinesin motor protein that drives motility. Nature 402(6763): 778–84.ADSCrossRefGoogle Scholar
  94. Ross J, Buschkamp P, Fetting D, Donnermeyer A, Roth CM, Tinnefeld P. 2007. Multicolor single-molecule spectroscopy with alternating laser excitation for the investigation of interactions and dynamics. J Phys Chem B 111(2):321–6.CrossRefGoogle Scholar
  95. Rothemund PW. 2006. Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302.ADSCrossRefGoogle Scholar
  96. Rothwell PJ, Berger S, Kensch O, Felekyan S, Antonik M, Wohrl BM, Restle T, Goody RS, Seidel CA. 2003. Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes. Proc Natl Acad Sci USA 100(4):1655–60.ADSCrossRefGoogle Scholar
  97. Sabanayagam CR, Eid JS, Meller A. 2004. High-throughput scanning confocal microscopy for single molecule analysis. Appl Phys Lett 84(7):1216–8.ADSCrossRefGoogle Scholar
  98. Sako Y, Minoghchi S, Yanagida T. 2000. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2(3):168–72.CrossRefGoogle Scholar
  99. Sapsford KE, Berti L, Medintz IL. 2006. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45(28):4562–88.CrossRefGoogle Scholar
  100. Schluesche P, Stelzer G, Piaia E, Lamb DC, Meisterernst M. 2007. NC2 mobilizes TBP on core promoter TATA boxes. Nat Struct Mol Biol 14(12):1196–201.CrossRefGoogle Scholar
  101. Schuler B, Eaton WA. 2008. Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18(1):16–26.CrossRefGoogle Scholar
  102. Schuler B, Lipman EA, Eaton WA. 2002. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419(6908):743–7.ADSCrossRefGoogle Scholar
  103. Seeman NC. 2003. DNA in a material world. Nature 421(6921):427–31.MathSciNetADSCrossRefGoogle Scholar
  104. Seeman NC. 2005. From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30(3):119–25.CrossRefGoogle Scholar
  105. Selvin PR. 1995. Fluorescence resonance energy transfer. Methods Enzymol 246:300–34.CrossRefGoogle Scholar
  106. Selvin PR. 2000. The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9):730–4.CrossRefGoogle Scholar
  107. Sharma S, Chakraborty K, Muller BK, Astola N, Tang YC, Lamb DC, Hayer-Hartl M, Hartl FU. 2008. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133(1):142–53.CrossRefGoogle Scholar
  108. Shroff H, Reinhard BM, Siu M, Agarwal H, Spakowitz A, Liphardt J. 2005. Biocompatible force sensor with optical readout and dimensions of 6 nm(3). Nano Lett 5(7):1509–14.ADSCrossRefGoogle Scholar
  109. Smiley RD, Collins TR, Hammes GG, Hsieh TS. 2007. Single-molecule measurements of the opening and closing of the DNA gate by eukaryotic topoisomerase II. Proc Natl Acad Sci USA 104(12):4840–5.ADSCrossRefGoogle Scholar
  110. Stryer L, Haugland RP. 1967. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58(2):719–26.ADSCrossRefGoogle Scholar
  111. Talaga DS, Lau WL, Roder H, Tang J, Jia Y, DeGrado WF, Hochstrasser RM. 2000. Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc Natl Acad Sci USA 97(24):13021–6.ADSCrossRefGoogle Scholar
  112. Tan E, Wilson TJ, Nahas MK, Clegg RM, Lilley DM, Ha T. 2003. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc Natl Acad Sci USA 100(16):9308–13.ADSCrossRefGoogle Scholar
  113. Tarsa PB, Brau RR, Barch M, Ferrer JM, Freyzon Y, Matsudaira P, Lang MJ. 2007. Combined optical tweezers force measurement with simultaneous single molecule fluorescence resonance energy transfer (FRET) detection. Biophys J 654A.Google Scholar
  114. Tomishige M, Stuurman N, Vale RD. 2006. Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol 13(10):887–94.CrossRefGoogle Scholar
  115. Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112(4):467–80.CrossRefGoogle Scholar
  116. Vogelsang J, Doose S, Sauer M, Tinnefeld P. 2007. Single-molecule fluorescence resonance energy transfer in nanopipets: improving distance resolution and concentration range. Anal Chem 79(19):7367–75.CrossRefGoogle Scholar
  117. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P. 2008. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47(29):5465–9.CrossRefGoogle Scholar
  118. Walter NG, Huang CY, Manzo AJ, Sobhy MA. 2008. Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5(6):475–89.CrossRefGoogle Scholar
  119. Webb SE, Roberts SK, Needham SR, Tynan CJ, Rolfe DJ, Winn MD, Clarke DT, Barraclough R, Martin-Fernandez ML. 2008. Single-molecule imaging and fluorescence lifetime imaging microscopy show different structures for high- and low-affinity epidermal growth factor receptors in A431 cells. Biophys J 94(3):803–19.CrossRefGoogle Scholar
  120. Weiss S. 1999. Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–83.ADSCrossRefGoogle Scholar
  121. Weiss S. 2000. Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7(9):724–9.CrossRefGoogle Scholar
  122. Wu P, Brand L. 1994. Resonance energy transfer: methods and applications. Anal Biochem 218(1):1–13.CrossRefGoogle Scholar
  123. Wu PG, Brand L. 1992. Orientation factor in steady-state and time-resolved resonance energy-transfer measurements. Biochemistry 31(34):7939–47.CrossRefGoogle Scholar
  124. Yildiz A, Tomishige M, Vale RD, Selvin PR. 2004. Kinesin walks hand-over-hand. Science 303(5658):676–8.ADSCrossRefGoogle Scholar
  125. Yurke B, Turberfield AJ, Mills AP, Jr., Simmel FC, Neumann JL. 2000. A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–8.ADSCrossRefGoogle Scholar
  126. Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S. 2000. A single-molecule study of RNA catalysis and folding. Science 288(5473):2048–51.ADSCrossRefGoogle Scholar
  127. Zhuang X, Kim H, Pereira MJ, Babcock HP, Walter NG, Chu S. 2002. Correlating structural dynamics and function in single ribozyme molecules. Science 296(5572):1473–6.ADSCrossRefGoogle Scholar
  128. Zhuang X, Rief M. 2003. Single-molecule folding. Curr Opin Struct Biol 13(1):88–97.CrossRefGoogle Scholar
  129. Zimmer M. 2002. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102(3):759–81.CrossRefGoogle Scholar
  130. Zimmermann B, Diez M, Borsch M, Graber P. 2006. Subunit movements in membrane-integrated EF0F1 during ATP synthesis detected by single-molecule spectroscopy. Biochim Biophys Acta 1757(5–6):311–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ling Chin Hwang
    • 1
  • Johannes Hohlbein
    • 1
  • Seamus J. Holden
    • 1
  • Achillefs N. Kapanidis
    • 1
  1. 1.Department of Physics and IRC in BionanotechnologyClarendon Laboratory, University of OxfordOxford, OX1 3PUUK

Personalised recommendations