Fluorescence Imaging at Sub-Diffraction-Limit Resolution with Stochastic Optical Reconstruction Microscopy

  • Graham T. Dempsey
  • Wenqin Wang
  • Xiaowei Zhuang


Fluorescence microscopy is an essential tool in biological research. One major drawback of conventional light microscopy, however, is its relatively low resolution, which is limited by the diffraction of light to several hundreds of nanometers. In recent years, a number of fluorescence imaging techniques with sub-diffraction-limit resolution have been developed, achieving a spatial resolution of tens of nanometers in both the lateral and axial dimensions. This chapter focuses on one of these methods, stochastic optical reconstruction microscopy (STORM), which utilizes photoswitchable flourescent probes to separate spatially overlapping images of individual fluorophores in time and construct superresolution images from the precise positions of these fluorophores determined from the single-molecule images. Application of this technique has been extended to imaging fluorophores of different colors simultaneously, in three dimensions, and in living cells. This chapter describes the implementation of multicolor and three-dimensional STORM to imaging cellular structures. It begins by discussing the choice of photoswitchable fluorescent probe and the scheme with which to label a cellular target of interest. The instrumentation and methods for performing a STORM experiment are then described, followed by an outline of the analysis routines used for creating a STORM image. Applications of the technique along with general protocols and troubleshooting are given at the conclusion of the chapter.


Fiducial Marker Spherical Aberration Cylindrical Lens Drift Correction Localization Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank W. M. Bates for a critical reading of the manuscript and other members of the Zhuang laboratory for helpful advice and discussions. This work was supported in part by the National Institutes of Health. XZ is a Howard Hughes Medical Institute investigator.


  1. 1.
    Hell, S. W., and J. Wichmann. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19:780–782.ADSCrossRefGoogle Scholar
  2. 2.
    Gustafsson, M. G. L. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102:13081–13086.ADSCrossRefGoogle Scholar
  3. 3.
    Rust, M. J., M. Bates, and X. Zhuang. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–796.CrossRefGoogle Scholar
  4. 4.
    Betzig, E. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645.ADSCrossRefGoogle Scholar
  5. 5.
    Hess, S. T., T. P. K. Girirajan, and M. D. Mason. 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–4272.ADSCrossRefGoogle Scholar
  6. 6.
    Hell, S. W. 2007. Far-field optical nanoscopy. Science 316:1153–1158.ADSCrossRefGoogle Scholar
  7. 7.
    Thompson, R. E., D. R. Larson, and W. W. Webb. 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–2783.CrossRefGoogle Scholar
  8. 8.
    Gelles, J., B. J. Schnapp, and M. P. Sheetz. 1988. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453.ADSCrossRefGoogle Scholar
  9. 9.
    Ghosh, R. N., and W. W. Webb. 1994. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66:1301–1318.ADSCrossRefGoogle Scholar
  10. 10.
    van Oijen, A. M., J. Kohler, J. Schmidt, M. Muller, and G. J. Brakenhoff. 1998. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292:183–187.CrossRefGoogle Scholar
  11. 11.
    Lacoste, T. D., X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss. 2000. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97:9461–9466.ADSCrossRefGoogle Scholar
  12. 12.
    Yildiz, A., J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin. 2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization. Science 300:2061–2065.ADSCrossRefGoogle Scholar
  13. 13.
    Gordon, M. P., T. Ha, and P. R. Selvin. 2004. Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad. Sci. USA 101:6462–6465.ADSCrossRefGoogle Scholar
  14. 14.
    Qu, X. H., D. Wu, L. Mets, and N. F. Scherer. 2004. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 101:11298–11303.ADSCrossRefGoogle Scholar
  15. 15.
    Lidke, K. A., B. Rieger, T. M. Jovin, and R. Heintzmann. 2005. Superresolution by localization of quantum dots using blinking statistics. Opt. Exp. 13:7052–7062.ADSCrossRefGoogle Scholar
  16. 16.
    Churchman, L. S., Z. Okten, R. S. Rock, J. F. Dawson, and J. A. Spudich. 2005. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA 102:1419–1423.ADSCrossRefGoogle Scholar
  17. 17.
    Bates, M., B. Huang, G. T. Dempsey, and X. Zhuang. 2007. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753.ADSCrossRefGoogle Scholar
  18. 18.
    Bock, H., C. Geisler, C. A. Wurm, C. Von Middendorff, S. Jakobs, A. Schonle, A. Egner, S. W. Hell, and C. Eggeling. 2007. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88:161–165.ADSCrossRefGoogle Scholar
  19. 19.
    Shroff, H., C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig. 2007. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104:20308–20313.ADSCrossRefGoogle Scholar
  20. 20.
    Bates, M., T. R. Blosser, and X. Zhuang. 2005. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94:108101.ADSCrossRefGoogle Scholar
  21. 21.
    Folling, J., V. Belov, R. Kunetsky, R. Medda, A. Schonle, A. Egner, C. Eggeling, M. Bossi, and S. W. Hell. 2007. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. Engl. 46: 6266–6270.CrossRefGoogle Scholar
  22. 22.
    Bossi, M., J. Folling, V. N. Belov, V. P. Boyarskiy, R. Medda, A. Egner, C. Eggeling, A. Schonle, and S. W. Hell. 2008. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8:2463–2468.Google Scholar
  23. 23.
    Patterson, G. H., and J. Lippincott-Schwartz. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877.ADSCrossRefGoogle Scholar
  24. 24.
    Habuchi, S., R. Ando, P. Dedecker, W. Verheijen, H. Mizuno, A. Miyawaki, and J. Hofkens. 2005. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102:9511–9516.ADSCrossRefGoogle Scholar
  25. 25.
    Ando, R., H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki. 2002. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99: 12651–12656.ADSCrossRefGoogle Scholar
  26. 26.
    Wiedenmann, J., S. Ivanchenko, F. Oswald, F. Schmitt, C. Rocker, A. Salih, K.-D. Spindler, and G. U. Nienhaus. 2004. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101:15905–15910.ADSCrossRefGoogle Scholar
  27. 27.
    Gurskaya, N. G., V. V. Verkhusha, A. S. Shcheglov, D. B. Staroverov, T. V. Chepurnykh, A. F. Fradkov, S. Lukyanov, and K. A. Lukyanov. 2006. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24:461–465.CrossRefGoogle Scholar
  28. 28.
    Chudakov, D. M., V. V. Verkhusha, D. B. Staroverov, E. A. Souslova, S. Lukyanov, and K. A. Lukyanov. 2004. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22:1435–1439.CrossRefGoogle Scholar
  29. 29.
    Stiel, A. C., S. Trowitzsch, G. Weber, M. Andresen, C. Eggeling, S. W. Hell, S. Jakobs, and M. C. Wahl. 2007. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402:35–42.CrossRefGoogle Scholar
  30. 30.
    Tsutsui, H., S. Karasawa, H. Shimizu, N. Nukina, and A. Miyawaki. 2005. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6:233–238.CrossRefGoogle Scholar
  31. 31.
    Huang, B., W. Wang, M. Bates, and X. Zhuang. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813.ADSCrossRefGoogle Scholar
  32. 32.
    Juette, M. F., T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf. 2008. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5:527–529.CrossRefGoogle Scholar
  33. 33.
    Kao, H. P., and A. S. Verkman. 1994. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67:1291–1300.ADSCrossRefGoogle Scholar
  34. 34.
    Holtzer, L., T. Meckel, and T. Schmidt. 2007. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90:053902.ADSCrossRefGoogle Scholar
  35. 35.
    Huang, B., S. A. Jones, B. Brandenburg, and X. Zhuang 2008. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5:1047–1052.Google Scholar
  36. 36.
    Shroff, H., C. G. Galbraith, J. A. Galbraith, and E. Betzig. 2008. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5:417–423.CrossRefGoogle Scholar
  37. 37.
    Hess, S. T., T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg. 2007. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. USA 104:17370–17375.ADSCrossRefGoogle Scholar
  38. 38.
    Lord, S. J., N. R. Conley, H. L. Lee, R. Samuel, N. Liu, R. J. Twieg, and W. E. Moerner. 2008. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J. Am. Chem. Soc. 130:9204–9205.CrossRefGoogle Scholar
  39. 39.
    Giepmans, B. N. G., S. R. Adams, M. H. Ellisman, and R. Y. Tsien. 2006. The fluorescent toolbox for assessing protein location and function. Science 312:217–224.ADSCrossRefGoogle Scholar
  40. 40.
    Chen, I., and A. Y. Ting. 2005. Site-specific labeling of proteins with small molecules in live cells. Curr. Opin. Biotech. 16:35–40.CrossRefGoogle Scholar
  41. 41.
    Prescher, J. A., and C. R. Bertozzi. 2005. Chemistry in living systems. Nat. Chem. Biol. 1:13–21.CrossRefGoogle Scholar
  42. 42.
    Lin, M. Z., and L. Wang. 2008. Selective labeling of proteins with chemical probes in living cells. Physiology (Bethesda, MD) 23:131–141.CrossRefGoogle Scholar
  43. 43.
    O’Hare, H. M., K. Johnsson, and A. Gautier. 2007. Chemical probes shed light on protein function. Curr. Opin. Struct. Biol. 17:488–494.CrossRefGoogle Scholar
  44. 44.
    Griffin, B. A., S. R. Adams, and R. Y. Tsien. 1998. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272.ADSCrossRefGoogle Scholar
  45. 45.
    Guignet, E. G., R. Hovius, and H. Vogel. 2004. Reversible site-selective labeling of membrane proteins in live cells. Nat. Biotechnol. 22:440–444.CrossRefGoogle Scholar
  46. 46.
    Lin, C. W., and A. Y. Ting. 2006. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J. Am. Chem. Soc. 128:4542–4543.CrossRefGoogle Scholar
  47. 47.
    Chen, I., M. Howarth, W. Y. Lin, and A. Y. Ting. 2005. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2:99–104.CrossRefGoogle Scholar
  48. 48.
    Fernandez-Suarez, M., H. Baruah, L. Martinez-Hernandez, K. T. Xie, J. M. Baskin, C. R. Bertozzi, and A. Y. Ting. 2007. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25:1483–1487.CrossRefGoogle Scholar
  49. 49.
    Tanaka, T., T. Yamamoto, S. Tsukiji, and T. Nagamune. 2008. Site-specific protein modification on living cells catalyzed by Sortase. ChemBioChem 9:802–807.CrossRefGoogle Scholar
  50. 50.
    Zhou, Z., P. Cironi, A. J. Lin, Y. Xu, S. Hrvatin, D. E. Golan, P. A. Silver, C. T. Walsh, and J. Yin. 2007. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2:337–346.CrossRefGoogle Scholar
  51. 51.
    Ramos-Vara, J. A. 2005. Technical aspects of immunohistochemistry. Vet. Pathol. 42:405–426.CrossRefGoogle Scholar
  52. 52.
    Skepper, J. N. 2000. Immunocytochemical strategies for electron microscopy: choice or compromise. J. Microsc. 199:1–36.CrossRefGoogle Scholar
  53. 53.
    Glauert, A. M., and P. R. Lewis. 1998. Biological specimen preparation for transmission electron microscopy. Princeton University Press, Princeton, NJ.Google Scholar
  54. 54.
    McIntosh, J. M., ed. 2007. Cellular electron microscopy (Methods in Cell Biology, Vol. 79). Academic Press, San Diego, CA.Google Scholar
  55. 55.
    Naviaux, R. K., E. Costanzi, M. Haas, and I. M. Verma. 1996. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70:5701–5705.Google Scholar
  56. 56.
    Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.ADSCrossRefGoogle Scholar
  57. 57.
    Buchschacher, G. L., Jr., and F. Wong-Staal. 2000. Development of lentiviral vectors for gene therapy for human diseases. Blood 95:2499–2504.Google Scholar
  58. 58.
    Andresen, M., A. C. Stiel, J. Folling, D. Wenzel, A. Schonle, A. Egner, C. Eggeling, S. W. Hell, and S. Jakobs. 2008. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26:1035–1040.Google Scholar
  59. 59.
    Stetson, P. B. 1987. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacific 99:191–222.ADSCrossRefGoogle Scholar
  60. 60.
    Egner, A., and S. W. Hell. 2006. Handbook of biological confocal microscopy, Chapter 20. Springer, New York.Google Scholar
  61. 61.
    Hohng, S., C. Joo, and T. Ha. 2004. Single-molecule three-color FRET. Biophys. J. 87:1328–1337.ADSCrossRefGoogle Scholar
  62. 62.
    Cui, B. X., C. B. Wu, L. Chen, A. Ramirez, E. L. Bearer, W. P. Li, W. C. Mobley, and S. Chu. 2007. One at a time, live tracking of NGF axonal transport using quantum dots Proc. Natl. Acad. Sci. USA 104:13666–13671.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Graham T. Dempsey
    • 1
  • Wenqin Wang
    • 2
  • Xiaowei Zhuang
    • 3
  1. 1.Graduate Program in BiophysicsHarvard UniversityCambridgeUSA
  2. 2.Department of PhysicsHarvard UniversityCambridgeUSA
  3. 3.Departments of Physics, Chemistry and Chemical Biology, Howard Hughes Medical InstituteHarvard UniversityCambridgeUSA

Personalised recommendations