Single-Molecule Imaging in Live Cells

  • Jie Xiao


This chapter provides a comprehensive overview of how single-molecule imaging is achieved in live cells. The main focus is on fluorescent proteins, which are the most widely used fluorescent labels for live-cell imaging. The chromophore structures and the associated photochemical and photophysical properties of fluorescent proteins are discussed in detail, with a particular focus on how they influence single-molecule imaging in live cells. A few fluorescent proteins in the yellow-to-red spectral range, including newly discovered photoinducible ones, are selected for more detailed discussions due to their superior properties in single-molecule imaging. Special considerations for live-cell imaging and general instrumentations for single-molecule detection are also described. Finally, a few representative applications using single-molecule imaging in live cells are provided to illustrate how important biological knowledge can be obtained using this powerful technique.


Green Fluorescent Protein Fluorescence Resonance Energy Transfer Autofluorescence Background Illumination Area Ensemble Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moerner, W. E., and L. Kador (1989). Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett, 62(21): 2535–8.ADSCrossRefGoogle Scholar
  2. 2.
    Orrit, M., and J. Bernard (1990). Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett, 65(21): 2716–19.ADSCrossRefGoogle Scholar
  3. 3.
    Shav-Tal, Y., X. Darzacq, et al. (2004). Dynamics of single mRNPs in nuclei of living cells. Science, 304(5678): 1797–800.ADSCrossRefGoogle Scholar
  4. 4.
    Golding, I., J. Paulsson, et al. (2005). Real-time kinetics of gene activity in individual bacteria. Cell, 123(6): 1025–36.CrossRefGoogle Scholar
  5. 5.
    Fusco, D., N. Accornero, et al. (2003). Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol, 13(2): 161–7.CrossRefGoogle Scholar
  6. 6.
    Bates, D., and N. Kleckner (2005). Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell, 121(6): 899–911.CrossRefGoogle Scholar
  7. 7.
    Lemon, K. P., and A. D. Grossman (2000). Movement of replicating DNA through a stationary replisome. Mol Cell, 6(6): 1321–30.CrossRefGoogle Scholar
  8. 8.
    Viollier, P. H., M. Thanbichler, et al. (2004). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA, 101(25): 9257–62.ADSCrossRefGoogle Scholar
  9. 9.
    Rotman, B. (1961). Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci USA, 47: 1981–91.ADSCrossRefGoogle Scholar
  10. 10.
    Cai, L., N. Friedman, and X. S. Xie (2006). Stochastic protein expression in individual cells at the single molecule level. Nature, 440(7082): 358–62.ADSCrossRefGoogle Scholar
  11. 11.
    Ghaemmaghami, S., W. K. Huh, et al. (2003). Global analysis of protein expression in yeast. Nature, 425(6959): 737–41.ADSCrossRefGoogle Scholar
  12. 12.
    Guptasarma, P. (1995). Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays, 17(11): 987–97.CrossRefGoogle Scholar
  13. 13.
    Freund, J. A., and T. Poschel (2005). Stochastic Processes in Physics, Chemistry, and Biology. Springer: Berlin.Google Scholar
  14. 14.
    Elowitz, M. B., A. J. Levine, et al. (2002). Stochastic gene expression in a single cell. Science, 297(5584): 1183–6.ADSCrossRefGoogle Scholar
  15. 15.
    Ozbudak, E. M., M. Thattai, et al. (2002). Regulation of noise in the expression of a single gene. Nat Genet, 31(1): 69–73.CrossRefGoogle Scholar
  16. 16.
    Weinberger, L. S., J. C. Burnett, et al. (2005). Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell, 122(2): 169–82.CrossRefGoogle Scholar
  17. 17.
    Huang, C. Y., and J. E. Ferrell, Jr. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA, 93(19): 10078–83.ADSCrossRefGoogle Scholar
  18. 18.
    Braun, H. A., H. Wissing, et al. (1994). Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature, 367(6460): 270–3.ADSCrossRefGoogle Scholar
  19. 19.
    Wang, W., and Z. D. Wang (1997). Internal-noise-enhanced signal transduction in neuronal systems. Phys Rev E, 55(6): 7379–84.ADSCrossRefGoogle Scholar
  20. 20.
    Bezrukov, S. M., and I. Vodyanoy (1995). Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature, 378(6555): 362–4.ADSCrossRefGoogle Scholar
  21. 21.
    Arkin, A., J. Ross, and H. H. McAdams (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149(4): 1633–48.Google Scholar
  22. 22.
    Suel, G. M., J. Garcia-Ojalvo, et al. (2006). An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440(7083): 545–50.ADSCrossRefGoogle Scholar
  23. 23.
    Choi, P. J., L. Cai, et al. (2008). A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science, 322(5900): 442–6.ADSCrossRefGoogle Scholar
  24. 24.
    Maamar, H., A. Raj, and D. Dubnau (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science, 317(5837): 526–9.ADSCrossRefGoogle Scholar
  25. 25.
    Kussell, E., R. Kishony, et al. (2005). Bacterial persistence: a model of survival in changing environments. Genetics, 169(4): 1807–14.CrossRefGoogle Scholar
  26. 26.
    Berland, K. M., P. T. So, and E. Gratton (1995). Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J, 68(2): 694–701.CrossRefGoogle Scholar
  27. 27.
    Brock, R., M. A. Hink, and T. M. Jovin (1998). Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J, 75(5): 2547–57.CrossRefGoogle Scholar
  28. 28.
    Schwille, P., U. Haupts, et al. (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J, 77(4): 2251–65.CrossRefGoogle Scholar
  29. 29.
    Komarova, Y., J. Peloquin, and G. Borisy (2005). Microinjection of fluorophore-labeled proteins. In Live Cell Imaging, a Laboratory Manual, R. D. Goldman and D. L. Spector, Editors. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 67–86.Google Scholar
  30. 30.
    O’Hare, H. M., K. Johnsson, and A. Gautier (2007). Chemical probes shed light on protein function. Curr Opin Struct Biol, 17(4): 488–94.CrossRefGoogle Scholar
  31. 31.
    Sako, Y., S. Minoghchi, and T. Yanagida (2000). Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol, 2(3): 168–72.CrossRefGoogle Scholar
  32. 32.
    Schütz, G. J., G. Kada, et al. (2000). Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19: 892–901.CrossRefGoogle Scholar
  33. 33.
    Murakoshi, H., R. Iino, et al. (2004). Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA, 101(19): 7317–22.ADSCrossRefGoogle Scholar
  34. 34.
    Guignet, E. G., J. M. Segura, et al. (2007). Repetitive reversible labeling of proteins at polyhistidine sequences for single-molecule imaging in live cells. Chemphyschem, 8(8): 1221–7.CrossRefGoogle Scholar
  35. 35.
    Lord, S. J., N. R. Conley, et al. (2008). A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc. (2008) Jul 23; 130(29): 9204–5.Google Scholar
  36. 36.
    Lord, S. J., Z. Lu, et al. (2007). Photophysical properties of acene DCDHF fluorophores: long-wavelength single-molecule emitters designed for cellular imaging. J Phys Chem A, 111(37): 8934–41.CrossRefGoogle Scholar
  37. 37.
    Michalet, X., F. F. Pinaud, et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709): 538–44.ADSCrossRefGoogle Scholar
  38. 38.
    Zhou, M., and I. Ghosh (2007). Quantum dots and peptides: a bright future together. Biopolymers, 88(3): 325–39.CrossRefGoogle Scholar
  39. 39.
    Davenport, D., and J. A. C. Nicol (1955). Luminescence of Hydromedusae. Proc R Soc B, 144: 399–411.ADSCrossRefGoogle Scholar
  40. 40.
    Shimomura, O., F. H. Johnson, and Y. Saiga (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, 59: 223–39.CrossRefGoogle Scholar
  41. 41.
    Hastings, J. W., and J. G. Morin (1969). Comparative biochemistry of calcium photoproteins from the ctenophore, Mnemiopsis and the coelenterates Aequorea, Obelia, Pelagia and Renilla. Biol Bull, 137: 402.Google Scholar
  42. 42.
    Morin, J. G., and J. W. Hastings (1971). Energy transfer in a bioluminescent system. J Cell Physiol, 77(3): 313–8.CrossRefGoogle Scholar
  43. 43.
    Morise, H., O. Shimomura, et al. (1974). Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry, 13(12): 2656–62.CrossRefGoogle Scholar
  44. 44.
    Mills, C. E. (2001). Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451: 55–68.CrossRefGoogle Scholar
  45. 45.
    Prasher, D. C., V. K. Eckenrode, et al. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 111(2): 229–33.CrossRefGoogle Scholar
  46. 46.
    Chalfie, M., Y. Tu, et al. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148): 802–5.ADSCrossRefGoogle Scholar
  47. 47.
    Heim, R., D. C. Prasher, and R. Y. Tsien (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA, 91(26): 12501–4.ADSCrossRefGoogle Scholar
  48. 48.
    Inouye, S., and F. I. Tsuji (1994). Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett, 341(2–3): 277–80.CrossRefGoogle Scholar
  49. 49.
    Heim, R., A. B. Cubitt, and R. Y. Tsien (1995). Improved green fluorescence. Nature, 373(6516): 663–4.ADSCrossRefGoogle Scholar
  50. 50.
    Yang, F., L. G. Moss, and G. N. Phillips, Jr. (1996). The molecular structure of green fluorescent protein. Nat Biotechnol, 14(10): 1246–51.CrossRefGoogle Scholar
  51. 51.
    Ormo, M., A. B. Cubitt, et al. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273(5280): 1392–5.ADSCrossRefGoogle Scholar
  52. 52.
    Cubitt, A. B., F. Carrel, et al. (1992). Molecular genetic analysis of signal transduction pathways controlling multicellular development in Dictyostelium. Cold Spring Harb Symp Quant Biol, 57: 177–92.CrossRefGoogle Scholar
  53. 53.
    Reid, B. G., and G. C. Flynn (1997). Chromophore formation in green fluorescent protein. Biochemistry, 36(22): 6786–91.CrossRefGoogle Scholar
  54. 54.
    Rosenow, M. A., H. A. Huffman, et al. (2004). The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry, 43(15): 4464–72.CrossRefGoogle Scholar
  55. 55.
    Rosenow, M. A., H. N. Patel, and R. M. Wachter (2005). Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. Biochemistry, 44(23): 8303–11.CrossRefGoogle Scholar
  56. 56.
    Zhang, L., H. N. Patel, et al. (2006). Reaction progress of chromophore biogenesis in green fluorescent protein. J Am Chem Soc, 128(14): 4766–72.CrossRefGoogle Scholar
  57. 57.
    Barondeau, D. P., C. J. Kassmann, et al. (2005). Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry. Biochemistry, 44(6): 1960–70.CrossRefGoogle Scholar
  58. 58.
    Ward, W. W., H. J. Prentice, et al. (1982). Spectral perturbations of the Aequorea green fluorescent protein. Photochem Photobiol, 35: 803–8.CrossRefGoogle Scholar
  59. 59.
    Voityuk, A. A., A. D. Kummer, et al. (2001). Absorption spectra of the GFP chromophore in solution: comparison of theoretical and experimental results. Chem Phys, 269(1–3): 83–91.CrossRefGoogle Scholar
  60. 60.
    Chattoraj, M., B. A. King, et al. (1996). Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA, 93(16): 8362–7.ADSCrossRefGoogle Scholar
  61. 61.
    van Thor, J. J., T. Gensch, et al. (2002). Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol, 9(1): 37–41.CrossRefGoogle Scholar
  62. 62.
    Cubitt, A. B., R. Heim, et al. (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem Sci, 20(11): 448–55.CrossRefGoogle Scholar
  63. 63.
    Cubitt, A. B., L. A. Woollenweber, and R. Heim (1999). Understanding structure–function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol, 58: 19–30.CrossRefGoogle Scholar
  64. 64.
    Remington, S. J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol, 16(6): 714–21.CrossRefGoogle Scholar
  65. 65.
    McAnaney, T. B., W. Zeng, et al. (2005). Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry, 44(14): 5510–24.CrossRefGoogle Scholar
  66. 66.
    Shaner, N. C., M. Z. Lin, et al. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods, 5(6): 545–51.CrossRefGoogle Scholar
  67. 67.
    Swaminathan, R., C. P. Hoang, and A. S. Verkman (1997). Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J, 72(4): 1900–7.CrossRefGoogle Scholar
  68. 68.
    Peterman, E. J. G., S. Brasselet, and W. E. Moerner (1999). The fluorescence dynamics of single molecules of green fluorescent protein. J Phys Chem A, 103(49): 10553–60.CrossRefGoogle Scholar
  69. 69.
    Pierce, D. W., N. Hom-Booher, and R. D. Vale (1997). Imaging individual green fluorescent proteins. Nature, 388(6640): 338.ADSCrossRefGoogle Scholar
  70. 70.
    Greenbaum, L., C. Rothmann, et al. (2000). Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen. Biol Chem, 381(12): 1251–58.CrossRefGoogle Scholar
  71. 71.
    Bulina, M. E., D. M. Chudakov, et al. (2006). A genetically encoded photosensitizer. Nat Biotechnol, 24(1): 95–9.CrossRefGoogle Scholar
  72. 72.
    Lakowicz, J. (2006). Principles of Fluorescence Spectroscopy, 3rd ed. Springer: New York.CrossRefGoogle Scholar
  73. 73.
    Heikal, A. A., S. T. Hess, et al. (2000). Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci USA, 97(22): 11996–2001.ADSCrossRefGoogle Scholar
  74. 74.
    Garcia-Parajo, M. F., G.M. Segers-Nolten, et al. (2000). Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc Natl Acad Sci USA, 97(13): 7237–42.ADSCrossRefGoogle Scholar
  75. 75.
    Shaner, N. C., P. A. Steinbach, and R. Y. Tsien (2005). A guide to choosing fluorescent proteins. Nat Methods, 2(12): 905–9.CrossRefGoogle Scholar
  76. 76.
    Harms, G. S., L. Cognet, et al. (2001). Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J, 80(5): 2396–408.CrossRefGoogle Scholar
  77. 77.
    Dickson, R. M., A. B. Cubitt, et al. (1997). On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature, 388(6640): 355–8.ADSCrossRefGoogle Scholar
  78. 78.
    Moerner, W. E., E. J. Peterman, et al. (1999). Optical methods for exploring dynamics of single copies of green fluorescent protein. Cytometry, 36(3): 232–8.CrossRefGoogle Scholar
  79. 79.
    Miyawaki, A., and R. Y. Tsien (2000). Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol, 327: 472–500.CrossRefGoogle Scholar
  80. 80.
    Nifosi, R., A. Ferrari, et al. (2003). Photoreversible dark state in a tristable green fluorescent protein variant. J Phys Chem B, 107(7): 1679–84.CrossRefGoogle Scholar
  81. 81.
    Haupts, U., S. Maiti, et al. (1998). Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA, 95(23): 13573.ADSCrossRefGoogle Scholar
  82. 82.
    Evdokimov, A. G., M. E. Pokross, et al. (2006). Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Rep, 7(10): 1006–12.CrossRefGoogle Scholar
  83. 83.
    Nagai, T., K. Ibata, et al. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol, 20(1): 87–90.CrossRefGoogle Scholar
  84. 84.
    Yu, J., J. Xiao, et al. (2006). Probing gene expression in live cells, one protein molecule at a time. Science, 311(5767): 1600–3.ADSCrossRefGoogle Scholar
  85. 85.
    Shaner, N. C., R. E. Campbell, et al. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol, 22(12): 1567–72.CrossRefGoogle Scholar
  86. 86.
    Tsien, R. Y. (1998). The green fluorescent protein. Annu Rev Biochem, 67: 509–44.CrossRefGoogle Scholar
  87. 87.
    Kennis, J. T., D. S. Larsen, et al. (2004). Uncovering the hidden ground state of green fluorescent protein. Proc Natl Acad Sci USA, 101(52): 17988–93.ADSCrossRefGoogle Scholar
  88. 88.
    Cormack, B. P., G. Bertram, et al. (1997). Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology, 143(Pt 2): 303–11.CrossRefGoogle Scholar
  89. 89.
    Brejc, K., T. K. Sixma, et al. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA, 94(6): 2306–11.ADSCrossRefGoogle Scholar
  90. 90.
    Wachter, R. M., D. Yarbrough, et al. (2000). Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. J Mol Biol, 301(1): 157–71.CrossRefGoogle Scholar
  91. 91.
    Iino, R., I. Koyama, and A. Kusumi (2001). Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J, 80(6): 2667–77.CrossRefGoogle Scholar
  92. 92.
    Watanabe, N., and T. J. Mitchison (2002). Single-molecule speckle analysis of actin filament turnover in Lamellipodia. Science, 295(5557): 1083–6.ADSCrossRefGoogle Scholar
  93. 93.
    Pedelacq, J. D., S. Cabantous, et al. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol, 24(1): 79–88.CrossRefGoogle Scholar
  94. 94.
    Deich, J., E. M. Judd, et al. (2004). Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Natl Acad Sci USA, 101(45): 15921–6.ADSCrossRefGoogle Scholar
  95. 95.
    Harms, G. S., L. Cognet, et al. (2001). Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J, 81(5): 2639–46.CrossRefGoogle Scholar
  96. 96.
    Kim, S. Y., Z. Gitai, et al. (2006). Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci USA, 103(29): 10929–34.ADSCrossRefGoogle Scholar
  97. 97.
    Chesler, M., and K. Kaila (1992). Modulation of pH by neuronal activity. Trends Neurosci, 15(10): 396–402.CrossRefGoogle Scholar
  98. 98.
    Mansoura, M. K., J. Biwersi, et al. (1999). Fluorescent chloride indicators to assess the efficacy of CFTR cDNA delivery. Hum Gene Ther, 10(6): 861–75.CrossRefGoogle Scholar
  99. 99.
    Zacharias, D. A., J. D. Violin, et al. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, 296(5569): 913–6.ADSCrossRefGoogle Scholar
  100. 100.
    Griesbeck, O., G. S. Baird, et al. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem, 276(31): 29188–94.Google Scholar
  101. 101.
    Shaner, N. C., G. H. Patterson, and M. W. Davidson (2007). Advances in fluorescent protein technology. J Cell Sci, 120(Pt 24): 4247–60.CrossRefGoogle Scholar
  102. 102.
    Rekas, A., J. R. Alattia, et al. (2002). Crystal structure of Venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem, 277(52): 50573–8.CrossRefGoogle Scholar
  103. 103.
    Nguyen, A. W., and P. S. Daugherty (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol, 23(3): 355–60.CrossRefGoogle Scholar
  104. 104.
    Ohashi, T., S. D. Galiacy, et al. (2007). An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Sci, 16(7): 1429–38.CrossRefGoogle Scholar
  105. 105.
    Vinkenborg, J. L., T. H. Evers, et al. (2007). Enhanced sensitivity of FRET-based protease sensors by redesign of the GFP dimerization interface. Chembiochem, 8(10): 1119–21.CrossRefGoogle Scholar
  106. 106.
    Mishin, A. S., F. V. Subach, et al. (2008). The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry, 47(16): 4666–73.CrossRefGoogle Scholar
  107. 107.
    Elowitz, M. B., M. G. Surette, et al. (1997). Photoactivation turns green fluorescent protein red. Curr Biol, 7(10): 809–12.CrossRefGoogle Scholar
  108. 108.
    Sawin, K. E., and P. Nurse (1997). Photoactivation of green fluorescent protein. Curr Biol, 7(10): R606–7.CrossRefGoogle Scholar
  109. 109.
    Matz, M. V., A. F. Fradkov, et al. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol, 17(10): 969–73.CrossRefGoogle Scholar
  110. 110.
    Baird, G. S., D. A. Zacharias, and R. Y. Tsien (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA, 97(22): 11984–9.ADSCrossRefGoogle Scholar
  111. 111.
    Gross, L. A., G. S. Baird, et al. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA, 97(22): 11990–5.ADSCrossRefGoogle Scholar
  112. 112.
    Wall, M. A., M. Socolich, and R. Ranganathan (2000). The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol, 7(12): 1133–8.CrossRefGoogle Scholar
  113. 113.
    Yarbrough, D., R. M. Wachter, et al. (2001). Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc Natl Acad Sci USA, 98(2): 462–7.ADSCrossRefGoogle Scholar
  114. 114.
    Tubbs, J. L., J. A. Tainer, and E. D. Getzoff (2005). Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Biochemistry, 44(29): 9833–40.CrossRefGoogle Scholar
  115. 115.
    Shu, X., K. Kallio, et al. (2007). Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies. Biochemistry, 46(43): 12005–13.CrossRefGoogle Scholar
  116. 116.
    Xie, X. S., P. J. Choi, et al. (2008). Single-molecule approach to molecular biology in living bacterial cells. Annu Rev Biophys, 37: 417–44.CrossRefGoogle Scholar
  117. 117.
    Karasawa, S., T. Araki, et al. (2004). Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J, 381(Pt 1): 307–12.Google Scholar
  118. 118.
    Shu, X., N. C. Shaner, et al. (2006). Novel chromophores and buried charges control color in mFruits. Biochemistry, 45(32): 9639–47.CrossRefGoogle Scholar
  119. 119.
    Vavylonis, D., J. Q. Wu, et al. (2008). Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science, 319(5859): 97–100.ADSCrossRefGoogle Scholar
  120. 120.
    Merzlyak, E. M., J. Goedhart, et al. (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods, 4(7): 555–7.CrossRefGoogle Scholar
  121. 121.
    Petersen, J., P. G. Wilmann, et al. (2003). The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem, 278(45): 44626–31.CrossRefGoogle Scholar
  122. 122.
    Shcherbo, D., E. M. Merzlyak, et al. (2007). Bright far-red fluorescent protein for whole-body imaging. Nat Methods, 4(9): 741–6.CrossRefGoogle Scholar
  123. 123.
    Manley, S., J. M. Gillette, et al. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods. 2008 Feb; 5(2): 155–7.Google Scholar
  124. 124.
    Niu, L., and J. Yu (2008). Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J, 95(4): 2009–16.CrossRefGoogle Scholar
  125. 125.
    Verkhusha, V. V., and A. Sorkin (2005). Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol, 12(3): 279–85.CrossRefGoogle Scholar
  126. 126.
    Lukyanov, K. A., A. F. Fradkov, et al. (2000). Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem, 275(34): 25879–82.CrossRefGoogle Scholar
  127. 127.
    Ando, R., H. Mizuno, and A. Miyawaki (2004). Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science, 306(5700): 1370–3.ADSCrossRefGoogle Scholar
  128. 128.
    Ando, R., H. Hama, et al. (2002). An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA, 99(20): 12651–6.ADSCrossRefGoogle Scholar
  129. 129.
    Tsutsui, H., S. Karasawa, et al. (2005). Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep, 6(3): 233–8.CrossRefGoogle Scholar
  130. 130.
    Wiedenmann, J., S. Ivanchenko, et al. (2004). EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA, 101(45): 15905–10.ADSCrossRefGoogle Scholar
  131. 131.
    Gurskaya, N. G., V. V. Verkhusha, et al. (2006). Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol, 24(4): 461–5.CrossRefGoogle Scholar
  132. 132.
    Chudakov, D. M., V. V. Verkhusha, et al. (2004). Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol, 22(11): 1435–9.CrossRefGoogle Scholar
  133. 133.
    Lukyanov, K. A., D. M. Chudakov, et al. (2005). Innovation: Photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol, 6(11): 885–91.CrossRefGoogle Scholar
  134. 134.
    Patterson, G. H. (2008). Photoactivation and imaging of photoactivatable fluorescent proteins. Curr Protoc Cell Biol, 2008(March): Chapter 21: Unit 21.6.Google Scholar
  135. 135.
    Lippincott-Schwartz, J., and G. H. Patterson (2008). Fluorescent proteins for photoactivation experiments. Methods Cell Biol, 85: 45–61.CrossRefGoogle Scholar
  136. 136.
    Cinelli, R. A., V. Tozzini, et al. (2001). Coherent dynamics of photoexcited green fluorescent proteins. Phys Rev Lett, 86(15): 3439–42.ADSCrossRefGoogle Scholar
  137. 137.
    Biteen, J. S., M. A. Thompson, et al. (2008). Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods, 5(11): 947–9.CrossRefGoogle Scholar
  138. 138.
    Habuchi, S., R. Ando, et al. (2005). Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci USA, 102(27): 9511–6.ADSCrossRefGoogle Scholar
  139. 139.
    Andresen, M., A. C. Stiel, et al. (2007). Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA, 104(32): 13005–9.ADSCrossRefGoogle Scholar
  140. 140.
    Stiel, A. C., S. Trowitzsch, et al. (2007). 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J, 402(1): 35–42.CrossRefGoogle Scholar
  141. 141.
    Wilmann, P. G., K. Turcic, et al. (2006). The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. J Mol Biol, 364(2): 213–24.CrossRefGoogle Scholar
  142. 142.
    Dedecker, P., J. Hotta, et al. (2006). Fast and reversible photoswitching of the fluorescent protein Dronpa as evidenced by fluorescence correlation spectroscopy. Biophys J, 91(5): L45–7.CrossRefGoogle Scholar
  143. 143.
    Fron, E., C. Flors, et al. (2007). Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. J Am Chem Soc, 129(16): 4870–1.CrossRefGoogle Scholar
  144. 144.
    Mizuno, H., T. K. Mal, et al. (2008). Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA, 105(27): 9227–32.ADSCrossRefGoogle Scholar
  145. 145.
    Habuchi, S., P. Dedecker, et al. (2006). Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem Photobiol Sci, 5(6): 567–76.CrossRefGoogle Scholar
  146. 146.
    Chisari, M., D. K. Saini, et al. (2007). Shuttling of G protein subunits between the plasma membrane and intracellular membranes. J Biol Chem, 282(33): 24092–8.CrossRefGoogle Scholar
  147. 147.
    Wiegert, J. S., C. P. Bengtson, and H. Bading (2007). Diffusion and not active transport underlies and limits ERK1/2 synapse-to-nucleus signaling in hippocampal neurons. J Biol Chem, 282(40): 29621–33.CrossRefGoogle Scholar
  148. 148.
    Aramaki, S., and K. Hatta (2006). Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev Dyn, 235(8): 2192–9.CrossRefGoogle Scholar
  149. 149.
    Dedecker, P., J. Hotta, et al. (2007). Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc, 129(51): 16132–41.CrossRefGoogle Scholar
  150. 150.
    Betzig, E., G. H. Patterson, et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793): 1642–5.ADSCrossRefGoogle Scholar
  151. 151.
    Eggeling, C., M. Hilbert, et al. (2007). Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration. Microsc Res Tech. 2007 DEC; 70(12): 1003–9.Google Scholar
  152. 152.
    Egner, A., C. Geisler, et al. (2007). Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J. NOV 1; 93(9): 3285–90.Google Scholar
  153. 153.
    Stiel, A. C., M. Andresen, et al. (2008). Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J. SEP 15; 95(6): 2989–97.Google Scholar
  154. 154.
    Campbell, R. E., O. Tour, et al. (2002). A monomeric red fluorescent protein. Proc Natl Acad Sci USA, 99(12): 7877–82.ADSCrossRefGoogle Scholar
  155. 155.
    Nienhaus, G. U., K. Nienhaus, et al. (2006). Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol, 82(2): 351–8.CrossRefGoogle Scholar
  156. 156.
    Nienhaus, K., G. U. Nienhaus, et al. (2005). Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA, 102(26): 9156–9.ADSCrossRefGoogle Scholar
  157. 157.
    Mizuno, H., T. K. Mal, et al. (2003). Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell, 12(4): 1051–8.CrossRefGoogle Scholar
  158. 158.
    Shroff, H., C. G. Galbraith, et al. (2007). Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA, 104(51): 20308–13.ADSCrossRefGoogle Scholar
  159. 159.
    Niu, L., and J. Yu (2008). Investigating intracellular dynamics of FtsZ cytoskeleton with photo-activation single-molecule tracking. Biophys J, 95(4): 2009–16, 15 Aug 2008.Google Scholar
  160. 160.
    Aubin, J. E. (1979). Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem, 27(1): 36–43.CrossRefGoogle Scholar
  161. 161.
    Chance, B., and B. Thorell (1959). Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem, 234: 3044–50.Google Scholar
  162. 162.
    Benson, R. C., R. A. Meyer, et al. (1979). Cellular autofluorescence—is it due to flavins? J Histochem Cytochem, 27(1): 44–8.CrossRefGoogle Scholar
  163. 163.
    Xiao, J., J. Elf, et al. (2007). Imaging gene expression in living cells at the single-molecule level. In Single Molecules: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 149–69.Google Scholar
  164. 164.
    Lansford, R., G. Bearman, and S. E. Fraser (2001). Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J Biomed Opt, 6: 311.CrossRefGoogle Scholar
  165. 165.
    Dickinson, M. E., G. Bearman, et al. (2001). Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques, 31(1272): 1274–6.Google Scholar
  166. 166.
    Connally, R., D. Veal, and J. Piper (2004). Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio. J Biomed Opt, 9(4): 725–34.CrossRefGoogle Scholar
  167. 167.
    Wilkerson, C. W., Jr., P. M. Goodwin, et al. (1993). Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence. Appl Phys Lett, 62(17): 2030–32.ADSCrossRefGoogle Scholar
  168. 168.
    Qin, J., Y. Fung, et al. (2004). Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection. J Chromatogr A, 1027(1–2): 223–29.CrossRefGoogle Scholar
  169. 169.
    Yang, H., G. Luo, et al. (2003). Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. American Association for the Advancement of Science: Washington, DC: pp. 262–6.Google Scholar
  170. 170.
    Xie, X. S., J. Yu, and W. Y. Yang (2006). Living cells as test tubes. Science, 312(5771): 228–30.ADSCrossRefGoogle Scholar
  171. 171.
    Straight, A. F., A. S. Belmont, et al. (1996). GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol, 6(12): 1599–1608.CrossRefGoogle Scholar
  172. 172.
    Lau, I. F., S. R. Filipe, et al. (2003). Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol, 49(3): 731–43.CrossRefGoogle Scholar
  173. 173.
    Bertrand, E., P. Chartrand, et al. (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell, 2(4): 437–45.CrossRefGoogle Scholar
  174. 174.
    Averbeck, D., and S. Averbeck (1998). DNA photodamage, repair, gene induction and genotoxicity following exposures to 254 nm UV and 8-methoxypsoralen plus UVA in a eukaryotic cell system. Photochem Photobiol, 68(3): 289–95.CrossRefGoogle Scholar
  175. 175.
    Pfeifer, G. P., R. Drouin, et al. (1992). Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol Cell Biol, 12(4): 1798.Google Scholar
  176. 176.
    Jones, C. A., E. Huberman, et al. (1987). Mutagenesis and cytotoxicity in human epithelial cells by far-and near-ultraviolet radiations: action spectra. Radiat Res, 110(2): 244–54.CrossRefGoogle Scholar
  177. 177.
    Mohanty, S. K., M. Sharma, and P. K. Gupta (2006). Generation of ROS in cells on exposure to CW and pulsed near-infrared laser tweezers. Photochem Photobiol Sci, 5(1): 134–9.CrossRefGoogle Scholar
  178. 178.
    Neuman, K. C., E. H. Chadd, et al. (1999). Characterization of photodamage to Escherichia coli in optical traps. Biophys J, 77(5): 2856–63.CrossRefGoogle Scholar
  179. 179.
    Liu, Y., G. J. Sonek, et al. (1996). Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys J, 71(4): 2158.CrossRefGoogle Scholar
  180. 180.
    Ashkin, A., and J. M. Dziedzic (1989). Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci USA, 86(20): 7914–18.ADSCrossRefGoogle Scholar
  181. 181.
    Moan, J., K. Berg, et al. (1989). Intracellular localization of photosensitizers. In Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use, G. Bock and S. Harnett, Editors. John Wiley and Sons: New York, pp. 95–111.Google Scholar
  182. 182.
    Bensasson, R. V., E. J. Land, and T. G. Truscott (1993). Excited States and Free Radicals in Biology and Medicine. Oxford University Press: Oxford.Google Scholar
  183. 183.
    Dixit, R., and R. Cyr (2003). Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J, 36(2): 280–90.CrossRefGoogle Scholar
  184. 184.
    Halliwell, B., and J. M. C. Gutteridge (1989). Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. Free Rad Biol Med. Edited by Halliwell B, Gutteridge JMC, Oxford Clarendun Press pp 86–179.Google Scholar
  185. 185.
    Schafer, F. Q., and G. R. Buettner (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad Biol Med, 30(11): 1191–1212.CrossRefGoogle Scholar
  186. 186.
    de With, A., and K. O. Greulich (1995). Wavelength dependence of laser-induced DNA damage in lymphocytes observed by single-cell gel electrophoresis. J Photochem Photobiol B Biol, 30(1): 71–76.CrossRefGoogle Scholar
  187. 187.
    Tripathi, A., R. E. Jabbour, et al. (2008). Waterborne pathogen detection using Raman spectroscopy. Appl Spectrosc, 62: 1–9.ADSCrossRefGoogle Scholar
  188. 188.
    Benson, D. M., J. Bryan, et al. (1985). Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells. J Cell Biol, 100(4): 1309–23.CrossRefGoogle Scholar
  189. 189.
    Adachi, K., K. Kinosita, Jr., and T. Ando (1999). Single-fluorophore imaging with an unmodified epifluorescence microscope and conventional video camera. J Microsc, 195(2): 125–32.CrossRefGoogle Scholar
  190. 190.
    Gratton, E., and M. J. vandeVen (1995). Laser sources for confocal microscopy, in Handbook of Biological Confocal Microscopy, J. B. Pawley, Editor. Plenum Press: New York, pp. 65–98.Google Scholar
  191. 191.
    Murphy, D. B. (2002). Fundamentals of Light Microscopy and Electronic Imaging. Wiley-Liss: New York.Google Scholar
  192. 192.
    Nipkow, P. (1884). German Patent 30,105.Google Scholar
  193. 193.
    Inoue, S., and K. R. Spring (1997). Video Microscopy. Plenum Press: New York.CrossRefGoogle Scholar
  194. 194.
    Stuurman, N., and R. D. Vale (2006). Imaging single molecules using total internal reflection fluorescence microscopy. In Live Cell Imaging, A Laboratory Manual, R.D. Goldman and D.L. Spector, Editors. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 585–601.Google Scholar
  195. 195.
    Swedlow, J. R., P. D. Andrews, and M. Platani (2005). In vivo imaging of mammalian cells. In Live Cell Imaging: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 329–43.Google Scholar
  196. 196.
    Elf, J., G. W. Li, and X. S. Xie (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316(5828): 1191–4.ADSCrossRefGoogle Scholar
  197. 197.
    Ueda, M., Y. Sako, et al. (2001). Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science, 294(5543): 864–7.ADSCrossRefGoogle Scholar
  198. 198.
    Haggie, P. M., and A. S. Verkman (2008). Monomeric CFTR in plasma membranes in live cells revealed by single-molecule fluorescence imaging. J Biol Chem. AUG 2008; 283: 23510–23513.Google Scholar
  199. 199.
    Fu, G., C. Wang, et al. (2008). Heterodimerization of integrin Mac-1 subunits studied by single-molecule imaging. Biochem Biophys Res Commun, 368(4): 882–6.MathSciNetCrossRefGoogle Scholar
  200. 200.
    Ulbrich, M. H., and E. Y. Isacoff (2007). Subunit counting in membrane-bound proteins. Nat Methods, 4(4): 319–21.Google Scholar
  201. 201.
    Groc, L., M. Heine, et al. (2004). Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci, 7(7): 695–6.CrossRefGoogle Scholar
  202. 202.
    Lommerse, P. H., G. A. Blab, et al. (2004). Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J, 86(1 Pt 1): 609–16.CrossRefGoogle Scholar
  203. 203.
    Lommerse, P. H., B. E. Snaar-Jagalska, et al. (2005). Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci, 118(Pt 9): 1799–809.CrossRefGoogle Scholar
  204. 204.
    Sonnleitner, A., L. M. Mannuzzu, et al. (2002). Structural rearrangements in single ion channels detected optically in living cells. Proc Natl Acad Sci USA, 99(20): 12759.ADSCrossRefGoogle Scholar
  205. 205.
    Cai, D., K. J. Verhey, and E. Meyhofer (2007). Tracking single Kinesin molecules in the cytoplasm of mammalian cells. Biophys J, 92(12): 4137–44.CrossRefGoogle Scholar
  206. 206.
    Holland, M. J. (2002). Transcript abundance in yeast varies over six orders of magnitude. J Biol Chem, 277(17): 14363–6.CrossRefGoogle Scholar
  207. 207.
    Velculescu, V. E., L. Zhang, et al. (1997). Characterization of the yeast transcriptome. Cell, 88(2): 243–51.CrossRefGoogle Scholar
  208. 208.
    Novick, A., and M. Weiner (1957). Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA, 43(7): 553–66.ADSCrossRefGoogle Scholar
  209. 209.
    Blake, W. J., M. Kærn, et al. (2003). Noise in eukaryotic gene expression. Nature, 422(6932): 633–7.ADSCrossRefGoogle Scholar
  210. 210.
    Raser, J.M., and E. K. O’Shea (2004). Control of stochasticity in eukaryotic gene expression. Science, 304(5678): 1811–4.ADSCrossRefGoogle Scholar
  211. 211.
    Kohout, S. C., M. H. Ulbrich, et al. (2008). Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol, 15(1): 106–8.CrossRefGoogle Scholar
  212. 212.
    Joglekar, A. P., D. C. Bouck, et al. (2006). Molecular architecture of a kinetochore-microtubule attachment site. Nat Cell Biol, 8(6): 581–5.CrossRefGoogle Scholar
  213. 213.
    Hess, S. T., T. J. Gould, et al. (2007). Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci USA, 104(44): 17370–5.ADSCrossRefGoogle Scholar
  214. 214.
    Patterson, G. H., et al. (1997). Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J, 73(5): 2782–90.MathSciNetCrossRefGoogle Scholar
  215. 215.
    Iwane, A. H., et al. (1997). Single molecular assay of individual ATP turnover by a myosin-GFP fusion protein expressed in vitro. FEBS Lett, 407(2): 235–8.CrossRefGoogle Scholar
  216. 216.
    Cognet, L., et al. (2002). Fluorescence microscopy of single autofluorescent proteins for cellular biology. C R Physique, 3(5): 645–56.ADSCrossRefGoogle Scholar
  217. 217.
    Kremers, G. J., et al. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry, 46(12): 3775–83.CrossRefGoogle Scholar
  218. 218.
    Hendrix, J., et al. (2008). Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J, 94(10): 4103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jie Xiao
    • 1
  1. 1.Johns Hopkins University School of Medicine, 708 WBSBBaltimoreUSA

Personalised recommendations